共查询到20条相似文献,搜索用时 0 毫秒
1.
Inocula were collected from four different sources such as Jajmau tannery waste treatment plant (ITW), Jajmau municipal waste treatment (IMW), Unnao distillery (IDW) and a batch reactor, in which the sludge of a field scale biogas reactor was added to cow dung slurry to develop inoculum (IBS). A combination of these mixed inocula were used for biogas production at 35°C in laboratory scale reactor (10 L capacity) and the average yield of biogas (0.547 Lg?1 volatile solid (VS)) and methane (0.323 Lg?1VS) in 41 d was higher in case of mixed inoculum IMW 1 (IMW+IBS), with maximum methane content in biogas (68% during 27–30 d), as compared to other mixed inocula as well as control i.e. ITW 1 (ITW+IBS), IDW1 (IDW+IBS) and IBS. The corresponding yields of gas were biogas (0.505, 0.536 and 0.456 Lg?1VS), methane (0.288, 0.305, and 0.245 Lg?1VS) where as, the corresponding maximum methane content in biogas was 62% during 29–33d, 64% during 29–33 d and 62% during 27–29 d in ITW1, IDW1 and IBS. 相似文献
2.
3.
Biotechnological intensification of biogas production 总被引:1,自引:0,他引:1
Bagi Z Acs N Bálint B Horváth L Dobó K Perei KR Rákhely G Kovács KL 《Applied microbiology and biotechnology》2007,76(2):473-482
The importance of syntrophic relationships among microorganisms participating in biogas formation has been emphasized, and
the regulatory role of in situ hydrogen production has been recognized. It was assumed that the availability of hydrogen may
be a limiting factor for hydrogenotrophic methanogens. This hypothesis was tested under laboratory and field conditions by
adding a mesophilic (Enterobacter cloacae) or thermophilic hydrogen-producing (Caldicellulosyruptor saccharolyticus) strain to natural biogas-producing consortia. The substrates were waste water sludge, dried plant biomass from Jerusalem
artichoke, and pig manure. In all cases, a significant intensification of biogas production was observed. The composition
of the generated biogas did not noticeably change. In addition to being a good hydrogen producer, C. saccharolyticus has cellulolytic activity; hence, it is particularly suitable when cellulose-containing biomass is fermented. The process
was tested in a 5-m3 thermophilic biogas digester using pig manure slurry as a substrate. Biogas formation increased at least 160–170% upon addition
of the hydrogen-producing bacteria as compared to the biogas production of the spontaneously formed microbial consortium.
Using the hydrogenase-minus control strain provided evidence that the observed enhancement was due to interspecies hydrogen
transfer. The on-going presence of C. saccharolyticus was demonstrated after several months of semicontinuous operation. 相似文献
4.
Agnes Weiss Valérie Jérôme Diana Burghardt Likke Likke Stefan Peiffer Eugen M. Hofstetter Ralf Gabler Ruth Freitag 《Applied microbiology and biotechnology》2009,84(5):987-1001
A continuously operated, thermophilic, municipal biogas plant was observed over 26 months (sampling twice per month) in regard
to a number of physicochemical parameters and the biogas production. Biogas yields were put in correlation to parameters such
as the volatile fatty acid concentration, the pH and the ammonium concentration. When the residing microbiota was classified
via analysis of the 16S rRNA genes, most bacterial sequences matched with unidentified or uncultured bacteria from similar
habitats. Of the archaeal sequences, 78.4% were identified as belonging to the genus Methanoculleus, which has not previously been reported for biogas plants, but is known to efficiently use H2 and CO2 produced by the degradation of fatty acids by syntrophic microorganisms. In order to further investigate the influence of
varied amounts of ammonia (2–8 g/L) and volatile fatty acids on biogas production and composition (methane/CO2), laboratory scale satellite experiments were performed in parallel to the technical plant. Finally, ammonia stripping of
the process water of the technical plant was accomplished, a measure through which the ammonia entering the biogas reactor
via the mash could be nearly halved, which increased the energy output of the biogas plant by almost 20%. 相似文献
5.
The effects of different volatile fatty acids (VFA, formate, acetate, propionate and butyrate), ammonium (NH (4) (+)) and agitation on methane (CH(4)) production were determined in 120-mL serum bottles. We showed that the addition of formate did not lead to an inhibition of methanogenesis until a concentration of 120 mmol/L. A complete inhibition of methanogenesis was detected in variants containing 360 mmol/L formate or propionate until day 3 but the production started afterwards within next 2 days. This might indicate a kind of adaptation to the higher volatile fatty acid concentrations. Increasing NH (4) (+) concentrations led to higher initial CH(4) production, with an optimum at 120 mmol/L. The addition of 720 mmol/L NH (4) (+) led to a complete inhibition until day 3; subsequently, CH(4) production started again on day 5 though it was still significantly lower compared to the other variants. Finally, also the speed of agitation showed significant effects on methanogenesis. The CH(4) production from complex carbon sources was most favourable at a moderate agitation of 150 rpm of the lab-scale serum bottles. A lower or higher speed brought about a distinct reduction of CH(4) production. 相似文献
6.
Sarah Refai Kati Wassmann Uwe Deppenmeier 《Applied microbiology and biotechnology》2014,98(16):7271-7280
Biochemical processes in biogas plants are still not fully understood. Especially, the identification of possible bottlenecks in the complex fermentation processes during biogas production might provide potential to increase the performance of biogas plants. To shed light on the question which group of organism constitutes the limiting factor in the anaerobic breakdown of organic material, biogas sludge from different mesophilic biogas plants was examined under various conditions. Therefore, biogas sludge was incubated and analyzed in anaerobic serum flasks under an atmosphere of N2/CO2. The batch reactors mirrored the conditions and the performance of the full-scale biogas plants and were suitable test systems for a period of 24 h. Methane production rates were compared after supplementation with substrates for syntrophic bacteria, such as butyrate, propionate, or ethanol, as well as with acetate and H2+CO2 as substrates for methanogenic archaea. Methane formation rates increased significantly by 35 to 126 % when sludge from different biogas plants was supplemented with acetate or ethanol. The stability of important process parameters such as concentration of volatile fatty acids and pH indicate that ethanol and acetate increase biogas formation without affecting normally occurring fermentation processes. In contrast to ethanol or acetate, other fermentation products such as propionate, butyrate, or H2 did not result in increased methane formation rates. These results provide evidence that aceticlastic methanogenesis and ethanol-oxidizing syntrophic bacteria are not the limiting factor during biogas formation, respectively, and that biogas plant optimization is possible with special focus on methanogenesis from acetate. 相似文献
7.
E. A. Tsavkelova M. A. Egorova E. V. Petrova A. I. Netrusov 《Moscow University Biological Sciences Bulletin》2012,67(2):75-81
The project is devoted to the screening of active anaerobic microbial communities which produce biogas via the decomposition of cellulose in thermophilic conditions (+55°C). Twenty-four samples were isolated from different natural and anthropogenic sources that contain desired microbial organisms. Growth medium was chosen to optimize the conditions for proliferation and selection of cellulolytic and methanogenic microorganisms. During the study of biogas formation dynamics, the most productive communities that remain active during five passages were selected. The biogas composition (methane, carbon dioxide, hydrogen) was investigated by gas chromatography. On average, the methane content in the gas mixture reached 60%. Microscopic studies revealed the presence of various morphotypes of microbial cells; their ratio varied during the stabilization of communities. The significance of the research on the transformation of cellulose into biogas is discussed. 相似文献
8.
The aims of this work were to determine the specific biogas yields of steam-exploded sugarcane straw and bagasse as well as to estimate their energy potential under Brazilian conditions. Steam-explosion was carried out under different time and temperature conditions. The specific biogas yields were analyzed in batch-tests according to VDI 4630.Results have shown that steam-explosion pre-treatment increased the specific biogas yields of straw and bagasse significantly compared to the untreated material. The utilization of these by-products can contribute to 5% of the total energy consumption and thereby higher energy independence in Brazil. Further efforts in defining the optimum pretreatment conditions with steam-explosion as well as implementing this technology in large scale plants should be made. 相似文献
9.
Production of biogas in batch digesters at 30°C from sheep droppings produced 93 l gas/kg dry matter whereas cattle dung yielded 234 l/kg dry matter. When the sheep droppings and cattle dung were used at 25:75 (w/w), gas production per kg dry matter was equal to that of cattle dung only. The methane content of the biogas obtained from sheep droppings was 70 to 72% as compared to 56 to 60% from cattle dung. 相似文献
10.
Extrusion as a pretreatment to increase biogas production 总被引:1,自引:0,他引:1
Application of an extruder to increase the methane yield in a biogas production was examined, and large potential was proved. An extruder was tested on five agricultural biomass types, represented by 13 samples. The samples were analyzed for temperature, maximum particle size, biogas potential, and energy consumption. The extruder treatment increased biomass temperature by 5-35 °C. Large particles (>1 mm) were most affected by the extruder. Extrusion accelerated the degradation of slowly degradable organic compounds, and some otherwise nondegradable organic compounds were also degraded. The methane yield increased significantly: by 18-70% after 28 days, and by 9-28% after 90 days. The electrical energy equivalent of the extra methane, after subtracting the energy used by the extruder, resulted in energy surpluses of 6-68%. By day 90, the energy-efficiency of the extrusion process was ranked as follows: grass = straw = solids of flocculated manure < solids of screw-pressed manure < deep litter. 相似文献
11.
A biological pretreatment with new complex microbial agents was used to pretreat corn straw at ambient temperature (about 20°C) to improve its biodegradability and anaerobic biogas production. A complex microbial agent dose of 0.01% (w/w) and pretreatment time of 15 days were appropriate for biological pretreatment. These treatment conditions resulted in 33.07% more total biogas yield, 75.57% more methane yield, and 34.6% shorter technical digestion time compared with the untreated sample. Analyses of chemical compositions showed 5.81-25.10% reductions in total lignin, cellulose, and hemicellulose contents, and 27.19-80.71% increases in hot-water extractives; these changes contributed to the enhancement of biogas production. Biological pretreatment could be an effective method for improving biodegradability and enhancing the highly efficient biological conversion of corn straw into bioenergy. 相似文献
12.
《Critical reviews in biotechnology》2013,33(2):172-186
Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the sludge and an increase in methane production. Strategies for enzyme dosing to enhance anaerobic digestion of the different complex organic rich materials have been investigated. This review also highlights the various challenges and opportunities that exist to improve enzymatic hydrolysis of complex organic matter for biogas production. The arguments in favor of enzymes to pretreat complex biomass are compelling. The high cost of commercial enzyme production, however, still limits application of enzymatic hydrolysis in full-scale biogas production plants, although production of low-cost enzymes and genetic engineering are addressing this issue. 相似文献
13.
Parawira W 《Critical reviews in biotechnology》2012,32(2):172-186
Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the sludge and an increase in methane production. Strategies for enzyme dosing to enhance anaerobic digestion of the different complex organic rich materials have been investigated. This review also highlights the various challenges and opportunities that exist to improve enzymatic hydrolysis of complex organic matter for biogas production. The arguments in favor of enzymes to pretreat complex biomass are compelling. The high cost of commercial enzyme production, however, still limits application of enzymatic hydrolysis in full-scale biogas production plants, although production of low-cost enzymes and genetic engineering are addressing this issue. 相似文献
14.
Thermophilic methane production and oxidation in compost 总被引:1,自引:0,他引:1
Methane cycling within compost heaps has not yet been investigated in detail. We show that thermophilic methane oxidation occurred after a lag phase of up to one day in 4-week old, 8-week old and mature (>10-week old) compost material. The potential rate of methane oxidation was between 2.6 and 4.1 micromol CH4(gdw)(-1)h(-1). Profiles of methane concentrations within heaps of different ages indicated that 46-98% of the methane produced was oxidised by methanotrophic bacteria. The population size of thermophilic methanotrophs was estimated at 10(9) cells (gdw)(-1), based on methane oxidation rates. A methanotroph (strain KTM-1) was isolated from the highest positive step of a serial dilution series. This strain belonged to the genus Methylocaldum, which contains thermotolerant and thermophilic methanotrophs. The closest relative organism on the basis of 16S rRNA gene sequence identity was M. szegediense (>99%), a species originally isolated from hot springs. The temperature optimum (45-55 degrees C) for methane oxidation within the compost material was identical to that of strain KTM-1, suggesting that this strain was well adapted to the conditions in the compost material. The temperatures measured in the upper layer (0-40 cm) of the compost heaps were also in this range, so we assume that these organisms are capable of effectively reducing the potential methane emissions from compost. 相似文献
15.
Sarah Refai Kati Wassmann Sebastian van Helmont Stefanie Berger Uwe Deppenmeier 《Journal of industrial microbiology & biotechnology》2014,41(12):1763-1772
Very recently, it was shown that the addition of acetate or ethanol led to enhanced biogas formation rates during an observation period of 24 h. To determine if increased methane production rates due to ethanol addition can be maintained over longer time periods, continuous reactors filled with biogas sludge were developed which were fed with the same substrates as the full-scale reactor from which the sludge was derived. These reactors are well reflected conditions of a full-scale biogas plant during a period of 14 days. When the fermenters were pulsed with 50–100 mM ethanol, biomethanation increased by 50–150 %, depending on the composition of the biogas sludge. It was also possible to increase methane formation significantly when 10–20 mM pure ethanol or ethanolic solutions (e.g. beer) were added daily. In summary, the experiments revealed that “normal” methane production continued to take place, but ethanol led to production of additional methane. 相似文献
16.
Batch and continuous biogas production from grass silage liquor 总被引:2,自引:0,他引:2
Herein batch and continuous mesophilic anaerobic digestion of grass silage liquor was studied. The continuous process was carried out in Armfield digesters with an OLR ranging from 0.851 to 1.77 kg COD m−3 day−1. The effect of recirculation of effluent from the digester was investigated using different OLRs of grass silage liquor feed. These results showed that as the OLR increased, the methane yield decreased for the reactor with no recycle and increased for the reactor with recycle. However, the COD removal for both digesters was nearly the same at the same OLR. Overall these studies show that grass silage liquor can produce a high quality methane steam between 70% and 80% and achieve methane yields of 0.385 m3 kg−1 COD. 相似文献
17.
Kornél L. Kovács Ákos T. Kovács Gergely Maróti Zoltán Bagi Gyula Csanádi Katalin Perei Balázs Bálint Judit Balogh András Fülöp Lívia S. Mészáros András Tóth Réka Dávid Dóra Latinovics András Varga Gábor Rákhely 《Reviews in Environmental Science and Biotechnology》2004,3(4):321-330
H2 is considered as the ultimate cleanest energy carrier to be generated from renewable sources. This minireview intends to point out that in addition to this function, biologically produced hydrogen is important for environmental biotechnological applications. The purple sulphur phototrophic bacterium, Thiocapsa roseopersicina BBS contains several NiFe hydrogenases. These enzymes can be used e.g., as fuel cell H2 splitting catalyst or in photoheterotrophic H2 production. Microorganisms that supply H2 in situ facilitate the biodegradation of organic material and concomitant biogas production. Fast, efficient, and economic treatment of organic waste, sludge, manure is achieved and generation of significant amount of renewable fuel from waste is intensified. The technology has been field tested under mesophilic and thermophilic conditions with positive results. 相似文献
18.
Fatiha Sounni Halah Aissam Oumaima Ghomari Mohammed Merzouki Mohammed Benlemlih 《Biotechnology letters》2018,40(2):297-301
Objectives
To assess the combination of electrocoagulation and anaerobic co-digestion of olive mill wastewaters (OMWW) with other substrates, such as chicken manure, in a continuous stirred tank reactor for biogas production.Results
Anaerobic digestion of OMWW treated by electrocoagulation allowed higher production of biogas, up to 0.74 l biogas g?1 COD introduced compared to untreated or diluted olive mill wastewaters (OMWW) (0.37 and 0.6 l biogas g?1 COD) respectively. Pretreated OMWW co-digested with chicken manure at different volumic ratios OMWW/manure in a continuous stirred tank reactor under mesophilic conditions revealed that OMWW/manure (7:3 v/v) was optimal for biogas production and process stability.Conclusion
Anaerobic digestion could achieve promising results in depollution and valorization of OMWW under a continuous stirred tank reactor.19.
The feasibility of co-digesting grease trap sludge from a meat-processing plant and sewage sludge was studied in batch and reactor experiments at 35 degrees C. Grease trap sludge had high methane production potential (918 m(3)/tVS(added)), but methane production started slowly. When mixed with sewage sludge, methane production started immediately and the potential increased with increasing grease trap sludge content. Semi-continuous co-digestion of the two materials was found feasible up to grease trap sludge addition of 46% of feed volatile solids (hydraulic retention time 16d; maximum organic loading rate 3.46 kgVS/m(3)d). Methane production was significantly higher and no effect on the characteristics of the digested material was noticed as compared to digesting sewage sludge alone. At higher grease trap sludge additions (55% and 71% of feed volatile solids), degradation was not complete and methane production either remained the same or decreased. 相似文献
20.