首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutaminase-free l-asparaginase is known to be an excellent anticancer agent. In the present study, statistically based experimental designs were applied to maximize the production of glutaminase-free l-asparaginase from Pectobacterium carotovorum MTCC 1428. Nine components of the medium were examined for their significance on the production of l-asparaginase using the Plackett–Burman experimental design. The medium components, viz., glucose, l-asparagine, KH2PO4, and MgSO4·7H2O, were screened based on their high confidence levels (P < 0.04). The optimum levels of glucose, l-asparagine, KH2PO4, and MgSO4·7H2O were found to be 2.076, 5.202, 1.773, and 0.373 g L−1, respectively, using the central composite experimental design. The maximum specific activity of l-asparaginase in the optimized medium was 27.88 U mg−1 of protein, resulting in an overall 8.3-fold increase in the production compared to the unoptimized medium.  相似文献   

2.
A newly isolated Zygosaccharomyces rouxii NRRL 27,624 produced d-arabitol as the main metabolic product from glucose. In addition, it also produced ethanol and glycerol. The optimal conditions were temperature 30°C, pH 5.0, 350 rpm, and 5% inoculum. The yeast produced 83.4 ± 1.1 g d-arabitol from 175 ± 1.1 g glucose per liter at pH 5.0, 30°C, and 350 rpm in 240 h with a yield of 0.48 g/g glucose. It also produced d-arabitol from fructose, galactose, and mannose. The yeast produced d-arabitol and xylitol from xylose and also from a mixture of xylose and xylulose. Resting yeast cells produced 63.6 ± 1.9 g d-arabitol from 175 ± 1.8 g glucose per liter in 210 h at pH 5.0, 30°C and 350 rpm with a yield of 0.36 g/g glucose. The yeast has potential to be used for production of xylitol from glucose via d-arabitol route. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. department of Agriculture.  相似文献   

3.
Lovastatin, an inhibitor of HMG-CoA reductase, was produced by submerged fermentation using Monascus purpureus MTCC 369. Five nutritional parameters screened using Plackett–Burman experimental design were optimized by Box–Behnken factorial design of response surface methodology for lovastatin production in shake flask cultures. Maximum lovastatin production of 351 mg/l were predicted in medium containing 29.59 g/l dextrose, 3.86 g/l NH4Cl, 1.73 g/l KH2PO4, 0.86 g/l MgSO4·7H2O, and 0.19 g/l MnSO4·H2O using response surface plots and point prediction tool of DESIGN EXPERT 7.0 (Statease, USA) software.  相似文献   

4.
Sinorhizobium sp., which can convert d-fructose into d-psicose, was isolated from soil. The optimal pH, temperature, and cell concentration for d-psicose production with the isolated strain were 8.5, 40°C, and 60 mg/ml, respectively. The toluene-treated cells showed 2.5- and 4.8-fold increases in the d-psicose concentration and productivity compared with untreated washed cells. Under the optimal conditions, the toluene-treated cells produced 37 g d-psicose/l from 70% (w/v) (3.9 M) d-fructose after 15 h.  相似文献   

5.
An N-acetyl-d-lactosamine (LacNAc) specific lectin from tubers of Alocasia cucullata was purified by affinity chromatography on asialofetuin-linked amino activated silica. The pure lectin showed a single band in SDS-PAGE at pH 8.8 and was a homotetramer with a subunit molecular mass of 13.5 kDa and native molecular mass of 53 kDa. It was heat stable up to 55 °C for 15 min and showed optimum hemagglutination activity from pH 2 to 11. The lectin was affected by denaturing agents such as urea (2 m), thiourea (2 m) and guanidine–HCl (0.5 m) and did not require Ca2+ and Mn2+ for its activity. It was a potent mitogen at 10 μg/ml towards human peripheral blood mononuclear cells with 50% growth inhibitory potential towards SiHa (human cervix ) cancer cell line at 100 μg/ml.  相似文献   

6.
Summary Two new cell lines, designated IPLB-DU182A and IPLB-DU182E, were developed from embryos of the southern corn rootworm,Diabrotica undecimpunctata. Cells were grown in the lepidopteran cell culture media IPL-52B and IPL-76 in a 3∶1 ratiowith 9% fetal bovine serum. The IPL-52B was modified by deleting CaCl2·2H2O and NaHCO3 out of the formulation. The osmotic pressure was adjusted to the optimal osmolarity of 400 mOsm/kg by the addition of2 g mannitol/100 ml medium. The cells were primarily epithelial-like, but some spindle-shaped cells were also present. The lines were 65% diploid and were characterized with respect to 10 isozymes. Cellscurrently grow with a 5-d doubling time and are subcultured by trypsinization at 1-wk intervals and at a 1∶2 to 1∶5 split ratio.  相似文献   

7.
Semicontinuous fermentation using pellets of Rhizopus oryzae has been recognized as a promising technology for l-lactic acid production. In this work, semicontinuous fermentation of R. oryzae AS 3.819 for l-lactic acid production has been developed with high l-lactic acid yield and volumetric productivity. The effects of factors such as inoculations, CaCO3 addition time, and temperature on l-lactic acid yield and R. oryzae morphology were researched in detail. The results showed that optimal fermentation conditions for the first cycle were: inoculation with 4% spore suspension, CaCO3 added to the culture medium at the beginning of culture, and culture temperature of 32–34°C. In orthogonal experiments, high l-lactic acid yield was achieved when the feeding medium was (g/l): glucose, 100; (NH4)2SO4, 2; KH2PO4, 0.1; ZnSO4·7H2O, 0.33; MgSO4·7H2O, 0.15; CaCO3, 50. Twenty cycles of semicontinuous fermentation were carried out in flask culture. l-lactic acid yield was 78.75% for the first cycle and 80–90% for the repeated cycles; the activities of lactate dehydrogenases (LDH) were 7.2–9.2 U/mg; fermentation was completed in 24 h for each repeated cycle. In a 7-l magnetically stirred fermentor, semicontinuous fermentation lasted for 25 cycles using pellets of R. oryzae AS 3.819 under the optimal conditions determined from flask cultures. The final l-lactic acid concentration (LLAC) reached 103.7 g/l, and the volumetric productivity was 2.16 g/(l·h) for the first cycle; in the following 19 repeated cycles, the final LLAC reached 81–95 g/l, and the volumetric productivities were 3.40–3.85 g/(l·h).  相似文献   

8.
Song QX  Wei DZ  Zhou WY  Xu WQ  Yang SL 《Biotechnology letters》2004,26(23):1777-1780
L-Ascorbyl oleate and L-ascorbyl linoleate were synthesized by an immobilized lipase from Candida antarctica with yields of 38% and 44%, respectively. L-Ascorbyl oleate was stable in sterile culture medium over 12 h at 37 °C but L-ascorbyl linoleate degraded by 17%. Ascorbyl oleate had a better protective effect on human umbilical cord vein endothelial cells treated with H2O2 than of L-ascorbic acid-2-phosphate-6-palmitate (Asc2P6P).Revisions requested 21 July 2004/26 August 2004; Revisions received 20 August 2004/27 September 2004  相似文献   

9.
Escherichia coli cells expressing l-arabinose isomerase from Thermotoga neapolitana (TNAI) were immobilized in calcium alginate beads. The resulting cell reactor (2.4 U, t 1/2 = 43 days at 70°C) in a continuous recycling mode at 70°C produced 49 and 38 g d-tagatose/l from 180 and 90 g d-galactose/l, respectively, within 12 h.  相似文献   

10.
Optimization of the medium components which enhance sporulation of the two mating types of the fungus Blakeslea trispora ATCC 14271 and ATCC 14272 (a heterothallic Zygomycota producing carotene) was achieved with the aid of response surface methodology (RSM). Glucose, corn steep liquor, yeast extract, and ammonium sulfate were investigated as carbon and nitrogen sources in a basal medium. RSM was adopted to optimize the medium in order to obtain a good growth of the fungus as a prerequisite for enhanced sporulation. In the second step, the basal medium was supplemented with different trace elements which significantly affect sporulation (i.e. CuSO4·5H2O, FeCl3·6H2O, Co(NO3)2·6H2O, and MnCl2·4H2O). Central composite design proved to be valuable in optimizing a chemically defined solid medium for spore production of B. trispora. The composition of the new solid medium to enhance spore production by B. trispora (ATCC 14271) is as follows (per liter): 7.5 g glucose, 3.2 g corn steep liquor, 1.7 g yeast extract, 4.1 g ammonium sulfate, 6 mg CuSO4·5H2O, 276 mg FeCl3·6H2O, 2 mg Co(NO3)2·6H2O, and 20 g agar (pH 6.0). Practical validation of this optimum medium gave spore number of 1.2 × 108 spores/dish which is 77% higher than that produced in Potato Dextrose Agar (PDA). In the case of B. trispora (ATCC 14272) the new solid substrate for enhanced sporulation consists of (per l) 6.4 g glucose, 3.3 g corn steep liquor, 1.4 g yeast extract, 4.3 g ammonium sulfate, 264 mg CuSO4·5H2O, 485 mg FeCl3·6H2O, 223 mg MnCl2.4H2O, and 20 g agar (pH 6.0). Spore numbers of 2 × 107 spores/dish were obtained on the new medium by B. trispora (ATCC 14272), which is 95% higher than that produced on PDA. The results corroborated the validity and the effectiveness of the models. The new media considerably improved sporulation of both strains of B. trispora compared to the production of spores on PDA, which is the medium usually used for sporulation of the fungus.  相似文献   

11.
The antibacterial effect of different glucose oxidase (GOX)/glucose combinations was studied on two food-poisoning organisms, enterotoxic Escherichia coli PM 015 and Salmonella derby BP 177. Growth of E. coli in nutrient broth (NB) was clearly inhibited by 4.0 mg/ml glucose after 24 h when combined with 2.0 U/ml GOX and after 48 h when combined with 0.5 or 1.0 U/ml GOX. Salmonella derby was more resistant than E. coli, but showed clear growth inhibition only after 48 h when inoculated in tubes where 2 mg glucose/ml and 2 U GOX/ml (or 4 mg glucose/ml and 1 U GOX/ml) were combined. In order to understand if the enzyme effect on microbial growth can be attributed to hydrogen peroxide or to pH decrease as a result of the production of gluconic acid, catalase (CAT) was added to GOX/glucose system. Since CAT decomposes H2O2 to H2O and O2, the antibacterial effect was ascribed to a pH decrease as a result of gluconic acid in the system.  相似文献   

12.
Wang SJ  Yu CY  Kuan IC 《Biotechnology letters》2008,30(11):1973-1981
Double d-amino acid oxidases (dRtDAO and dTvDAO) were previously genetically constructed by linking the C-terminus of one subunit of their corresponding native DAOs from Rhodosporidium toruloides and Trigonopsis variabilis (RtDAO and TvDAO) to the N-terminus of the other identical subunit. We have now immobilized these double DAOs and their native counterparts onto streptavidin-coated magnetic beads through the interaction between biotin and streptavidin. The catalytic efficiencies (kcat/KM) of immobilized DAOs toward d-alanine and cepharosporin C remained similar to those of their soluble forms, except the catalytic efficiency of immobilized TvDAO toward d-alanine was decreased by 56%. After immobilization, the Tm value for RtDAO was shifted 15°C higher to 60°C, while those for dRtDAO, TvDAO and dTvDAO were increased by 5–8°C to 56, 60 and 60°C, respectively. In the presence of 10 mM H2O2, immobilized RtDAO, dRtDAO, TvDAO and dTvDAO exhibited half-lives of about 8, 10, 3 and 5 h, respectively, giving 16-, 10-, 6- and 7-fold greater stability than their soluble forms, respectively. Therefore, immobilization through biotin–streptavidin affinity binding enhances the thermal and oxidative stability of native and double DAOs studied, especially RtDAO. The additive stabilizing effect of subunit fusion and immobilization was more pronounced in the case of RtDAO than TvDAO.  相似文献   

13.
Supplementation with CaCl2·2H2O (50 mg l−1) or CuSO4·5H2O (10 mg l−1) improved mannitol production by Candida magnoliae by 14.5 and 18.6% (25 and 32 g/L), respectively. When used in combination, they acted synergistically: Ca2+ decreased the intracellular concentration of mannitol 30%, whereas Cu2+ increased the intracellular activity of mannitol dehydrogenase 1.6-times more than control. Ca2+ probably works by altering the permeability of cells to mannitol, whereas, Cu2+ increases the activity of an enzyme responsible for mannitol biosynthesis.  相似文献   

14.
The excretion of the aromatic amino acid l-tyrosine was achieved by manipulating three gene targets in the wild-type Escherichia coli K12: The feedback-inhibition-resistant (fbr) derivatives of aroG and tyrA were expressed on a low-copy-number vector, and the TyrR-mediated regulation of the aromatic amino acid biosynthesis was eliminated by deleting the tyrR gene. The generation of this l-tyrosine producer, strain T1, was based only on the deregulation of the aromatic amino acid biosynthesis pathway, but no structural genes in the genome were affected. A second tyrosine over-producing strain, E. coli T2, was generated considering the possible limitation of precursor substrates. To enhance the availability of the two precursor substrates phosphoenolpyruvate and erythrose-4-phosphate, the ppsA and the tktA genes were over-expressed in the strain T1 background, increasing l-tyrosine production by 80% in 50-ml batch cultures. Fed-batch fermentations revealed that l-tyrosine production was tightly correlated with cell growth, exhibiting the maximum productivity at the end of the exponential growth phase. The final l-tyrosine concentrations were 3.8 g/l for E. coli T1 and 9.7 g/l for E. coli T2 with a yield of l-tyrosine per glucose of 0.037 g/g (T1) and 0.102 g/g (T2), respectively.  相似文献   

15.
A fermentation medium for avilamycin production by Streptomyces viridochromogenes Tü57-1 has been optimized. Important components and their concentrations were investigated using fractional factorial design and Box–Behnken Design. The results showed that soybean flour, soluble starch, MgSO4·7H2O and CaCl2·2H2O are important for avilamycin production. A polynomial model related to medium components and avilamycin yield had been established. A high coefficient of determination (R 2 = 0.92) was obtained that indicated good agreement between the experimental and predicted values of avilamycin yield. Student’s T-test of each coefficient showed that all the linear and quadratic terms had significant effect (P > |T| < 0.05) on avilamycin yield. The significance of tested components was related to MgSO4·7H2O (0.37 g/L), CaCl2·2H2O (0.39 g/L), soybean flour (21.97 g/L) and soluble starch (37.22 g/L). The yield of avilamycin reached 88.33 ± 0.94 mg/L (p < 0.05) that was 2.8-fold the initial yield.  相似文献   

16.
The present study investigated the effects of three constituent amino acids on glutathione production in flask culture of Candida utilis. Although l-glutamic acid and glycine had little impact on cell growth and glutathione biosynthesis, l-cysteine positively influenced glutathione production, despite inhibiting cell growth when it was added prior to stationary phase. Adding 8 mmol/L of l-cysteine to the culture broth at 16 h boosted glutathione production by 91%, increasing the intracellular glutathione content by 106% compared to untreated controls. A temperature-shift strategy, in which we shifted batch and fed-batch cultures of C. utilis from 30 to 26°C, also significantly enhanced glutathione production. Applying both strategies (i.e. adding 20 mmol/L l-cysteine and shifting the temperature from 30 to 26°C) at 33 h enhanced the glutathione concentration and the intracellular glutathione content to 1,312 mg/L and 3.75%, respectively, during fed-batch cultivation (glucose feeding at a constant rate of 18.3 g/h). The average specific glutathione production rate under this condition was 129% higher than that of the control without strategy.  相似文献   

17.
Clostridium sphenoides was grown on glucose in a phosphate-limited medium. Below 80 M phosphate two new products were formed in addition to ethanol, acetate, H2 and CO2: d(-)-1,2-propanediol and d(-)-lactate. These compounds were apparently synthesized via the methylglyoxal by-pass. The activity of the enzymes involvedmethylglyoxal synthase, methylglyoxal reductase, 1,2-propanediol dehydrogenase and glyoxalase-could be demonstrated in cell extracts of C. sphenoides. The formation of 1,2-propanediol from methylglyoxal proceeded via lactaldehyde. The enzyme methylgloxal synthase was inhibited by phosphate. Clostridium glycolicum, C. nexile, C. cellobioparum, C. oroticum and C. indolis did not produce propanediol under the condition of phosphate limitation. The latter two species, however, formed d(-)-lactate.Dedicated to Prof. Dr. G. Drews on the occasion of his 60th birthday  相似文献   

18.
A non-characterized gene, previously proposed as the d-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with d-fructose and decreased for other substrates in the order: d-tagatose, d-psicose, d-ribulose, d-xylulose and d-sorbose. Its activity was maximal at pH 9 and 40°C while being enhanced by Mn2+. At pH 9 and 40°C, 118 g d-psicose l−1 was produced from 700 g d-fructose l−1 after 3 h. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
A single-stage continuous fermentation process for the production of 2-keto-l-gulonic acid (2KGA) from l-sorbose using Ketogulonigenium vulgare DSM 4025 was developed. The chemostat culture with the dilution rate that was calculated based on the relationship between the 2KGA production rate and the 2KGA concentration was feasible for production with high concentration of 2KGA. In this system, 112.2 g/L of 2KGA on the average was continuously produced from 114 g/L of l-sorbose. A steady state of the fermentation was maintained for the duration of more than 110 h. The dilution rate was kept in the range of 0.035 and 0.043 h−1, and the 2KGA productivity was 3.90 to 4.80 g/L/h. The average molar conversion yield of 2KGA from l-sorbose was 91.3%. Under the optimal conditions, l-sorbose concentration was kept at 0 g/L. Meanwhile, the dissolved oxygen level was changing in response to the dilution rate and 2KGA concentration. In the dissolved oxygen (DO) range of 16% to 58%, it was revealed that the relationship between DO and D possessed high degree of positive correlation under the l-sorbose limiting condition (complete consumption of l-sorbose). Increasing D closer to the critical value for washing out point of the continuous fermentation, DO value tended to be gradually increased up to 58%. In conclusion, an efficient and reproducible continuous fermentation process for 2KGA production by K. vulgare DSM 4025 could be developed using a medium containing baker’s yeast without using a second helper microorganism.  相似文献   

20.
研究过氧化氢内源消除剂和交替氧化酶专一性抑制剂影响渗透胁迫对水稻根系的伤害。结果表明:PEG 6000胁迫抑制了水稻幼根的生长,降低了相对含水量、增加了H2O2含量,并导致细胞死亡。用5 mmol·L-1二甲基硫脲(过氧化氢内源消除剂,dimethylthiourea,DMTU)预处理水稻幼根能明显降低PEG胁迫下水稻幼根过氧化氢的含量,缓解细胞死亡和相对含水量的降低,但对水稻根的生长影响较小。在PEG胁迫下,用1 mmol·L-1水杨基氧肟酸(交替氧化酶专一性抑制剂,salicylhydroxamic acid,SHAM)预处理水稻幼根能显著降低水稻幼根的生长和相对含水量,并增加水稻幼根的过氧化氢含量和细胞的死亡程度。这说明DMTU能缓解PEG胁迫对水稻根系伤害,而SHAM加剧了PEG胁迫对水稻根系伤害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号