首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iturin A, bacillomycin L and bacillomycin L dimethyl ester have a strong lytic activity upon human erythrocytes while iturin C is totally inactive. The hemolytic action of the antibiotics is inhibited by free cholesterol as well as by cholesterol included in mixed liposomes of phosphatidylcholine-cholesterol and to a lesser extent by phosphatidylcholine liposomes. This inhibition is the result of an interaction between the antibiotic and added lipids which diminishes the concentration of free antibiotic available to lyse erythrocytes. The inhibitory effect of liposomes on hemolysis demonstrates the affinity of the antibiotic for artificial membranes, especially those containing cholesterol.  相似文献   

2.
The hemolytic activity of Vibrio vulnificus hemolysin (VVH) against erythrocytes from several animal species (sheep, horse, cow, rabbit, chicken) was investigated. VVH was active against erythrocytes from all species, but the amount of VVH causing 50% hemolysis under identical conditions (hemolytic susceptibility to VVH) differed. The degree of 125I-labeled VVH (125I-VVH) binding to each erythrocyte species correlated with the susceptibility of the cells to hemolysis. However, marked differences in the binding ability of 125I-VVH were not observed against liposomes constructed with lipids from each erythrocyte membrane. On the other hand, release of hemoglobin (Hb) differed for each of the erythrocyte species despite administration of approximately the same hemolytic VVH concentration to each species. Furthermore, under hypotonic conditions, the stability of each erythrocyte species varied markedly; the more susceptible the erythrocyte to VVH, the more unstable it was under such conditions. These results, therefore, suggest that the susceptibility of erythrocytes to VVH may be closely associated with the binding ability of VVH and erythrocyte membrane stability.  相似文献   

3.
Hemolysis (Kobayashi, T., Takahashi, K., Yamada, A., Nojima, S. and Inoue, K. (1983) J. Biochem. 93, 675-680) and shedding of acetylcholinesterase-enriched membrane vesicles (diameter 150-200 nm) were observed when human erythrocytes were incubated with liposomes of phosphatidylcholine which contained polyunsaturated fatty acyl chains. These events occurring on erythrocyte membrane were inhibited by radical scavengers or incorporation of alpha-tocopherol into liposomes, suggesting that lipid peroxidation is involved in the process leading to membrane vesiculation and hemolysis. The idea was supported by findings that generation of chemiluminescence, formation of thiobarbituric acid reactive substance, accumulation of conjugated diene compounds in liposomes and decrease of polyunsaturated fatty acids in liposomes occurred concomitantly during incubation. Hemolysis was also suppressed by the addition of extra liposomes, insensitive to peroxidation, or of serum albumin even after the completion of peroxidation of liposomes. These results suggest that peroxidized lipids, responsible for vesiculation and hemolysis, may be formed first in liposomes and then gradually transferred to erythrocyte membranes. The accumulation of these lipids peroxides may eventually cause membrane vesiculation followed by hemolysis.  相似文献   

4.
The oxidative hemolysis of rabbit erythrocytes induced by free radicals and its inhibition by chain-breaking antioxidants have been studied. The free radicals were generated from either a water-soluble or a lipid-soluble azo compound which, upon its thermal decomposition, gave carbon radicals that reacted with oxygen immediately to give peroxyl radicals. The radicals generated in the aqueous phase from a water-soluble azo compound induced hemolysis in air, but little hemolysis was observed in the absence of oxygen. Water-soluble chain-breaking antioxidants, such as ascorbic acid, uric acid, and water-soluble chromanol, suppressed the hemolysis dose dependently. Vitamin E in the erythrocyte membranes was also effective in suppressing the hemolysis. 2,2,5,7,8-Pentamethyl-6-chromanol, a vitamin E analogue without phytyl side chain, incorporated into dimyristoylphosphatidylcholine liposomes, suppressed the above hemolysis, but alpha-tocopherol did not suppress the hemolysis. Soybean phosphatidylcholine liposomes also induced hemolysis, and a lipid-soluble azo initiator incorporated into the soybean phosphatidylcholine liposomes accelerated the hemolysis. The chain-breaking antioxidants incorporated into the liposomes were also effective in suppressing this hemolysis.  相似文献   

5.
Dioleoyl phosphatidylcholine (PC) liposomes were ozonized and the ozonized liposomes were tested for their lytic potency on human red blood cells (RBC). Ozonation of PC liposomes generated approximately 1 mole equivalent of hydrogen peroxide (H2O2) and 2 mole equivalents of aldehydes, based on the moles of ozone consumed. The time necessary for 50% hemolysis induced by ozonized liposomes (a convenient measure of hemolytic activity) was found to depend on the extent of ozonation of the PC liposomes, indicating the formation and accumulation of hemolytic agents during ozonation. Hemolysis was also observed when RBC were incubated with nonanal, the expected product of the ozonation of oleic acid, the principle unsaturated fatty acid in the liposomes. Hydrogen peroxide, another product of PC ozonation, did not induce hemolysis; however, a combination of H2O2 and nonanal was significantly more hemolytic than nonanal alone. A ratio of 1:2 H2O2/nonanal (the ratio observed in the ozonized liposomes) provided hemolytic activity comparable to that observed with ozonized dioleoyl PC. Among different antioxidants tested, ascorbate, catalase, and glutathione peroxidase partially inhibited hemolysis induced by ozonized liposomes and by H2O2/nonanal mixtures, but they were not protective against the nonanal-induced hemolysis. Identification of H2O2 and aldehydes as cytotoxic chemical species generated from the ozonation of unsaturated fatty acids may have an important bearing on the in vivo toxicity of ozone on the lung as well as on extrapulmonary tissues.  相似文献   

6.
Tamoxifen (TAM), the antiestrogenic drug most widely prescribed in the chemotherapy of breast cancer, induces changes in normal discoid shape of erythrocytes and hemolytic anemia. This work evaluates the effects of TAM on isolated human erythrocytes, attempting to identify the underlying mechanisms on TAM-induced hemolytic anemia and the involvement of biomembranes in its cytostatic action mechanisms. TAM induces hemolysis of erythrocytes as a function of concentration. The extension of hemolysis is variable with erythrocyte samples, but 12.5 microM TAM induces total hemolysis of all tested suspensions. Despite inducing extensive erythrocyte lysis, TAM does not shift the osmotic fragility curves of erythrocytes. The hemolytic effect of TAM is prevented by low concentrations of alpha-tocopherol (alpha-T) and alpha-tocopherol acetate (alpha-TAc) (inactivated functional hydroxyl) indicating that TAM-induced hemolysis is not related to oxidative membrane damage. This was further evidenced by absence of oxygen consumption and hemoglobin oxidation both determined in parallel with TAM-induced hemolysis. Furthermore, it was observed that TAM inhibits the peroxidation of human erythrocytes induced by AAPH, thus ruling out TAM-induced cell oxidative stress. Hemolysis caused by TAM was not preceded by the leakage of K(+) from the cells, also excluding a colloid-osmotic type mechanism of hemolysis, according to the effects on osmotic fragility curves. However, TAM induces release of peripheral proteins of membrane-cytoskeleton and cytosol proteins essentially bound to band 3. Either alpha-T or alpha-TAc increases membrane packing and prevents TAM partition into model membranes. These effects suggest that the protection from hemolysis by tocopherols is related to a decreased TAM incorporation in condensed membranes and the structural damage of the erythrocyte membrane is consequently avoided. Therefore, TAM-induced hemolysis results from a structural perturbation of red cell membrane, leading to changes in the framework of the erythrocyte membrane and its cytoskeleton caused by its high partition in the membrane. These defects explain the abnormal erythrocyte shape and decreased mechanical stability promoted by TAM, resulting in hemolytic anemia. Additionally, since membrane leakage is a final stage of cytotoxicity, the disruption of the structural characteristics of biomembranes by TAM may contribute to the multiple mechanisms of its anticancer action.  相似文献   

7.
The presence of cholesterol or phosphatidylethanolamine in sphingomyelin liposomes enhanced 2- to 10-fold the breakdown of sphingomyelin by sphingomyelinase from Bacillus cereus. On the other hand, the presence of phosphatidylcholine was either without effect or slightly stimulative at a higher molar ratio of phosphatidylcholine to sphingomyelin (3/1). In the bovine erythrocytes and their ghosts, the increase by 40-50% or the decrease by 10-23% in membranous cholesterol brought about acceleration or deceleration of enzymatic degradation of sphingomyelin by 50 or 40-50%, respectively. The depletion of ATP (less than 0.9 mg ATP/100 ml packed erythrocytes) enhanced K+ leakage from, and hot hemolysis (lysis without cold shock) of, bovine erythrocytes but decelerated the breakdown of sphingomyelin and hot-cold hemolysis (lysis induced by ice-cold shock to sphingomyelinase-treated erythrocytes), either in the presence of 1 mM MgCl2 alone or in the presence of 1 mM MgCl2 and 1 mM CaCl2. Also, ATP depletion enhanced the adsorption of sphingomyelinase onto bovine erythrocyte membranes in the presence of 1 mM CaCl2 up to 81% of total activity, without appreciable K+ leakage and hot or hot-cold hemolysis. These results suggest that the presence of cholesterol or phosphatidylethanolamine in biomembranes makes the membranes more susceptible to the attack of sphingomyelinase from B. cereus and that the segregation of lipids and proteins in the erythrocyte membranes by ATP depletion causes the deceleration of sphingomyelin hydrolysis despite the enhanced enzyme adsorption onto the erythrocyte membranes.  相似文献   

8.
Galectins are β-galactoside binding lectins with a potential hemolytic role on erythrocyte membrane integrity and permeability. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its hemolytic actions on erythrocyte membrane. When exposed to various saccharides, lactose and sucrose provided maximum protection against hemolysis, while glucose and galactose provided lesser protection against hemolysis. GHG-1 agglutinated erythrocytes were found to be significantly hemolyzed in comparison with unagglutinated erythrocytes. A concentration dependent rise in the hemolysis of trypsinized rabbit erythrocytes was observed in the presence of GHG-1. Similarly, a temperature dependent gradual increase in percent hemolysis was observed in GHG-1 agglutinated erythrocytes as compared to negligible hemolysis in unagglutinated cells. The hemolysis of GHG-1 treated erythrocytes showed a sharp rise with the increasing pH up to 7.5 which became constant till pH 9.5. The extent of erythrocyte hemolysis increased with the increase in the incubation period, with maximum hemolysis after 5 h of incubation. The results of this study establish the ability of galectins as a potential hemolytic agent of erythrocyte membrane, which in turn opens an interesting avenue in the field of proteomics and glycobiology.  相似文献   

9.
Aqueous extracts of the edible mushroom, Pleurotus ostreatus, contain a substance that is lytic in vitro for mammalian erythrocytes. The hemolytic agent, pleurotolysin, was purified to homogeneity and found to be a protein lacking seven of the amino acids commonly found in proteins. In the presence of sodium dodecyl sulfate it exists a monomers of molecular weight 12 050 whereas under non-dissociating conditions it appears to exist as dimers. It is isoelectric at about pH 6.4. The sensitivity of erythrocytes from different animals correlates with sphingomyelin content of the erythrocyte membranes. Sheep erythrocyte membranes inhibit pleurotolysin-induced hemolysis and the inhibition is time and temperature dependent. Ability of membranes to inhibit hemolysis is abolished by prior treatment of membranes with specific phospholipases. Pleurotolysin-induced hemolysis is inhibited by liposomes prepared from cholesterol, dicetyl phosphate and sphingomyelin derived from sheep erythrocytes whereas a variety of other lipid preparations fail to inhibit. It is concluded that sphingomyelin plays a key role in the hemolytic reaction.  相似文献   

10.
Interaction of digitonin and its analogs with membrane cholesterol   总被引:1,自引:0,他引:1  
The interaction of digitonin with membrane cholesterol was studied by using various digitonin analogs, and radioactive desglucodigitonin. The following results were obtained concerning the effect of digitonin on erythrocytes, granulocytes and liposomes. Digitonin and its analogs showed activity to induce hemolysis, granulocyte activation and liposomal membrane damage. The activity was affected by change of the carbohydrate residue of the molecule; the order of hemolytic activity was digitonin greater than or equal to desglucodigitonin much greater than glucosyl-galactosyl-digitogenin greater than galactosyl-digitogenin, digitogenin. The relative activities of these compounds to induce granulocyte activation and liposomal membrane damage were similar to those observed in the hemolysis. [3H]Desglucodigitonin could bind to cholesterol in liposomes. The binding was stoichiometric and the ratio of desglucodigitonin bound to liposomes/cholesterol in liposomes was close to 1, irrespective of the cholesterol content in liposome. Damage to liposomes was, however, induced by desglucodigitonin only when they contained more than 0.2 molar ratio of cholesterol to phospholipid. Addition of digitonin as well as desglucodigitonin to preformed liposomes deprived of cholesterol affected the anisotropic molecular motion of spin-labeled phosphatidylcholine incorporated into the liposomes, suggesting that the molecules could be inserted into the lipid bilayer free of cholesterol. Molecules of desglucodigitonin in the lipid phase may, however, be equilibrated with those in the aqueous phase, unless they form a complex with cholesterol, since no appreciable amount of [3H]desglucodigitonin could be detected in the liposome fraction after separation by column chromatography. Digitonin decreased the order parameter of spin-labeled phosphatidylcholine when liposomes contained equimolar cholesterol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The incorporation and accumulation of a certain amount of short-chain phosphatidylcholine or lysophosphatidylcholine into lipid bilayers of erythrocyte membranes is the first step causing membrane perturbation in the process of hemolysis. Accumulation of dilauroylglycerophosphocholine into membranes makes human erythrocytes "permeable cells"; Ions such as Na+ or K+ can permeate through the membrane, though large molecules such as hemoglobin can not. The "pore" formation was partially reproduced in liposomes prepared from lipids extracted from human erythrocyte membranes; C12:0PC induced the release of glucose from liposomes but did not significantly induce the release of dextran. It was suggested that the phase boundary between dilauroylglycerophosphocholine and the host membrane bilayer or dilauroylglycerophosphocholine rich domain itself behaves as "pores." Erythrocytes could expand to 1.5 times the original cell volume without any appreciable hemolysis when incubated with C12:0PC at 37 degrees C. The capacity of the erythrocytes to expand was temperature dependent. The capacity may play an important role in the resistance of the cells against lysis. The "permeable cell" stage could be hardly observed when erythrocytes were treated with didecanoylglycerophosphocholine and lysophosphatidylcholine. Perturbation induced by accumulation of didecanoylglycerophosphocholine or lysophosphatidylcholine may cause non specific destruction of membranes rather than formation of a kind of "pore."  相似文献   

12.
The effects of new synthetic lysine-derived anionic surfactants on human and rat erythrocytes were studied. The surfactants were salts of Nalpha,Nepsilon-dioctanoyl lysine with different counterions: lysine (77KK), tris (trishydroxymethyl amminomethane) (77KT), sodium (77KS), and lithium (77KL). 77KK and 77KT showed a biphasic hemolytic behavior in the erythrocytes. The surfactants 77KS and 77KL showed concentration-dependent hemolysis with a CH50 of about 3.4 and 2.6 mmol/l, respectively. 77KK and 77KT induced protection against hypotonic hemolysis in rat erythrocytes at the concentration which showed the least hemolytic activity under isotonic conditions. With human erythrocytes, 77KT did not show biphasic behavior in isotonic medium, but under hypotonic conditions biphasic behavior was present. Changes in shape of the erythrocyte, from discocytic to stomatocytic were observed after incubation with the anionic surfactants studied. Such shape changes occurred progressively over time, with total alteration in shape occuring after about 20 min of incubation.  相似文献   

13.
Hemolytic activity of Serratia marcescens   总被引:11,自引:0,他引:11  
A cell-bound hemolytic activity was found in several strains of Serratia marcescens. One Serratia cell per ten erythrocytes was sufficient to cause complete lysis of human erythrocytes within 2 h in the liquid assay. The hemolytic activity resided in the membrane fraction and could be inactivated by incubating cells with proteases. The hemolytic activity was greatly enhanced in actively metabolizing Serratia cells and was partially controlled by the iron supply. Hemolysis was accompanied by degradation of erythrocyte membrane proteins (band 3 and 6, glycophorin) and was independent of the blood group. The exoprotease secreted by S. marcescens in large amounts was not involved in hemolysis. Comparison with various hemolytic strains of Escherichia coli showed that hemolysis of erythrocytes was more pronounced with S. marcescens than with E. coli. In contrast to hemolysis by E. coli, lysis of erythrocytes by S. marcescens was not enhanced by Ca2+ ions.Dedicated to Professor Dr. Gerhart Drews on the occasion of his 60th birthday  相似文献   

14.
We measured the absorption properties, water solubility and partition coefficients (P) between n-octanol, egg phosphatidylcholine (EPC) liposomes and erythrocyte ghosts/water for benzocaine (BZC), an ester-type always uncharged local anesthetic. The interaction of BZC with EPC liposomes was followed using Electron Paramagnetic Resonance, with spin labels at different positions in the acyl chain (5, 7, 12, 16-doxylstearic acid methyl ester). Changes in lipid organization upon BZC addition allowed the determination of P values, without phase separation. The effect of BZC in decreasing membrane organization (maximum of 11.6% at approx. 0.8:1 BZC:EPC) was compared to those caused by the local anesthetics tetracaine and lidocaine. Hemolytic tests revealed a biphasic (protective/inductive) concentration-dependent hemolytic effect for BZC upon rat erythrocytes, with an effective BZC:lipid molar ratio in the membrane for protection (RePROT), onset of hemolysis (ReSAT) and 100% membrane solubilization (ReSOL) of 1.0:1, 1.1:1 and 1.3:1, respectively. The results presented here reinforce the importance of considering hydrophobic interactions in the interpretation of the effects of anesthetics on membranes.  相似文献   

15.
Aqueous extracts of the edible mushroom, Pleurotus ostreatus, contain a substance that is lytic in vitro for mammalian erthrocytes. The hemolytic agent, pleurotolysin, was purified to homogeneity and found to be a protein lacking seven of the amino acids commonly found in proteins. In the presence of sodium dodecyl sulfate it exists as monomers of molecular weight 12 050 whereas under non-dissociating conditions it appears to exist as dimers. It is isoelectric at about pH 6.4. The sensitivity of erythrocytes from different animals correlates with sphingomyelin content of the erythrocyte membranes. Sheep erythrocyte membranes inhibit pleurotolysin-induced hemolysis and the inhibition is time and temperature dependent. Ability of membranes to inhibit hemolysis is abolished by prior treatment of membranes with specific phospholipases. Pleurotolysin-induced hemolysis is inhibited by liposomes prepared from cholesterol, dicetyl phosphate adn sphingomyelin derived from sheep erythrocytes whereas a variety of other lipid preparations fail to inhibit. It is concluded that sphingomyelin plays a key role in the hemolytic reaction.  相似文献   

16.
The extent to which erythrocytes are hemolyzed by Newcastle disease virus is a function of the relative concentrations of both virus and erythrocytes. Under proper conditions, the interaction of a single virus particle with an erythrocyte is sufficient to cause lysis. The extent of hemolysis is directly proportional to virus concentration only when the virus-erythrocyte ratio is very low. At the higher virus-erythrocyte ratios usually employed in hemolysis experiments, the extent of hemolysis is proportional to the logarithm of the virus concentration. Thus, quantitative comparisons of hemolytic activities of different virus preparations cannot be made by directly comparing the extent of hemolysis. Relative hemolytic activities must be determined by comparing virus concentrations which yield equivalent amounts of hemolysis (the quantitative comparison procedure).  相似文献   

17.
We previously developed a simple competitive reaction model between lipid peroxidation and protein oxidation in erythrocyte membranes that accounts for radical-induced hemolysis of human erythrocytes. In this study, we compared the rate constants calculated from the hemolysis curves of erythrocytes in the presence of radical initiators with those obtained from experiments using erythrocyte ghosts treated with radicals. 2,2'-Azobis(amidinopropane) dihydrochloride and 2,2'-azobis(2,4-dimethylvaleronitrile) were used as radical initiators. Plots of the logarithm of concentration of the radical initiator against the logarithm of the rate constant gave straight lines. The slope of the lines for the calculated lipid peroxidation was nearly equal with the experimental value. Similar results were obtained for oxidation of membrane proteins, except for band 3 oxidation. The values for the rate constants calculated from hemolysis curves seem to be accurate. The slope of the lines for the calculated rate constants for proteins was larger than the experimental value for band 3 oxidation, because band 3 oxidation is accompanied by aggregation or redistribution of band 3 proteins to form hemolytic holes. These results indicate that the competitive reaction model may be useful for analyzing radical-induced hemolysis.  相似文献   

18.
Hemolysis by leptospiral hemolysin was strongly inhibited by bovine serum. The inhibitory activity was observed in the chloroform-methanol-soluble fraction of bovine serum. The inhibitor was eluted in a complex lipid fraction and was separated into two fractions (Fr. I and II) by silicic acid column chromatography. Fractions I and II inhibited approximately 75% and 95%, respectively, of hemolysis by leptospiral hemolysin. Fraction I was identified as phosphatidylethanolamine (PdE) by silica gel thin-layer chromatography (TLC). Two kinds of phospholipids (PLs) were detected in Fr. II by TLC. One was resistant to alkaline treatment and was identified as sphingomyelin (Spm), and the other was sensitive to such treatment and was identified as phosphatidylcholine (PdC). PLs, such as Spm, PdC, phosphatidylglycerol, PdE, phosphatidylserine and cardiolipin, inhibited hemolysis by leptospiral hemolysin, but phosphatidylinositol did not show any inhibitory activity. PLs lacking the amino group in the polar backbone of the molecules were more effective. From experiments using erythrocytes of various kinds of animals, it was revealed that the hemolytic sensitivity of mammalian erythrocytes to leptospiral hemolysin depended on the Spm content in the erythrocyte membrane. On the other hand, phospholipase C (PLase C) activity with Spm and PdC as substrates was detected in the culture supernatant of Leptospira. Therefore, leptospiral hemolysin was presumed to be PLase C, perhaps sphingomyelinase. The inhibitors of leptospiral hemolysin present in bovine serum were identified as PLs. PLs in bovine serum were suggested to function as inhibitors of the interaction between leptospiral hemolysin and the surface of the erythrocyte membrane.  相似文献   

19.
A primary effect of a novel H-toxin of Clostridium septicum on the hemolysis of rabbit erythrocytes was shown to be the activation of phospholipase A2 (PLA2) associated with rabbit erythrocyte membranes by 20-fold that of controls. Furthermore, the activation of PLA2 induced by the H-toxin was enhanced in the presence of NAD. The H-toxin itself had no PLA2 activity. On the contrary, the H-toxin bound to palmitic acid at a molar proportion of 1:1 and lost its hemolytic activity. The PLA2 was not activated by the H-toxin bound to palmitic acid. These results suggest that activation of the PLA2 is responsible for development of the hemolytic activity of the H-toxin.  相似文献   

20.
Although Bartonella bacilliformis causes a severe anemia in humans, this study presents the first report of hemolytic activity by B. bacilliformis. The activity was not apparent in culture supernatants but was reliably detected when B. bacilliformis cells were centrifuged onto erythrocytes prior to incubation. Abrogation of hemolytic activity by proteinase K treatment suggested the hemolysin was a Bartonella protein. Even though hemolysis required relatively long incubation times, de novo protein synthesis was not required to produce the protein. A preparation containing factors released by B. bacilliformis, including deformin, a B. bacilliformis protein able to induce pits and invaginations in erythrocyte membranes, had some ability to lyse erythrocytes. However, pre-deformed erythrocytes did not lyse faster or to a greater extent than control erythrocytes after the addition of B. bacilliformis cells. Inhibition of deformation caused by B. bacilliformis cells with the erythrocyte ATPase inhibitor, vanadate, did not affect hemolytic activity. This study suggests hemolytic activity and deforming activity are attributable to different B. bacilliformis proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号