首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We built a family of hierarchical risk models for the spread of invasions by the spiny waterflea (Bythotrephes longimanus) in lakes in Ontario, Canada. Knowledge of covariates determining lake invasibility and ability to predict risk of future invasions may help to develop management policy and slow the invasions in the future. The models are based on two component submodels. The first component was a stochastic gravity submodel for the propagule pressure between lakes via recreational boaters. The second component was a submodel for establishment risk, given that the invader has already been introduced to a lake. This component was a logistic regression model, incorporating up to 17 measured covariates that describe the physical and chemical condition of the lake. Variants of the risk model, each incorporating different subsets of the covariates, were calibrated using presence/absence data from a 300-lake survey conducted in 2005?C2006 by the Canadian Aquatic Invasive Species Network (CAISN). The predictive capacity of the best model was high, giving AUC values close to 0.94. Of the model covariates considered, the most important predictors of existing invasions were propagule pressure and lake pH, and, to lesser extents, phosphorus (P) and lake elevation. Our fitting of the propagule pressure submodel demonstrated a significant Allee effect for Bythotrephes. Our development of the establishment risk predictor showed that it is essential to account for temporal variability in lake physico-chemistry. We demonstrated that invasions of lake networks by the spiny waterflea follow highly predictable patterns which can be understood with a properly calibrated, hierarchical risk model.  相似文献   

2.
Dreissena polymorpha population densities and biomass were followed in three Belarusian lakes with different trophic status over a 12-year period subsequent to initial colonization. In all three lakes zebra mussel population densities did not change once they reached a maximum. Application of the Ramcharan et al. [1992. Canadian Journal of Fisheries and Aquatic Sciences 49: 2611–2620] model for predicting population dynamics of zebra mussels was accurate for two of the three lakes studied. Population density appears to depend on the time since initial colonization, relative abundance of substrate available for colonization, lake morphometry and trophic type. Zebra mussel distribution within lakes was highly patchy, but the degree of dispersion decreased over time after initial colonization, which may be a result of saturation of suitable substrates by zebra mussels as populations increase and reach carrying capacity. In lakes where submerged macrophytes are the dominant substrate for zebra mussel attachment, populations may be less stable than in lakes with a variety of substrates, which will have a more balanced age distribution, and be less impacted by year to year variation in recruitment. Dreissena polymorpha usually reach maximum population density 7–12 years after initial introduction. However, the timing of initial introduction is often very difficult to determine. Both European and North American data suggest that zebra mussels reach maximum density in about 2–3 years after populations are large enough to be detected.  相似文献   

3.
A growth chronology index was used to determine whether changes in ecosystem structure and function in lakes could be associated with fish growth histories. Growth chronologies were compared for white suckers, Catostomus commersoni, from Little Moose (oligotrophic), Oneida (eutrophic), and Cayuga (mesotrophic) lakes (New York) from opercular bone growth increments, and for lake trout, Salvelinus namaycush, from Little Moose Lake using otolith growth. The longevity of these species allowed the development of chronologies from 17 to 33 years in length using only contemporary collections. We used these chronologies to examine whether fish growth histories could be used as an index for ecosystem-scale changes. Specifically, we examined whether zebra mussel, Dreissena polymorpha, invasion in Oneida and Cayuga lakes in the early 1990s, and treatment of sewage effluent from dwellings around Little Moose Lake beginning during the late 1980s could be detected in white sucker and lake trout growth chronologies. White sucker growth in Oneida and Cayuga Lakes did not differ before and after zebra mussel invasions. Neither white sucker nor lake trout growth chronologies from Little Moose Lake reflect changes in growth expected with reduced productivity levels associated with improved sewage treatment. Growth chronologies of these two species did not detect the ecosystem-scale changes that occurred in the study lakes.  相似文献   

4.
1. Invasions of zebra and quagga mussels have had long‐term, large‐scale impacts on lake ecosystems in the USA as characterised by high abundance, broad‐scale spread and effective adaption to new environmental conditions. Due to their high filtering capacity, decreases in chlorophyll a (Chl) and total phosphorus (TP) concentrations have been reported in many affected lakes. 2. In 25 US lakes, we analysed the effects of dreissenid invasions on changes in Chl and TP concentrations, measured as the probability of a concentration decrease in the post‐invasion period and changes in Chl–TP relationships using Bayesian hierarchical regressions. We also examined whether changes in Chl and TP concentrations and in the Chl–TP relationship differed according to lake hydromorphology, such as mean depth or mixing status (mixed versus stratified lakes). 3. Our results showed that dreissenid invasions were often, but not always, associated with subsequent TP and Chl declines. Dreissenid effects on Chl and TP may be influenced by lake thermal structure. Decreases in Chl and TP were consistently found in mixed lakes where benthic–pelagic coupling is tight, while the effects were less predictable in stratified lakes. Within stratified lakes, Chl and TP reductions were more clearly discernible in deeper lakes with long water residence times. 4. Regression results demonstrated that a joint increase in slope and decrease in intercept and a tighter correlation of the Chl–TP relationship were likely to occur in dreissenid‐invaded lakes; this does not support the idea of a shift from bottom‐up to top‐down control of primary production. These results have important implications for management, suggesting that a relaxation of TP standards would be unwarranted. 5. Across lakes, the slope of the Chl–TP relationship for mixed lakes was substantially higher than that for stratified lakes before mussel invasion, indicating an important role of light in limiting primary production. The slope differences between mixed and stratified lakes decreased in the post‐invasion period, possibly because mussel filtration results in a relaxation of light limitation that is more pronounced in deeper, stratified lakes.  相似文献   

5.
Many observational studies in North American lakes have documenteddecreases in phytoplankton abundance after the invasion of thezebra mussel (Dreissena polymorpha). However, few field experimentshave examined in detail the effect of zebra mussels on phytoplanktonabundance and species composition over an extended period. Replicatedin situ mesocosms were used to evaluate the impact of naturaldensities of zebra mussels on phytoplankton and ciliate biovolume,and algal species composition over a 5-week period in a habitatthat lacked extant mussel populations. Mussel biomass used inthe experiment was determined using a regression model basedon a data analysis that predicts zebra mussel biomass from totalphosphorus concentration. Within 1 week, zebra mussels decreasedphytoplankton biovolume by 53% and ciliate biovolume by 71%.The effect of zebra mussels on ciliate biovolume was sustainedthroughout the study. However, the effect of zebra mussels onphytoplankton abundance gradually waned over the remaining 4weeks of the experiment, such that the declining effect of zebramussels could not be explained by a shift towards less edibleand/or faster growing algal species. The mussels’ decliningcondition could help to explain the effect observed over thecourse of the experiment.  相似文献   

6.
7.

Predicting the ecosystem effects of invasive species and the best control strategies requires understanding population dynamics and population regulation. Invasive bivalves zebra and quagga mussels (Dreissena spp.) are considered the most aggressive invaders in freshwaters and have become major drivers of ecosystem processes in the Laurentian Great Lakes. Combining all lake-wide studies of Dreissena spp. conducted in the Great Lakes, we found that invasion dynamics are largely governed by lake morphometry. Where both species are present, quagga mussels generally become dominant in 8–13 years. Thereafter, zebra mussels remain common in shallow lakes and embayments and lake-wide Dreissena density may remain similar, while in deep lakes quagga led to a near-complete displacement of zebra mussels and an ensuing dramatic increase in overall dreissenid density. In deep lakes, overall Dreissena biomass peaked later and achieved?~?threefold higher levels than in shallow lakes. Comparison with 21 waterbodies in North America and Europe colonized by both dreissenids confirmed that patterns of invasion dynamics found in the Great Lakes are very consistent with other waterbodies, and thus can be generalized to other lakes. Our biophysical model predicted that the long-term reduction in primary producers by mussel grazing may be fourfold less in deep compared to shallow lakes due to thermal stratification and a smaller proportion of the epilimnion in contact with the bottom. While this impact remains greatest in shallow areas, we show that when lakes are vertically well-mixed, dreissenid grazing impact may be greatest offshore, revealing a potentially strong offshore carbon and phosphorus sink.

  相似文献   

8.
The invasion of the freshwaters of Belarus by the zebra mussel, Dreissena polymorpha (Pallas), began at least 200 years ago by the opening of shipping canals linking the Black Sea and Baltic Sea drainage basins. However, zebra mussels have invaded only 93 (16.8%) of 553 studied lakes; at least 20 of these lakes were invaded within in the past 30 years. Zebra mussels were found disproportionately in lakes that were mesotrophic, larger, and had some commercial fishing. Although larger lakes have more intensive fisheries with larger catches, the intensity of the fishery and average catch did not affect the probability of zebra mussel invasion. Zebra mussels were not found in dystrophic lakes (10% of the lakes studied), probably due to their low pH and calcium content. Zebra mussels became locally extinct in one lake due to anthropogenic eutrophication and pollution. Many ecologically suitable lakes have yet to be invaded, which suggests that natural vectors of overland dispersal, e.g., waterfowl, have been ineffective in Belarus. Thus, future spread of this species will continue to depend on human activities such as commercial fishing.  相似文献   

9.
1. To investigate the impact of zebra mussels ( Dreissena polymorpha ) on phytoplankton community composition, temporal variability in selective feeding by the mussels was determined from April to November 2005 in a natural lake using Delayed Fluorescence (DF) excitation spectroscopy.
2. Selective grazing by zebra mussels varied in relation to seasonal phytoplankton dynamics; mussels showed a consistent preference for cryptophytes and avoidance of chlorophytes and cyanobacteria. Diatoms, chrysophytes and dinoflagellates responded differentially to zebra mussel grazing depending on their size. Analysis of excreted products of the zebra mussels revealed that in addition to chlorophytes and cyanobacteria, phytoplankton >50  μ m and very small phytoplankton (≤7  μ m) were largely expelled in pseudofaeces.
3. The zebra mussel is a selective filter-feeder that alters its feeding behaviour in relation to phytoplankton composition to capture and ingest high quality phytoplankton, especially when phytoplankton occur in preferred size ranges. Flexibility of zebra mussel feeding behaviour and variation in susceptibility among phytoplankton groups to mussel ingestion indicate that invading zebra mussels could alter phytoplankton community composition of lakes and have important ecosystem consequences.  相似文献   

10.
In aquatic ecosystems invasive species are among the most important threats to biodiversity worldwide. Understanding the dispersal mechanisms of aquatic invaders is very important for protection and management of vulnerable water bodies. Here we ask how recreational boats that are transported overland could contribute to the dispersal of invasive zebra mussels among lakes in Switzerland. Using a questionnaire sent to registered boat owners, we surveyed properties of transported boats and collected information on self-reported mussel fouling and transport activities of boat owners. We also sampled boat hulls at launching ramps and harbors for biofouling invertebrates. Boats that were kept seasonally or year-round in water were found to have high vector potential with mussel fouling rates of more than 40 %. However, only about 6 % of boats belonging to these groups were transported overland to other water bodies. Considering that approximately 100,000 recreational boats are registered in Switzerland, we estimated that every year around 1400 boats fouled with mussels are transported overland. Such boats pose a high risk of distributing zebra mussels between water bodies. Our results suggest that there is a considerable risk that recreational boats may spread new fouling species to all navigable water bodies within the study area. We speculate that one such species could be the quagga mussel, which has not yet invaded lakes in Switzerland. On a more positive note, our study has identified the group of high-risk boats so that possible control measures would only affect a relatively small number of boat owners.  相似文献   

11.
1. Predictive models of impact are needed for the risk assessment of invasive species. One such species is the Eurasian zebra mussel ( Dreissena polymorpha ), a fouling bivalve that overgrows and kills native mussels (Unionidae) in many North American lakes and rivers. The level of mortality in a native mussel population increases with the fouling intensity – i.e. the mean number of zebra mussels attached to each native mussel.
2. We conducted a multi-site survey within the St Lawrence and Richelieu rivers (Quebec, Canada) to determine whether zebra mussel fouling intensity can be predicted from environmental variables. We found fouling intensity to be positively correlated with calcium concentration [Ca2+] and negatively correlated with sediment size, but not affected by local macrophyte cover.
3. A multiple regression model that includes calcium concentration and sediment size explains 86% of variation in fouling intensity across all sites.
4. Analysis of data from invaded sites in North America and Europe revealed a nonlinear relationship in which fouling intensity increases with calcium concentration up to an asymptotic threshold of 24 mg L−1 Ca2+.
5. Our results suggest that the community-level impacts of zebra mussels are mediated by abiotic environmental variables and gradients in these variables may provide local habitat refugia for native mussels.  相似文献   

12.
Ecological risks and economical impacts of zebra mussels (Dreissena polymorpha) include alterations in the transfer of energy and cycling of materials in aquatic systems, increased accumulation of contaminants in aquatic food chains, clogging of water intakes, and damage to related infrastructure. A risk-based decision model was developed to assess the likelihood of zebra mussel invasion and establishment throughout the St. Croix Basin. The risk-based decision model CASMZM is a version of the comprehensive aquatic systems model (CASM) and that was modified to simulate the growth, reproduction, and spatial distribution of zebra mussels. As a risk management tool, the model simulates the population dynamical complexity of zebra mussel populations, as well as their impacts on phytoplankton, zooplankton, benthic invertebrates, fish and natural mussel populations. The CASMZM is based in part on a set of zebra mussel's physical–chemical habitat requirements such as calcium concentration (17 mg/L), total hardness (57.5 mg/L), conductivity (62 μS/cm), dissolved oxygen concentration (6 mg/L), salinity (7 PSU), pH (6.8 and 9.4), Secchi disk depths (75 and 205 cm), and water temperatures for growth (14 °C) and reproduction (30 °C). The CASMZM also includes a bioenergetics framework that describes the growth of zebra mussels and their trophic impacts on aquatic food webs. The CASMZM can be used to forecast the risk of successful dreissenid invasions and assess the associated impacts of invasive mussels on food web dynamics of previously uninfested aquatic systems throughout the St. Croix Basin.  相似文献   

13.
The zebra mussel, Dreissena polymorpha, has spread through eastern North American aquatic ecosystems during the past 15 years. Whereas spread among navigable waterways was rapid, the invasion of isolated watersheds has progressed more slowly and less predictably. We examined the patterns of overland spread over multiple spatial and temporal extents including individual lake districts, states, and multi-state regions in the USA and found that only a small proportion (<8%) of suitable inland lakes have been invaded, with the rate of invasion appearing to be slowing. Of the 293 lakes known to be invaded, 97% are located in states adjacent to the Laurentian Great Lakes with over half located in Michigan. Only six states have more than 10 invaded lakes and only in Michigan and Indiana have more than 10% of suitable lakes become invaded. At smaller spatial extents, invaded lakes are often clustered within a lake-rich region across southern Michigan and northern Indiana. This clustering appears primarily due to multiple overland invasions originating from the Great Lakes followed to a lesser extent by subsequent secondary overland and downstream dispersal. Downstream spread appears responsible for only one third of the inland invasions. Temporally, invasions peaked in the late 1990s, with only 13 new invasions (0.4% of suitable lakes) reported in 2003 in the four-state region surrounding Lake Michigan. Peak rates of invasion occurred 4–6 years earlier in Michigan relative to Indiana and Wisconsin, but this time lag is likely due to differences in the establishment of Great Lake source populations rather than ‘stepping stone’ dispersal across the landscape.  相似文献   

14.
The zebra mussel (Dreissena polymorpha) has all traits required to effectively colonize the aquatic environment and consequently reduce the diversity of native bivalves. We hypothesized that the zebra mussel chooses lake outlets characterized by medium current velocity and good food conditions. Here, we analyzed differences between bivalve abundances in lake outlets with varying environmental conditions such as the Carlson Index (trophy status), depth, width, current velocity, bed vegetation coverage, and type of bottom substrate. The results showed that the zebra mussel inhabits outlets that provide food (high trophy outlets) and have a mineral bed and a medium current velocity (ca. 0.2–0.3 m/s). The following main factors seem to be favorable for colonizing such outlets: (1) easy access to high amounts of food due to the increased density of the suspension drifting from the lake and (2) easy transport of the zebra mussel larvae from the lake to the downstream. The zebra mussel larvae drifting with the current may colonize the downstream. An increase in lake trophy may indirectly cause an increase in biological invasions in rivers.  相似文献   

15.
While phenotypic responses to direct species interactions are well studied, we know little about the consequences of indirect interactions for phenotypic divergence. In this study we used lakes with and without the zebra mussel to investigate effects of indirect trophic interactions on phenotypic divergence between littoral and pelagic perch. We found a greater phenotypic divergence between littoral and pelagic individuals in lakes with zebra mussels and propose a mussel-mediated increase in pelagic and benthic resource availability as a major factor underlying this divergence. Lakes with zebra mussels contained higher densities of large plankton taxa and large invertebrates. We suggest that this augmented resource availability improved perch foraging opportunities in both the littoral and pelagic zones. Perch in both habitats could hence express a more specialized foraging morphology, leading to an increased divergence of perch forms in lakes with zebra mussels. As perch do not prey on mussels directly, we conclude that the increased divergence results from indirect interactions with the mussels. Our results hence suggest that species at lower food web levels can indirectly affect phenotypic divergence in species at the top of the food chain.  相似文献   

16.
To address the question whether the abundance of an invasive species can be explained by physical and chemical properties of the invaded ecosystems, we gathered density data of invasive zebra mussels and the physical and chemical data of ecosystems they invaded. We assembled published data from 55 European and 13 North American lakes and developed a model for zebra mussel density using a generalized additive model (GAM) approach. Our model revealed that the joint effect of surface area, total phosphorus and calcium concentrations explained 62% of the variation in Dreissena density. Our study indicates that large and less productive North American lakes can support larger local populations of zebra mussels. Our results suggest that the proliferation of an exotic species in an area can partially be explained by physical and chemical properties of the recipient environment.  相似文献   

17.
The aim of this study was to investigate the influence of specific environmental factors, such as temperature, pH, oxygen concentration, and phosphate, nitrate, chloride, sodium, potassium, sulphate, magnesium and calcium ions concentration, as well as microcystins, on the seasonal variations in the activity of the antioxidant system of the zebra mussel. We examined changes in lipid peroxidation (LPO) levels, glutathione content and the catalase activity of mussels inhabiting the two ecosystems, which differ due to their trophic structure and the presence of toxic cyanobacteria. The results show a relationship between the activity of the antioxidant system of zebra mussels and the seasonal fluctuations of environmental parameters: the symptoms of oxidative stress were generally the highest during spring and the lowest during summer in both ecosystems. Our study also revealed that regardless of the study area the most important factors determining the activity of the antioxidant defences of mussels were the mineral composition (particularly magnesium and calcium ions concentrations) and physical parameters of the water (oxygen concentration and pH). However, factors resulting from the trophic status of studied ecosystems, such as limitations in food resources or high concentration of microcystins during cyanobacterial blooms, were periodically responsible for increased level of LPO in the tissues of zebra mussel. These findings may indicate a limited tolerance of the zebra mussel to the local environmental conditions.  相似文献   

18.
The enemy release hypothesis states that invasive species are successful in their new environment because native species are not adapted to utilize the invasive. If true for predators, native predators should have lower feeding rates on the invasive species than a predator from the native range of the invasive species. We tested this hypothesis for zebra mussel (Dreissena polymorpha) by comparing handling time and predation rate on zebra mussels in the laboratory by two North American species (pumpkinseed, Lepomis gibbosus, and rusty crayfish, Orconectes rusticus) and one predator with a long evolutionary history with zebra mussels (round goby, Neogobius melanostomus). Handling time per mussel (7 mm shell length) ranged from 25 to >70 s for the three predator species. Feeding rates on attached zebra mussels were higher for round goby than the two native predators. Medium and large gobies consumed 50–67 zebra mussels attached to stones in 24 h, whereas pumpkinseed and rusty crayfish consumed <11. This supports the hypothesis that the rapid spread of zebra mussels in North America was facilitated by low predation rates from the existing native predators. At these predation rates and realistic goby abundance estimates, round goby could affect zebra mussel abundance in some lakes.  相似文献   

19.
1. Stream flow is a major vector for zebra mussel spread among inland lakes. Veligers have been found tens to hundreds of km from upstream source lakes in unvegetated stream and river systems. It has been suggested, however, that the downstream transport of zebra mussels is restricted by wetland ecosystems. We hypothesized that vegetated waterways, (i.e. wetland streams) would hinder the downstream dispersal of zebra mussels in connected inland lake systems. 2. Veliger abundance, recruitment and adult mussels were surveyed in four lake‐wetland systems in southeastern Michigan, U.S.A. from May to August 2006. Sampling was conducted downstream of the lakes invaded by zebra mussels, beginning at the upstream edge of aquatic vegetation and continuing downstream through the wetland streams. 3. Veliger abundance decreased rapidly in vegetated waterways compared to previously reported rates of decrease in non‐vegetated streams. Veligers were rarely found more than 1 km downstream from where vegetation began. Newly recruited individuals and adults were extremely rare beyond open water in the wetland systems. 4. Densely vegetated aquatic ecosystems limit the dispersal of zebra mussels downstream from invaded sources. Natural, remediated and constructed wetlands may therefore serve as a protective barrier to help prevent the spread of zebra mussels and other aquatic invasive species to other lakes and ecosystems.  相似文献   

20.
Colony forming and toxic cyanobacteria form a problem in surfacewaters of shallow lakes, both for recreation and wildlife. Zebramussels, Dreissena polymorpha, have been employed to help torestore shallow lakes in the Netherlands, dominated by cyanobacteria,to their former clear state. Zebra mussels have been presentin these lakes since they were created in the 19th century bythe excavation of peat and are usually not considered to bean invasive species. Most grazing experiments using Dreissenahave been performed with uni-cellular phytoplankton laboratorystrains and information on grazing of larger phytoplankton taxahardly exists. To gain more insight in to whether D. polymorphais indeed able to decrease cyanobacteria in the phytoplankton,we therefore performed grazing experiments with zebra musselsand two species of cyanobacteria, that greatly differ in shape:colony forming strains of Microcystis aeruginosa and the filamentousspecies Planktothrix agardhii. For both species a toxic anda non-toxic strain was selected. We found that zebra musselscleared toxic Planktothrix at a higher rate than non-toxic Planktothrix,toxic or non-toxic Microcystis. Clearance rates between theother strains were not significantly different. Both phytoplanktonspecies, regardless of toxicity, size and shape, were foundin equal amounts (based on chlorophyll concentrations) in theexcreted products of the mussels (pseudofaeces). The resultsshow that zebra mussels are capable of removing colonial andfilamentous cyanobacteria from the water, regardless of whetherthe cyanobacteria are toxic or not. This implies that the musselsmay be used as a biofilter for the removal of harmful cyanobacterialblooms in shallow (Dutch) lakes where the mussels are alreadypresent and not a nuisance. Providing more suitable substratefor zebra mussel attachment may lead to appropriate mussel densitiescapable of filtering large quantities of cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号