首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twelve loci (11 of type I and 1 of type II) previously FISH-mapped in cattle were comparatively FISH-mapped in both river buffalo chromosome 1p (BBU1p) and homologous chromosome 26 of sheep (OAR26), extending the cytogenetic maps in both chromosome species and providing a more precise localization of these loci in single chromosome bands than previous locations on BTA27. Bovine BAC clones containing DCTD, C4orf20, CASP3, TLR3, MSR1, FAT, LONRF1, DLC1, C8orf41, CSSM036, LSM1 and EIF4EBP1 were used for FISH on RBPI-banded chromosomes. All loci were located on the same homologous chromosome bands (R-band positive) of both species further confirming the high degree of banding and gene (order of loci) homologies among bovids. Detailed cytogenetic maps of OAR26 and BBU1p were performed and compared with that of BTA27 as well as with those of both HSA8p and HSA4q, revealing complex chromosome rearrangements differentiating OAR26/BBU1p/BTA27 from human chromosomes.  相似文献   

2.
Thirteen goat BAC clones containing coding sequences from HSA7, HSA12q, HSA4 and HSA6p were fluorescence in situ mapped to river buffalo (Bubalus bubalis, BBU) and sheep (Ovis aries, OAR) R-banded chromosomes. The following type I loci were mapped: BCP to BBU8q32 and OAR4q32, CLCN1 to BBU8q34 and OAR4q34, IGFBP3 to BBU8q24 and OAR4q27, KRT to BBU4q21 and OAR 3q21, IFNG to BBU4q23 and OAR3q23, IGF1 to BBU4q31 and OAR3q31, GNRHR to BBU7q32 and OAR6q32, MTP to BBU7q21 and OAR6q15, PDE6B to BBU7q36 and OAR6q36, BF to BBU2p22 and OAR20q22, EDN1 to BBU2p24 and OAR20q24, GSTA1 to BBU2p22 and OAR20q22, OLADRB (MHC) to BBU2p22 and OAR20q22. All mapped loci appeared to be located on homologous chromosomes and chromosome bands in both bovids. Comparison between gene orders in bovid (BBU and OAR) and human (HSA) chromosomes revealed complex rearrangements, especially between BBU7/OAR6 and HSA4, as well as between BBU2p/OAR20 and HSA6p.  相似文献   

3.
Six loci containing genes involved in the dioxin metabolism (ARNT, AHR, CYP1A1, CYP1A2, CYP1B1 and AHRR) were assigned, for the first time, to cattle (Bos taurus, 2n = 60, BTA), river buffalo (Bubalus bubalis, 2n = 50, BBU), sheep (Ovis aries, 2n = 54, OAR) and goat (Capra hircus, 2n = 60, CHI) chromosomes by comparative FISH-mapping and R-banding using bovine BAC-clones. The following chromosome locations were found: ARNT to BTA3q21, BBU6q21, OAR1p21 and CHI3q21, AHR to BTA4q15, BBU8q15, OAR4q15 and CHI4q15; CYP1A1 and CYP1A2 to BTA21q17, BBU20q17, OAR18q17 and CHI21q17; CYP1B1 to BTA11q16, BBU12q22, OAR3p16 and CHI11q16, AHRR to BTA20q24, BBU19q24, OAR16q24 and CHI20q24. All loci were mapped at the same homoeologous chromosomes and chromosome bands of the four bovid species. Comparisons with corresponding human locations were also reported.  相似文献   

4.
Ten type I loci from HSA10 (IL2RA and VIM), HSA11 (HBB and FSHB) and HSA20 (THBD, AVP/OXT, GNAS1, HCK and TOP1) and two domestic cattle type II loci (CSSM30 and BL42) were FISH mapped to R-banded river buffalo (BBU) and sheep (OAR) chromosomes. IL2RA (HSA10) maps on BBU14q13 and OAR13q13, VIM (HSA10) maps on BBU14q15 and OAR13q15, HBB (HSA11) maps on BBU16q25 and OAR15q23, FSHB (HSA11) maps on BBU16q28 and OAR15q26, THBD (HSA20) maps on BBU14q15 and OAR13q15 while AVP/OXT, GNAS1, HCK, and TOP1 (HSA20) as well as CSSM30 and BL42 map on the same large band of BBU14q22 and OAR13q22. All loci were mapped on the same homologous chromosomes and chromosome bands of the two species, and these results agree with those earlier reported in cattle homologous chromosomes 15 and 13, respectively, confirming the high degree of both banding and physical map similarities among the bovid species. Indirect comparisons between physical maps achieved on bovid chromosomes and those reported on HSA10, HSA11 and HSA20 were performed.  相似文献   

5.
Four bovine BAC clones (0494F01, 0069D07, 0060B06, and 0306A12) containing MUC1, as confirmed by mapping MUC1 on a RH3000 radiation hybrid panel, were hybridised on R-banded chromosomes of cattle (BTA), river buffalo (BBU), sheep (OAR) and goat (CHI). MUC1 was FISH-mapped on BTA3q13, BBU6q13, OAR1p13 and CHI3q13 and both chromosomes and chromosome bands were homoeologous confirming the high degree of chromosome homoeologies among bovids and adding more information on the pericentromeric regions of these species' chromosomes. Indeed, MUC1 was more precisely assigned to BTA3 and assigned for the first time to BBU6, OAR1p and CHI3. Moreover, detailed and improved cytogenetic maps of BTA3, CHI3, OAR1p and BBU6 are shown and compared with HSA1.  相似文献   

6.
Cytogenetic maps are useful tools for several applications, such as the physical anchoring of linkage and RH maps or genome sequence contigs to specific chromosome regions or the analysis of chromosome rearrangements. Recently, a detailed RH map was reported in OAR1. In the present study, we selected 38 markers equally distributed in this RH map for identification of ovine genomic DNA clones within the ovine BAC library CHORI-243 using the virtual sheep genome browser and performed FISH mapping for both comparison of OAR1 and homoeologous chromosomes BBU1q-BBU6 and BTA1-BTA3 and considerably extending the cytogenetic maps of the involved species-specific chromosomes. Comparison of the resulting maps with human-identified homology with HSA2q, HSA3, HSA21 and HSA1q reveals complex chromosome rearrangements differentiating human and bovid chromosomes. In addition, we identified 2 new small human segments from HSA2q and HSA3q conserved in the telomeric regions of OAR1p and homoeologous chromosome regions of BTA3 and BBU6, and OAR1q, respectively. Evaluation of the present OAR1 cytogenetic map and the OAR1 RH map supports previous RH assignments with 2 main exceptions. The 2 loci BMS4011 and CL638002 occupy inverted positions in these 2 maps.  相似文献   

7.
A bovine bacterial artificial chromosome (BAC) library was screened for the presence of eight type I anchor loci previously used within hybrid somatic cells and an interspecies hybrid backcross to construct a genome map of bovine chromosome 19 (BTA19). Six out of eight loci were identified in the BAC library ( NF1, CRYB1, CHRNB1, TP53, GH1 and P4HB ). The BACs were then used in single-colour fluorescence in situ hybridization (FISH) to assign these genes to BTA19 band locations. Gene order was determined by single-colour FISH, and was confirmed by dual-colour FISH to mitotic and meiotic chromosomes. The order, centromere- NF1-CRYB1-CHRNB1-TP53-GH1-P4HB , was in agreement with the order determined by linkage analyses. In addition, the order of CHRNB1 and TP53 , previously unresolved by linkage analyses, was established. These data provide high-resolution cytogenetic anchorage of the BTA19 genome map from chromosome bands 14–22.  相似文献   

8.
Forty autosomal type I loci earlier mapped in goat were comparatively FISH mapped on river buffalo (BBU) and sheep (OAR) chromosomes, noticeably extending the physical map in these two economically important bovids. All loci map on homoeologous chromosomes and chromosome bands, with the exception of COL9A1 mapping on BBU10 (homoeologous to cattle/goat chromosome 9) and OAR9 (homoeologous to cattle/goat chromosome 14). A FISH mapping control with COL9A1 on both cattle and goat chromosomes gave the same results as those obtained in river buffalo and sheep, respectively. Direct G- and R-banding comparisons between Bovinae (cattle and river buffalo) and Caprinae (sheep and goat) chromosomes 9 and 14 confirmed that a simple translocation of a small pericentromeric region occurred between the two chromosomes. Comparisons between physical maps obtained in river buffalo and sheep with those reported in sixteen human chromosomes revealed complex chromosome rearrangements (mainly translocations and inversions) differentiating bovids (Artiodactyls) from humans (Primates).  相似文献   

9.
Comparative FISH mapping of river buffalo (Bubalus bubalis, BBU), sheep (Ovis aries, OAR), and cattle (Bos taurus, BTA) X chromosomes revealed homologies and divergences between the X chromosomes in the subfamilies Bovinae and Caprinae. Twenty-four and 17 loci were assigned for the first time to BBU X and OAR X, respectively, noticeably extending the physical map in these two species. Seventeen loci (four of which for the first time) were also FISH mapped to BTA X and used for comparative mapping studies on the three species, which show three morphologically different X chromosomes: an acrocentric (BBU X), an acrocentric with distinct short arms (OAR X), and a submetacentric (BTA X). The same order of loci were found on BTA X and BBU X, suggesting that a centromere transposition, with loss (cattle) or acquisition (river buffalo) of constitutive heterochromatin, differentiated the X chromosomes of these two bovids. Comparison of bovine (cattle and river buffalo) and caprine (sheep) X chromosomes revealed at least five common chromosome segments, suggesting that multiple transpositions, with retention or loss of constitutive heterochromatin, had occurred during their karyotypic evolution.  相似文献   

10.
The chromosomal location of the human gene coding for both the beta-subunit of prolyl 4-hydroxylase (P4HB) and the enzyme disulfide isomerase (PDI) was determined using mouse x human somatic cell hybrids and three different methods for identifying either the human P4HB/PDI protein or the respective gene: (1) immunoblotting with species-specific monoclonal antibodies; (2) radioimmunoassay with species-specific polyclonal antibodies; and (3) Southern blotting after cleavage of the DNA with EcoRI, HindIII, or BamHI, followed by hybridization with a mixture of two cDNA probes for human P4HB. All three methods gave identical data, demonstrating complete cosegregation of the human protein or its gene in all 17 cell hybrids tested with human chromosome 17. A cell hybrid lacking an intact chromosome 17 localized the gene to 17p11----qter.  相似文献   

11.
A preliminary radiation hybrid (RH) map containing 50 loci on chromosome 7 of the domestic river buffalo Bubalus bubalis (BBU; 2n = 50) was constructed based on a comparative mapping approach. The RH map of BBU7 includes thirty-seven gene markers and thirteen microsatellites. All loci have been previously assigned to Bos taurus (BTA) chromosome BTA6, which is known for its association with several economically important milk production traits in cattle. The map consists of two linkage groups spanning a total length of 627.9 cR(5,000). Comparative analysis of the BBU7 RH(5,000) map with BTA6 in cattle gave new evidence for strong similarity between the two chromosomes over their entire length and exposed minor differences in locus order. Comparison of the BBU7 RH(5,000) map with the Homo sapiens (HSA) genome revealed similarity with a large chromosome segment of HSA4. Comparative analysis of loci in both species revealed more variability than previously known in gene order and several chromosome rearrangements including centromere relocation. The data obtained in our study define the evolutionarily conserved segment on BBU7 and HSA4 to be between 3.5 megabases (Mb) and 115.8 Mb in the HSA4 (genome build 36) DNA sequence.  相似文献   

12.
A comparative fluorescence in situ mapping of the SMN gene was performed on R-banded chromosome preparations of cattle (Bos taurus, BTA, 2n = 60), river buffalo (Bubalus bubalis, BBU, 2n = 50), sheep (Ovis aries, OAR, 2n = 54) and goat (Capra hircus, CHI, 2n = 60), as well as on those of a calf from Piedmont breed affected by arthrogryposis. SMN was located on BTA20q13.1, OAR16q13.1, CHI20q13.1 and BBU19q13. These chromosomes and chromosome bands are believed to be homeologous, confirming the high degree of chromosome homeologies among bovids. The position of SMN was refined in cattle, compared to the two previous localizations, while it is a new gene assignment in the other three bovids. A comparative fiber-FISH performed on extended chromatin of both normal cattle and calf affected by arthrogryposis revealed more extended FITC signals in the calf, compared to the normal cattle (control), suggesting a possible duplication of the SMN gene in the calf affected by arthrogryposis. .  相似文献   

13.
The PAX8 gene, a member of the human paired box gene family, was mapped by FISH to chromosome 11 in cattle and goat and to the short arm of chromosome 3 in sheep. The cytogenetic position of PAX8 on BTA 11 and on its homologue OAR 3p lies in the region where the interleukin beta (IL1B) gene has been previously located, (BTA 11q22. 1-->q22.3 and OAR 3p25-->q26 respectively; Lòpez-Corrales et al., 1998). The results indicated that PAX8 as well as interleukin beta and interleukin alpha (IL1B and IL1A) genes detected on the human chromosome segment HSA 2q13-->q21 maintain a similar order and location in these three related species. In addition, the breakpoint in conserved synteny can now be narrowed to a position between the protein C (PROC) and PAX8 genes, which lie in close proximity on HSA 2.  相似文献   

14.
Interspecific hybrid backcross animals from a Bos taurus×Bos gaurus F1 female were used to construct a linkage map of bovine Chromosome (Chr) 19. This map includes eight previously unmapped type I anchor loci, CHRNB1, CRYB1, GH1, MYL4, NF1, P4HB, THRA1, TP53, and five microsatellite markers, HEL10, BP20, MAP2C, ETH3, BMC1013, from existing linkage maps. The linkage relationship was determined to be centromere–HEL10–18.8cM–NF1–4.0cM–CRYB1–11.2cM–(BP20, CHRNB1, TP53)–4.0cM–(MAP2C, GH1, MYL4, THRA1)–14.4cM–P4HB–11.2cM–ETH3–4.0cM–BMC1013. It was previously revealed that bovine Chr 19 contains the largest known conserved autosomal synteny among human, bovine, and mouse. This study has shown that gene orders within this segment are not conserved among the three species. We propose structural changes in an ancestral mammalian chromosome to account for these differences. This is the first interspecific hybrid backcross used in bovine linkage studies, and it has proven to be an effective tool for incorporating bovine type I loci into the linkage map even with the small sample size presently available. This resource will facilitate the generation of comparative linkage maps that address gene order and effectively predict the locations of unmapped loci across species. Received: 11 June 1996 / Accepted: 19 November 1996  相似文献   

15.
Our previous assignment of the gene loci HBB, HRAS1, INS, PTH, LDHA, and CAT to owl monkey chromosome 19 of karyotype VI (K-VI) indicated a putative homology of this owl monkey chromosome with the short arm of human chromosome 11 (HSA 11p). To investigate further the extent of shared homology, we localized in the owl monkey complement two genes known to be on HSA 11q. Segregation analysis of ETS1 and THY1 homologous DNA in three karyotypically different panels of rodent x owl monkey somatic cell hybrids provided evidence for the syntenic assignment of these loci to homologous chromosomes of three owl monkey karyotypes, namely, chromosomes 4 (K-VI), 3 (K-II), and 5 (K-V). The results indicate a disruption of syntenic gene loci on the distal portion of HSA 11q from 11p during primate evolution.  相似文献   

16.
The largest chromosome in the river buffalo karyotype, BBU1, is a submetacentric chromosome with reported homology between BBU1q and bovine chromosome 1 and between BBU1p and BTA27. We present the first radiation hybrid map of this chromosome containing 69 cattle derived markers including 48 coding genes, 17 microsatellites and four ESTs distributed in two linkage groups spanning a total length of 1330.1 cR(5000). The RH map was constructed based on analysis of a recently developed river buffalo-hamster whole genome radiation hybrid (BBURH(5000)) panel. The retention frequency of individual markers across the panel ranged from 17.8 to 52.2%. With few exceptions, the order of markers within linkage groups is identical to the order established for corresponding cattle RH maps. The BBU1 map provides a starting point for comparison of gene order rearrangements between river buffalo chromosome 1 and its bovine homologs.  相似文献   

17.
The cosegregation of ten coding loci has been investigated, in a panel of 37 somatic cell hybrids resulting from the fusion of a hamster cell line and river buffalo lymphocytes, by use of Southern hybridization technique. Five syntenic groups, TCRB-PGY3, ASS-ABL, FUCA1P-CRYG, MBP-YES1, and CGN1-ACTA1, previously assigned to cattle as U13, U16, U17, U28, and U29 respectively, were also found to be syntenic in buffalo. Based on the extensive syntenic conservation and banding homology between cattle and river buffalo, comparative mapping predicts the localization of these syntenic groups on river buffalo Chromosomes (Chrs) :BBU7, BBU12, BBU2q, BBU22, and BBU4q respectively as they have been previously localized on cattle Chrs BTA4, BTA11, BTA2, BTA24 & BTA28. Received: 2 April 1996 / Accepted: 4 July 1996  相似文献   

18.
19.
We describe a high-resolution radiation hybrid (RH) map of the distal short arm of human chromosome 11 containing the Beckwith-Wiedemann gene and the associated embryonal tumor disease loci. Thirteen human 11p15 genes and 17 new anonymous probes were mapped by a statistical analysis of the cosegregation of markers in 102 rodent-human radiation hybrids retaining fragments of human chromosome 11. The 17 anonymous probes were generated from lambda phage containing human 11p15.5 inserts, by using ALU-PCR. A comprehensive map of all 30 loci and a framework map of nine clusters of loci ordered at odds of 1,000:1 were constructed by a multipoint maximum-likelihood approach by using the computer program RHMAP. This RH map localizes one new gene to chromosome 11p15 (WEE1), provides more precise order information for several 11p15 genes (CTSD, H19, HPX, ST5, RNH, and SMPD1), confirms previous map orders for other 11p15 genes (CALCA, PTH, HBBC, TH, HRAS, and DRD4), and maps 17 new anonymous probes within the 11p15.5 region. This RH map should prove useful in better defining the positions of the Beckwith-Wiedemann and associated embryonal tumor disease-gene loci.  相似文献   

20.
Summary The physical localization of sequences homologous to three cloned genes was determined by in situ hybridization to metaphase chromosomes. Previous work had assigned the skeletal myosin heavy chain gene cluster (Myh), the functional locus for the cellular tumor antigen p53 (Trp53-1), and the cellular homologue of the viral erb-B oncogene (Erbb) toMus musculus chromosome 11 (MMU11). Our results provide regional assignments ofMyh andTrp53-1 to chromosome bands B2C, and ofErbb to bands A1A4. Taken together with in situ mapping of three other loci on MMU 11 (Hox-2 homeobox-containing gene cluster, theSparc protein, and theColla-1 collagen gene), which have been reported elsewhere, these data allowed us to construct a physical map of MMU11 and to compare it with the linkage map of this chromosome. The map positions of the homologous genes on human chromosomes suggest evolutionary relationships of distinct regions of MMU11 with six different human chromosome arms: 1p, 5q, 7p, 16p, 17p, and 17q. The delineation of conserved chromosome regions has important implications for the understanding of karyotype evolution in mammalian species and for the development of animal models of human genetic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号