首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequences of 13 lipoxygenases from various plant and mammalian species, thus far reported, display a motif of 38 amino acid residues which includes 5 conserved histidines and a 6th histidine about 160 residues downstream. These residues occur at positions 494, 499, 504, 522, 531, and 690 in soybean lipoxygenase isozyme L-1. Since the participation of iron in the lipoxygenase reaction has been established and existing evidence based on M?ssbauer and EXAFS spectroscopy suggests that histidines may be involved in iron binding, the effect of the above residues has been examined in soybean lipoxygenase L-1. Six singly mutated lipoxygenases have been produced in which each of the His residues has been replaced with glutamine. Two additional mutants have been constructed wherein the codons for His-494 and His-504 have been replaced by serine codons. All of the mutant lipoxygenases, which were obtained by expression in Escherichia coli, have mobilities identical to that of the wild-type enzyme on denaturing gel electrophoresis and respond to lipoxygenase antibodies. The mutated proteins H499Q, H504Q, H504S, and H690Q are virtually inactive, while H522Q has about 1% of the wild-type activity. H494Q, H494S, and H531Q are about 37%, 8%, and 20% as active as the wild type, respectively. His-517 is conserved in the several lipoxygenase isozymes but not in the animal isozymes. The mutant H517Q has about 33% of the wild-type activity. The inactive mutants, H499Q, H504Q, H504S, and H690Q, become insoluble when heated for 3 min at 65 degrees C, as does H522Q. The other mutants and the wild-type are stable under these conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Tyrosine hydroxylase catalyzes the hydroxylation of tyrosine and other aromatic amino acids using a tetrahydropterin as the reducing substrate. The enzyme is a homotetramer; each monomer contains a single nonheme iron atom. Five histidine residues are conserved in all tyrosine hydroxylases that have been sequenced to date and in the related eukaryotic enzymes phenylalanine and tryptophan hydroxylase. Because histidine has been suggested as a ligand to the iron in these enzymes, mutant tyrosine hydroxylase proteins in which each of the conserved histidines had been mutated to glutamine or alanine were expressed in Escherichia coli. The H192Q, H247Q, and H317A mutant proteins contained iron in comparable amounts to the wild-type enzyme, about 0.6 atoms/sub-unit. In contrast, the H331 and H336 mutant proteins contained no iron. The first three mutant enzymes were active, with Vmax values 39, 68, and 7% that of the wild-type enzyme, and slightly altered V/Km values for both tyrosine and 6-methyltetrahydropterin. In contrast, the H331 and H336 mutant enzymes had no detectable activity. The EPR spectra of the H192Q and H247Q enzymes are indistinguishable from that of wild-type tyrosine hydroxylase, whereas that of the H317A enzyme indicated that the ligand field of the iron had been slightly perturbed. These results are consistent with H331 and H336 being ligands to the active site iron atom.  相似文献   

3.
The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the plasticity of this metal binding site, each of the ligands in TyrH has been mutated to glutamine, glutamate, or histidine. The H336E and H336Q enzymes show dramatic decreases in iron affinity but retain substantial activity for both tyrosine hydroxylation and tetrahydropterin oxidation. The H331E enzyme shows a lesser decrease in iron affinity and is unable to hydroxylate tyrosine. Instead, this enzyme oxidizes tetrahydropterin in the absence of added tyrosine. The E376H enzyme has no significant activity, while the E376Q enzyme hydroxylates tyrosine at about 0.4% the wild-type rate. When dopamine is bound to either the H336Q or H331E enzymes, the position of the long wavelength charge-transfer absorbance band is consistent with the change in the metal ligand. In contrast, the H336E enzyme does not form a stable binary complex with dopamine, while the E376H and E376Q enzymes catalyze dopamine oxidation.  相似文献   

4.
To investigate the functional significance of mutations in Ferroportin that cause hereditary iron overload, we directly measured the iron efflux activity of the proteins expressed in Xenopus oocytes. We found that wild type and mutant Ferroportin molecules (A77D, N144H, Q248H and V162Δ) were all expressed at the plasma membrane at similar levels. All mutations caused significant reductions in 59Fe efflux compared to wild type but all retained some residual transport activity. A77D had the strongest effect on 59Fe efflux (remaining activity 9% of wild-type control), whereas the N144H mutation retained the highest efflux activity (42% of control). The Q248H and V162Δ mutations were intermediate between these values. Co-injection of mutant and wild-type mRNAs revealed that the A77D and N144H mutations had a dominant negative effect on the function of the WT protein.  相似文献   

5.
Nitrogenase binds and hydrolyzes 2MgATP yielding 2MgADP and 2Pi for each electron that is transferred from the iron protein to the MoFe protein. The iron protein alone binds but does not hydrolyze 2MgATP or 2MgADP and the binding of these nucleotides is competitive. Iron protein amino acid sequences all contain a putatitive mononucleotide-binding region similar to a region found in other mononucleotide-binding proteins. To examine the role of this region in MgATP interaction, we have substituted glutamine and proline for conserved lysine 15. The amino acid substitutions, K15Q and K15P, both yielded a non-N2-fixing phenotype when the genes coding for them were substituted into the Azotobacter vinelandii chromosome in place of the wild-type gene. The iron protein from the K15Q mutant was purified to homogeneity, whereas the protein from the K15P mutant could not be purified in its native form. Unlike wild-type iron protein, the purified K15Q iron protein showed no acetylene reduction, H2 evolution, or ATP hydrolysis activities when complemented with wild-type MoFe protein. The K15Q iron protein and the normal iron protein had a similar total iron content and both proteins showed the characteristic rhombic EPR signal resulting from the reduced state of the single 4Fe-4S cluster bridging the two subunits. Unlike the wild-type iron protein, addition of MgATP to the K15Q iron protein did not result in the perturbation necessary to change the EPR signal of its 4Fe-4S center from a rhombic to an axial line shape. Also unlike the wild-type iron protein, addition of MgATP to K15Q iron protein in the presence of the iron chelator, alpha,alpha'-dipyridyl, did not result in a time-dependent transfer of iron to the chelator. Thus, even though the K15Q iron protein contains a normal 4Fe-4S center, it does not respond to MgATP like the wild-type protein. Examination of the ability of the K15Q iron protein to bind MgADP showed no change from the wild-type iron protein, but its ability to bind MgATP decreased to 35% of the wild-type protein. Thus, in A. vinelandii iron protein, lysine 15 is not needed for interaction with MgADP but is involved in the binding of ATP, presumably through charge-charge interaction with the gamma-phosphate. Based on the above data, this lysine appears to be essential for the MgATP induced conformational change of wild-type iron protein that is required for activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The X-ray crystallographic structures of two mutants (K206Q and H207E) of the N-lobe of human transferrin (hTF/2N) have been determined to high resolution (1.8 and 2.0 A, respectively). Both mutant proteins bind iron with greater affinity than native hTF/2N. The structures of the K206Q and H207E mutants show interactions (both H-bonding and electrostatic) that stabilize the interaction of Lys296 in the closed conformation, thereby stabilizing the iron bound forms.  相似文献   

7.
8.
Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.  相似文献   

9.
Several protein cascades, including signaling, cytoskeletal, chaperones, metabolic, and antioxidant proteins, have been shown to be involved in the process of neuronal differentiation (ND) of neuroblastoma cell lines. No systematic approach to detect hitherto unknown and unnamed proteins or structures that have been predicted upon nucleic acid sequences in ND has been published so far. We therefore decided to screen hypothetical protein (HP) expression by protein profiling. Two-dimensional gel electrophoresis with subsequent matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/TOF) identification was used for expression analysis of undifferentiated and dimethylsulfoxide-induced neuronally differentiated N1E-115 cells. We unambiguously identified six HPs: Q8C520, Q99LF4, Q9CXS1, Q9DAF8, Q91WT0, and Q8C5G2. A prefoldin domain in Q91WT0, a t-SNARE domain in Q9CXS1, and a bromodomain were observed in Q8C5G2. For the three remaining proteins, no putative function using Pfam, BLOCKS, PROSITE, PRINTS, InterPro, Superfamily, CoPS, and ExPASy could be assigned. While two proteins were present in both cell lines, Q9CXS1 was switched off (i.e., undetectably low) in differentiated cells only, and Q9DAF8, Q91WT0, and Q8C5G2 were switched on in differentiated cells exclusively. Herein, using a proteomic approach suitable for screening and identification of HP, we present HP structures that have been only predicted so far based upon nucleic acid sequences. The four differentially regulated HPs may play a putative role in the process of ND.  相似文献   

10.
The epipodophyllotoxin glucopyranosides have previously been shown to interact with membrane lipids and to alter the activity of several lipid-embedded membrane proteins. To determine if these agents are acting as general membrane perturbants, we have further examined their effects on membrane processes in Ehrlich ascites tumor cells. [3H]VM-26 and [3H]VP-16 were taken up rapidly and concentrated within the cells in proportion to their lipophilicity. Neither agent was found to have any significant effect on the influx of L-[3H]leucine or alpha-[3H]aminoisobutyric acid. Likewise, these drugs had no significant effects on the hexose transporter. The nucleoside transporter, which is structurally and functionally similar to the hexose transporter, was dramatically affected, however. VM-26 was a non-competitive inhibitor of equilibrium-exchange influx of cytosine arabinoside in Ehrlich cells with a Ki of 15 microM. Equilibrium-exchange influx increased with temperature in control cells (Q10 = 2) but not in VM-26-treated cells; thus, VM-26 was a more potent inhibitor at higher temperatures. VM-26 also significantly reduced zero-trans influx in Ehrlich, P388, L5178Y, and ML-1 cells, and these effects were immediate in onset. VM-26 inhibited high-affinity binding of the nucleoside transport inhibitor nitrobenzylmercaptopurine riboside (NBMPR), but VM-26 enhanced non-specific NBMPR binding to Ehrlich cells. The apparent specificity of the epipodophyllotoxins for the nucleoside transporter is discussed.  相似文献   

11.
Prostaglandin H synthase isoforms 1 and -2 (PGHS-1 and -2) react with peroxide to form a radical on Tyr385 that initiates the cyclooxygenase catalysis. The tyrosyl radical EPR signals of PGHS-1 and -2 change over time and are altered by cyclooxygenase inhibitor binding. We characterized the tyrosyl radical dynamics using wild type human PGHS-1 (hPGHS-1) and its Y504F, Y385F, and Y385F/Y504F mutants to determine whether the radical EPR signal changes involve Tyr504 radical formation, Tyr385 radical phenyl ring rotation, or both. Reaction of hPGHS-1 with peroxide produced a wide singlet, whereas its Y504F mutant produced only a wide doublet signal, assigned to the Tyr385 radical. The cyclooxygenase specific activity and KM value for arachidonate of hPGHS-1 were not affected by the Y504F mutation, but the peroxidase specific activity and the KM value for peroxide were increased. The Y385F and Y385F/Y504F mutants retained only a small fraction of the peroxidase activity; the former had a much-reduced yield of peroxide-induced radical and the latter essentially none. After binding of indomethacin, a cyclooxygenase inhibitor, hPGHS-1 produced a narrow singlet but the Y504F mutant did not form a tyrosyl radical. These results indicate that peroxide-induced radicals form on Tyr385 and Tyr504 of hPGHS-1, with radical primarily on Tyr504 in the wild type protein; indomethacin binding prevented radical formation on Tyr385 but allowed radical formation on Tyr504. Thus, hPGHS-1 and -2 have different distributions of peroxide-derived radical between Tyr385 and Tyr504. Y504F mutants in both hPGHS-1 and -2 significantly decreased the cyclooxygenase activation efficiency, indicating that formation of the Tyr504 radical is functionally important for both isoforms.  相似文献   

12.
The importance of the Q motif in the ATPase activity of a viral helicase   总被引:1,自引:0,他引:1  
NS3 proteins of flaviviruses contain motifs which indicate that they possess protease and helicase activities. The helicases are members of the DExD/H box helicase superfamily and NS3 proteins from some flaviviruses have been shown to possess ATPase and helicase activities in vitro. The Q motif is a recently recognised cluster of nine amino acids common to most DExD/H box helicases which is proposed to regulate ATP binding and hydrolysis. In addition a conserved residue occurs 17 amino acids upstream of the Q motif ('+17'). We have analysed full-length and truncated NS3 proteins from Powassan virus (a tick-borne flavivirus) to investigate the role that the Q motif plays in the hydrolysis of ATP by a viral helicase. The Q motif appears to be essential for the activity of Powassan virus NS3 ATPase, however NS3 deletion mutants that contain the Q motif but lack the '+17' amino acid have ATPase activity albeit at a reduced level.  相似文献   

13.
The mutant products Q279E ((279)Gln to Glu) and R301Q ((301)Arg to Gln) of the X-chromosomal inherited alpha-galactosidase (EC 3.2.1. 22) gene, found in unrelated male patients with variant Fabry disease (late-onset cardiac form) were characterized. In contrast to patients with classic Fabry disease, who have no detectable alpha-galactosidase activity, atypical variants have residual enzyme activity. First, the properties of insect cell-derived recombinant enzymes were studied. The K(m) and V(max) values of Q279E, R301Q, and wild-type alpha-galactosidase toward an artificial substrate, 4-methylumbelliferyl-alpha-D-galactopyranoside, were almost the same. In order to mimic intralysosomal conditions, the degradation of the natural substrate, globotriaosylceramide, by the alpha-galactosidases was analyzed in a detergent-free-liposomal system, in the presence of sphingolipid activator protein B (SAP-B, saposin B). Kinetic analysis revealed that there was no difference in the degradative activity between the mutants and wild-type alpha-galactosidase activity toward the natural substrate. Then, immunotitration studies were carried out to determine the amounts of the mutant gene products naturally occurring in cells. Cultured lymphoblasts, L-57 (Q279E) and L-148 (R301Q), from patients with variant Fabry disease, and L-20 (wild-type) from a normal subject were used. The 50% precipitation doses were 7% (L-57) and 10% (L-148) of that for normal lymphoblast L-20, respectively. The residual alpha-galactosidase activity was 3 and 5% of the normal level in L-57 and L-148, respectively. The quantities of immuno cross-reacting materials roughly correlated with the residual alpha-galactosidase activities in lymphoblast cells from the patients. Compared to normal control cells, fibroblast cells from a patient with variant Fabry disease, Q279E mutation, secreted only small amounts of alpha-galactosidase activity even in the presence of 10 mM NH(4)Cl. It is concluded that Q279E and R301Q substitutions do not significantly affect the enzymatic activity, but the mutant protein levels are decreased presumably in the ER of the cells.  相似文献   

14.
We have examined and compared the effects of mutating Y41 and H155 in the iron superoxide dismutase (SOD) from the archaeon Sulfolobus solfataricus (Ss). These two neighboring residues in the active site are known to have crucial functions in structurally related SODs from different sources. The metal analysis indicates a slightly lower iron content after either Y41F or H155Q replacement, without any significant substitution of iron for manganese. The specific activity of SsSOD referred to the iron content is 17-fold reduced in the Y41F mutant, whereas it is less than 2-fold reduced by the H155Q mutation. The noticeable pH dependence of the activity of SsSOD and H155Q-SsSOD, due to the ionization of Y41 (pK 8.4), is lost in Y41F-SsSOD. After H155Q and even more after the Y41F substitution, the archaeal enzyme acquires a moderate sensitivity to sodium azide inhibition. The hydrogen peroxide inactivation of SsSOD is significantly increased after H155Q replacement; however, both mutants are insensitive to the modification of residue 41 by phenylmethanesulfonyl fluoride. Heat inactivation studies showed that the high stability of SsSOD is reduced by the H155Q mutation; however, upon the addition of SDS, a much faster inactivation kinetics is observed both with wild-type and mutant SsSOD forms. The detergent is also required to follow thermal denaturation of the archaeal enzyme by Fourier transform infrared spectroscopy; these studies gave information about the effect of mutations and modification on flexibility and compactness of the protein structure. The crystal structure of Y41F mutant revealed an uninterrupted hydrogen bond network including three solvent molecules connecting the iron-ligating hydroxide ion via H155 with F41 and H37, which is not present in structures of the corresponding mutant SODs from other sources. These data suggest that Y41 and H155 are important for the structural and functional properties of SsSOD; in particular, Y41 seems to be a powerful regulator of the activity of SsSOD, whereas H155 is apparently involved in the organization of the active site of the enzyme.  相似文献   

15.
Baker HM  Mason AB  He QY  MacGillivray RT  Baker EN 《Biochemistry》2001,40(39):11670-11675
Proteins of the transferrin (Tf) family play a central role in iron homeostasis in vertebrates. In vertebrate Tfs, the four iron-binding ligands, 1 Asp, 2 Tyr, and 1 His, are invariant in both lobes of these bilobal proteins. In contrast, there are striking variations in the Tfs that have been characterized from insect species; in three of them, sequence changes in the C-lobe binding site render it nonfunctional, and in all of them the His ligand in the N-lobe site is changed to Gln. Surprisingly, mutagenesis of the histidine ligand, His249, to glutamine in the N-lobe half-molecule of human Tf (hTf/2N) shows that iron binding is destabilized and suggests that Gln249 does not bind to iron. We have determined the crystal structure of the H249Q mutant of hTf/2N and refined it at 1.85 A resolution (R = 0.221, R(free) = 0.246). The structure reveals that Gln249 does coordinate to iron, albeit with a lengthened Fe-Oepsilon1 bond of 2.34 A. In every other respect, the protein structure is unchanged from wild-type. Examination of insect Tf sequences shows that the K206.K296 dilysine pair, which aids iron release from the N-lobes of vertebrate Tfs, is not present in the insect proteins. We conclude that substitution of Gln for His does destabilize iron binding, but in the insect Tfs this is compensated by the loss of the dilysine interaction. The combination of a His ligand with the dilysine pair in vertebrate Tfs may have been a later evolutionary development that gives more sophisticated pH-mediated control of iron release from the N-lobe of transferrins.  相似文献   

16.
The periplasmic iron-binding protein, FbpA (ferric-ion-binding protein A), performs an essential role in iron acquisition from transferrin in Haemophilus influenzae. A series of site-directed mutants in the metal-binding amino acids of FbpA were prepared to determine their relative contribution to iron binding and transport. Structural studies demonstrated that the mutant proteins crystallized in an open conformation with the iron atom associated with the C-terminal domain. The iron-binding properties of the mutant proteins were assessed by several assays, including a novel competitive iron-binding assay. The relative ability of the proteins to compete for iron was pH dependent, with a rank order at pH 6.5 of wild-type, Q58L, H9Q>H9A, E57A>Y195A, Y196A. The genes encoding the mutant FbpA were introduced into H. influenzae and the resulting strains varied in the level of ferric citrate required to support growth on iron-limited medium, suggesting a rank order for metal-binding affinities under physiological conditions comparable with the competitive binding assay at pH 6.5 (wild-type=Q58L>H9Q>H9A, E57A>Y195A, Y196A). Growth dependence on human transferrin was only obtained with cells expressing wild-type, Q58L or H9Q FbpAs, proteins with stability constants derived from the competition assay >2.0x10(18) M(-1). These results suggest that a relatively high affinity of iron binding by FbpA is required for removal of iron from transferrin and its transport across the outer membrane.  相似文献   

17.
18.
Ferroportin [FPN; Slc40a1 (solute carrier family 40, member 1)] is a transmembrane iron export protein expressed in macrophages and duodenal enterocytes. Heterozygous mutations in the FPN gene result in an autosomal dominant form of iron overload disorder, type-4 haemochromatosis. FPN mutants either have a normal iron export activity but have lost their ability to bind hepcidin, or are defective in their iron export function. The mutant protein has been suggested to act as a dominant negative over the wt (wild-type) protein by multimer formation. Using transiently transfected human epithelial cell lines expressing mouse FPN modified by the addition of a haemagglutinin or c-Myc epitope at the C-terminus, we show that the wtFPN is found at the plasma membrane and in Rab5-containing endosomes, as are the D157G and Q182H mutants. However, the delV162 mutant is mostly intracellular in HK2 cells (human kidney-2 cells) and partially addressed at the cell surface in HEK-293 cells (human embryonic kidney 293 cells). In both cell types, it is partially associated with the endoplasmic reticulum and with Rab5-positive vesicles. However, this mutant is complex-glycosylated like the wt protein. D157G and G323V mutants have a defective iron export capacity as judged by their inability to deplete the intracellular ferritin content, whereas Q182H and delV162 have normal iron export function and probably have lost their capacity to bind hepcidin. In co-transfection experiments, the delV162 mutant does not co-localize with the wtFPN, does not prevent its normal targeting to the plasma membrane and cannot be immunoprecipitated in the same complex, arguing against the formation of FPN hetero-oligomers.  相似文献   

19.
Insects, like vertebrates, express iron regulatory proteins (IRPs) that may regulate proteins in cellular iron storage and energy metabolism. Two mRNAs, an unspliced form of ferritin H mRNA and succinate dehydrogenase subunit b (SDHb) mRNA, are known to comprise an iron responsive element (IRE) in their 5'-untranslated region making them susceptible to translational repression by IRPs at low iron levels. We have investigated the effect of wild-type human IRP1 (hIRP1) and the constitutively active mutant hIRP1-S437 in transgenic Drosophila melanogaster. Endogenous Drosophila IRE-binding activity was readily detected in gel retardation assays. However, translational repression assessed by polysome gradients was only visible for unspliced IRE-containing ferritin H mRNA, but not for SDHb mRNA. Upon expression of exogenous hIRP1-S437 both mRNAs were strongly repressed. This correlated with a diminished survival rate of adult flies with hIRP1 and complete lethality with hIRP1-S437. We conclude that constitutive IRP1 expression is deleterious to fly survival, probably due to the essential function of SDHb or proteins encoded by yet unidentified target mRNAs.  相似文献   

20.
Edwards SH  Thompson D  Baker SF  Wood SP  Wilton DC 《Biochemistry》2002,41(52):15468-15476
The human group IIA secreted PLA(2) is a 14 kDa calcium-dependent extracellular enzyme that has been characterized as an acute phase protein with important antimicrobial activity and has been implicated in signal transduction. The selective binding of this enzyme to the phospholipid substrate interface plays a crucial role in its physiological function. To study interfacial binding in the absence of catalysis, one strategy is to produce structurally intact but catalytically inactive mutants. The active site mutants H48Q, H48N, and H48A had been prepared for the secreted PLA(2)s from bovine pancreas and bee venom and retained minimal catalytic activity while the H48Q mutant showed the maximum structural integrity. Preparation of the mutant H48Q of the human group IIA enzyme unexpectedly produced an enzyme that retained significant (2-4%) catalytic activity that was contrary to expectations in view of the accepted catalytic mechanism. In this paper it is established that the high residual activity of the H48Q mutant is genuine, not due to contamination, and can be seen under a variety of assay conditions including assays in the presence of Co(2+) and Ni(2+) in place of Ca(2+). The crystallization of the H48Q mutant, yielding diffraction data to a resolution of 1.5 A, allowed a comparison with the corresponding recombinant wild-type enzyme (N1A) that was also crystallized. This comparison revealed that all of the important features of the catalytic machinery were in place and the two structures were virtually superimposable. In particular, the catalytic calcium ion occupied an identical position in the active site of the two proteins, and the catalytic water molecule (w6) was clearly resolved in the H48Q mutant. We propose that a variation of the calcium-coordinated oxyanion ("two water") mechanism involving hydrogen bonding rather than the anticipated full proton transfer to the histidine will best explain the ability of an active site glutamine to allow significant catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号