首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Disentangling community patterns of nestedness and species co-occurrence   总被引:2,自引:1,他引:2  
Werner Ulrich  Nicholas J. Gotelli 《Oikos》2007,116(12):2053-2061
Two opposing patterns of meta‐community organization are nestedness and negative species co‐occurrence. Both patterns can be quantified with metrics that are applied to presence‐absence matrices and tested with null model analysis. Previous meta‐analyses have given conflicting results, with the same set of matrices apparently showing high nestedness (Wright et al. 1998) and negative species co‐occurrence (Gotelli and McCabe 2002). We clarified the relationship between nestedness and co‐occurrence by creating random matrices, altering them systematically to increase or decrease the degree of nestedness or co‐occurrence, and then testing the resulting patterns with null models. Species co‐occurrence is related to the degree of nestedness, but the sign of the relationship depends on how the test matrices were created. Low‐fill matrices created by simple, uniform sampling generate negative correlations between nestedness and co‐occurrence: negative species co‐occurrence is associated with disordered matrices. However, high‐fill matrices created by passive sampling generate the opposite pattern: negative species co‐occurrence is associated with highly nested matrices. The patterns depend on which index of species co‐occurrence is used, and they are not symmetric: systematic changes in the co‐occurrence structure of a matrix are only weakly associated with changes in the pattern of nestedness. In all analyses, the fixed‐fixed null model that preserves matrix row and column totals has lower type I and type II error probabilities than an equiprobable null model that relaxes row and column totals. The latter model is part of the popular nestedness temperature calculator, which detects nestedness too frequently in random matrices (type I statistical error). When compared to a valid null model, a matrix with negative species co‐occurrence may be either highly nested or disordered, depending on the biological processes that determine row totals (number of species occurrences) and column totals (number of species per site).  相似文献   

2.
Hydrobiologia - We assessed the importance of different types of riverine environments (river channels, tributaries, and floodplain lagoons) for the early development of fish larvae from different...  相似文献   

3.
A null model for randomization tests of nestedness in species assemblages   总被引:7,自引:0,他引:7  
Analysis of the degree of order in species assemblages in terms of nested subsets has received increased interest during the last decade. However, recently a series of papers have questioned the validity of methods employed for testing whether observed patterns deviate from random expectations. The current view seems to be that the randomization procedure should control for both number of species per site and species frequencies. The randomization procedures used also choose to keep the total number of observations constant in each resample. In this paper I question some of these assumptions when analyzing species-by-site matrices for detecting whether the biota is significantly nested or not. My basic assumption is that the observed species frequency is only an estimate of the probability of occurrence for the particular species. For a test of degree of nestedness all sites should be regarded as being equal. To what extent size, isolation or habitat quality may influence species distribution is a secondary question if nestedness can be statistically proven. This implies that generation of random matrices should only consider the frequency of the species (as an estimate of their probability of occurring in any patch). Such matrices are computationally simple and besides providing a test of nestedness also open the possibility of testing whether the range in species richness is smaller or larger than expected under random expectations. The choice of null model for the test should always be viewed in relation to the question asked. If nestedness is concerned the methods proposed here should be used. However, if other questions are at hand the restrictions of previous approaches may be valid. This is for instance the case if pairwise species co-occurrences are analyzed. In this case, the richness of each site should obviously be incorporated in the randomization to control for the higher probability of co-occurrence at species-rich sites.  相似文献   

4.
The analysis of co-occurrence matrices is a common practice to evaluate community structure. The observed data are compared with a "null model", a randomised co-occurrence matrix derived from the observation by using a statistic, e.g. the C-score, sensitive to the pattern investigated. The most frequently used algorithm, "sequential swap", has been criticised for not sampling with equal frequencies thereby calling into question the results of earlier analysis. The bias of the "sequential swap" algorithm when used with the C-score was assessed by analysing 291 published presence-absence matrices. In 152 cases, the true p-value differed by >5% from the p-value generated by an uncorrected "sequential swap". However, the absolute value of the difference was rather small. Out of the 291 matrices, there were only 5 cases in which an incorrect statistical decision would have been reached by using the uncorrected p-value (3 at the p<0.05 and 2 at the p<0.01 level), and in all 5 of these cases, the true p-value was close to the significance level. Our results confirm analytical studies of Miklos and Podani which show that the uncorrected swap gives slightly conservative results in tests for competitive segregation. However, the bias is very small and should not distort the ecological interpretation. We also estimated the number of iterations needed for the "sequential swap" to generate accurate p-values. While most authors do not exceed a number of 104 iterations, the suggested minimum number of swaps for 29 out of the 291 tested matrices is greater than 104. We recommend to use 30 000 "sequential swaps" if the required sample size is not assessed otherwise.  相似文献   

5.
JANI HEINO 《Freshwater Biology》2009,54(9):1947-1959
1. Describing species distribution patterns and the underlying mechanisms is at the heart of ecological research. A number of recent studies have used null model approaches to explore mechanisms behind spatial variation in community structure.
2. However, unexplored questions are the degree to which single guilds of potentially competing stream macroinvertebrate species show: (i) interspecific segregation among-stream sites (i.e. occur together less often than expected by chance), suggesting competitive interactions; (ii) interspecific aggregation (i.e. occur together more often than expected by chance), suggesting similar responses to the environment; (iii) comply with nestedness, suggesting the existence of selective extinctions or colonisations and (iv) show similar environmental relationships.
3. The present analyses showed that guilds of stream macroinvertebrates exhibit non-random co-occurrence patterns that were generally contingent on the weighting of sites by stream size. Despite significant segregation of species, each guild also showed significantly nested patterns. Species richness was correlated with different environmental factors between the guilds, although these correlations were relatively low. By contrast, correlations between the major ordination axes and key environmental variables were slightly stronger in canonical correspondence analysis, and generally the same factors were most strongly correlated with variation in the species composition of each guild.
4. The present findings are the first to show that species within each stream macroinvertebrate guild show significant negative co-occurrence at the among-stream riffle scale. These findings present challenges for future studies that aim to disentangle whether these patterns comply with the habitat checkerboard or the competitive checkerboard explanations.  相似文献   

6.
7.
Aim Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness ( Baselga, 2010 , Global Ecology and Biogeography, 19 , 134–143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness‐resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness‐resultant dissimilarity are related but different concepts. Innovation The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple‐site situations. Finally the concepts of nestedness and nestedness‐resultant dissimilarity are discussed. Main conclusions Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta‐diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple‐site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple‐site attributes of dissimilarity.  相似文献   

8.
A fundamental goal of ecology is to understand whether ecological communities are structured according to general assembly rules or are essentially dictated by random processes. In the context of fragmentation, understanding assembly patterns and their mechanistic basis also has important implications for conservation. Using distribution data of 20 bat species collected on 11 islands in Gatún Lake, Panama, we tested for non‐randomness in presence–absence matrices with respect to nestedness and negative species co‐occurrence. We examined the causal basis for the observed patterns and conducted separate analyses for the entire assemblage and for various species submatrices reflecting differences in species’ trophic position and mobility. Furthermore, we explored the influence of weighting factors (area, isolation, abundance) on co‐occurrence analyses. Unweighted analyses revealed a significant negative co‐occurrence pattern for the entire assemblage and for phytophagous bats alone. Weighting analyses by isolation retained a pattern of species segregation for the whole assemblage but nullified the non‐random structure for phytophagous bats and suggested negative associations for animalivores and species with low mobility. Area‐ and abundance‐weighted analyses always indicated random structuring. Bat distributions followed a nested subset structure across islands, regardless of whether all species or different submatrices were analysed. Nestedness was in all cases unrelated to island area but weakly correlated with island isolation for incidence matrices of all species, phytophagous bats, and mobile species. Overall, evidence for negative interspecific interactions indicative of competitive effects was weak, corroborating previous studies based on ecomorphological analyses. Our findings indicate that bat assemblages on our study islands are most strongly shaped by isolation effects and species’ differential movement and colonization ability. From a conservation viewpoint this suggests that even in systems with high fragment–matrix contrast, a purely area‐based approach may be inadequate, and structural and functional connectivity among patches are important to consider in reserve planning.  相似文献   

9.
Flowers’ fungal and bacterial communities can exert great impacts on host plant wellness and reproductive success—both directly and indirectly through species interactions. However, information about community structure and co-occurrence patterns in floral microbiome remains scarce. Here, using culture-independent methods, we investigated fungal and bacterial communities associated with stamens and pistils of four plant species (Scaevola taccada, Ipomoea cairica, Ipomoea pes-caprae, and Mussaenda kwangtungensis) growing together under the same environment conditions in an island located in South China. Plant species identity significantly influenced community composition of floral fungi but not bacteria. Stamen and pistil microbiomes did not differ in community composition, but differed in co-occurrence network topological features. Compared with the stamen network, pistil counterpart had fewer links between bacteria and fungi and showed more modular but less concentrated and connected structure. In addition, degree distribution of microbial network in each host species and each microhabitat (stamen or pistil) followed a significant power-law pattern. These results enhance our understanding in the assembly principles and ecological interactions of floral microbial communities.  相似文献   

10.
Species co-occurrence analysis is commonly used to assess how interspecific interactions dictate community assembly. Non-random co-occurrences, however, may also emerge from niche differences as well as environmental heterogeneity. The relationships between species co-occurrence patterns, environmental heterogeneity and species niches are not fully understood, due to complex interactions among them. To analyse the relationships among these patterns and processes, I developed synthetic community models and analysed a large dataset of tree species across the conterminous United States. Niche overlap and environmental heterogeneity had significant and contrasting effects on species co-occurrence patterns, in both modelled and real communities. Niche breadth, in turn, affected the effect sizes of both variables on species co-occurrence patterns. The effect of niche breadth on the relationship between co-occurrence and niche overlap was markedly consistent between modelled and real communities, while its effect on the relationship between co-occurrence and environmental heterogeneity was mostly consistent between real and modelled data. The results of this analysis highlight the complex and interactive effects of species niche overlap, niche breadth and environmental heterogeneity on species co-occurrence patterns. Therefore, inferring ecological processes from co-occurrence patterns without accounting for these fundamental characteristics of species and environments may lead to biased conclusions.  相似文献   

11.
In this paper, we used geostatistical approaches to describe bi-dimensional spatial patterns in species richness of South American birds of prey (Falconiformes and Strigiformes). They indicated strong spatial patterns both across latitude and longitude, for the two groups. These patterns were then correlated with those expected by a bi-dimensional null model constructed to take into account South America continental edges. As considerable departures from the null model were observed, there may be other ecological or evolutionary explanations for spatial patterns in species richness. Variation seems to be related to habitat heterogeneity across the continent, especially when considering differences between habitats in the central and south-eastern portion of the continent and in the Andean region. This supports previous conclusions that habitat type and heterogeneity affect species richness and abundance at different spatial scales.  相似文献   

12.
Aim To test whether congeneric species are significantly associated with one another in space, either positively or negatively. Also, to provide a framework for a causal investigation of co‐occurrence patterns by a parallel comparison of interactions in geographical and ecological data matrices. Location For the analysis of congeneric species’ co‐occurrences we used 30 matrices covering a wide range of taxa and geographical areas, while for the causal investigation we used the distribution of 50 terrestrial isopod species on 20 islands and 264 sampling stations in the central Aegean archipelago, as well as a number of ecological variables for each sampling station. Methods We developed a software program (cooc ) that incorporates the species‐by‐species approach to co‐occurrence analysis using EcoSim's output of prior null model analysis of co‐occurrence. We describe this program in detail, and use it to investigate one of the most common assembly rules, namely, the decreased levels of co‐occurrence among congeneric species pairs. For the causal analysis, we proceed likewise, cross‐checking the results from the geographical and the ecological matrices. There is only one possible combination of results that can support claims for direct competition among species. Results We do not get any strong evidence for widespread competition among congeneric species, while most communities investigated do not show significant patterns of species associations. The causal analysis suggests that the principal factors behind terrestrial isopod species associations are of historical nature. Some exceptional cases are also discussed. Main conclusions Presence/absence data for a variety of taxa do not support the assembly rule that congeneric species are under more intense competition compared to less related species. Also, these same data do not suggest strong interactions among species pairs, regardless of taxonomic status. When significant species associations can be seen in such matrices, they mainly reflect the effects of history or of habitat requirements.  相似文献   

13.
14.
Understanding how communities assemble is a central goal of ecology. This is particularly relevant for communities of arbuscular mycorrhizal fungi (AMF), because the community composition of these beneficial plant symbionts influences important ecosystem processes. Moreover, AMF may be used as sensitive indicators of ecological soil quality if they respond to environmental variation in a predictable way. Here, we use a molecular profiling technique (T-RFLP of 25S rRNA gene fragments) to test which factors determine AM fungal community composition in 40 agricultural soils in the Netherlands. In particular, we test whether species richness, dominance structure and community nestedness are influenced by management type (in pairs of organically and conventionally farmed fields), and we examine the contribution of crop species (maize vs. potato), soil type (sand vs. clay-textured soils) and habitat (plant root vs. bulk soil) on AMF community characteristics. AMF richness varied from 1 to 11 taxa per field. Communities from species-poor fields were found to be subsets of those in richer fields, indicating nestedness and a progressive 'loss' from the species pool. AMF taxa richness and occurrence in soil and plant roots were highly correlated, and richness was related to management intensity (phosphate availability and grass-cropping history together explained 32% and 50% of richness in roots and soils). Soil type together with soil chemical parameters explained only 17% of variance in AMF community structure. We synthesize these results by discussing the potential contribution of a 'bottleneck effect' on AMF communities through increased stochastic effects under environmental stress.  相似文献   

15.
ABSTRACT

Background: Highly modified landscapes offer the opportunity to assess how environmental factors influence the integration of alien plant species into native vegetation communities and determine the vulnerability of different communities to invasion.

Aims: To examine the importance of biotic and abiotic drivers in determining whether alien plant species segregate spatially from native plant communities or become integrated and lead to biotic homogenisation.

Methods: Ordination and classification of a floristic survey of over 1200 systematically located 6 m × 6 m plots were used to examine how plant community segregation, nestedness and homogenisation varied in relation to climate, environmental and human-related factors across Banks Peninsula, New Zealand.

Results: The analyses of community structure indicated that native and alien plant communities were spatially and ecologically segregated due to different responses primarily to an anthropogenic impact gradient and secondly to environmental factors along an elevation gradient. Human-land use appeared most strongly linked to the distribution of alien species and was associated with increased vegetation homogenisation. However, despite spatial segregation of alien and native plant communities, biotic homogenisation not only occurred in highly managed grasslands but also in relatively less managed shrublands and forest.

Conclusions: The role played by anthropogenic factors in shaping alien and native plant species community structure should not be ignored and, even along a marked environmental gradient, if the recipient sites have a long history of human-related disturbance, biotic homogenisation is often strong.  相似文献   

16.
The helminth parasites of the greater kudu from the Kruger National Park (KNP), South Africa, and the Etosha National Park (ENP), Namibia, were examined to determine the major patterns of spatial and demographic variation in community structure and to evaluate nonrandomness in parasite community assembly. Nonmetric multidimensional scaling ordination procedures were used to test for differences in parasite community composition between hosts of the 2 parks and between hosts of different demographic groups within KNP. Infracommunities within KNP were also examined for patterns of nonrandomness using 2 null models, i.e., nestedness and species co-occurrence. Infracommunities of KNP and ENP were significantly different from each other, as were infracommunities of different host demographic groups within KNP. Parasite species in the greater kudu from KNP displayed significant levels of nestedness and were found to co-occur less frequently than expected by chance; however, this lack of co-occurrence was significant only when all demographic groups were considered. When restricted to any particular age class, co-occurrence patterns could not be distinguished from random. Overall, these data suggest that biogeography and host demographics are important factors in determining community organization of helminth parasites in the greater kudu.  相似文献   

17.
Aims The nested subset pattern has been widely studied in the last 20 years, and recent syntheses have challenged the prevalence of this pattern in nature. We examined the degree of nestedness, its temporal variability and its environmental correlates in stream insects of a boreal drainage system. We also examined differences between nested and idiosyncratic species in site occupancy, niche position and niche breadth. Location Koutajoki drainage basin in northern Finland. Methods We used (i) nestedness analyses with three null models for testing the significance of nestedness; (ii) Spearman rank correlation to examine the correlates of nestedness; (iii) outlying mean index analysis to analyse the niche characteristics of species; (iv) and t‐test to examine differences in niche breadth, niche position and site occupancy of idiosyncratic and other nested species. Results Stream insect assemblages were significantly nested in each of the three study years. The maximally packed matrices were significantly nested according to the nestedness calculator based on null models I (species frequencies and site richness equiprobable) and II (species frequencies fixed and site richness equiprobable), but non‐significant based on a conservative null model III (species frequencies and site richness fixed to those of the observed matrix). The most important correlate of nestedness was stream size, whereas isolation, productivity (total phosphorus) and habitat heterogeneity exhibited non‐significant relationship with nestedness. Idiosyncratic species occurred, on average, at more sites than nested species, mirroring the restricted distributions of several nested species that were inclined towards species‐rich sites. Idiosyncratic and nested species also differed in niche position and niche breadth, with idiosyncratic species having, on average, less marginal niche positions and wider niches than nested species. Main conclusions Stream size correlated with nestedness, possibly because small streams were inhabited only by species able to persist under, or colonize shortly after, disturbances, while most species could occur at larger sites where disturbances are less severe. From the conservation perspective, our findings suggest that stream size really matters, given that sites with high species richness and many rare species are more likely to occur in larger streams. However, also the requirements of idiosyncratic species should be accommodated in conservation planning.  相似文献   

18.
WernerUlrich  MarcinZalewski 《Oikos》2006,114(2):338-348
15 lake islands and two mainland sites of Mamry lake in Poland were sampled to investigate community structures and patterns of co-occurrences of ground beetles (Carabidae). The total ground beetle metacommunity of 71 species was divided into a group of core species occupying at least half of all study sites and of satellite species, which occurred at two sites or less. This division is mirrored by reduced dispersal abilities and non-random patterns of site occupancy. Core and satellite species also differed in patterns of relative abundance. The core group followed a lognormal distribution, the satellite group a power function as predicted by the self-similarity model of occurrence. We conclude that the division into core and satellite species is not a sample artefact but reflects different life history strategies. We also conclude that current models of niche division and co-occurrence might miss important aspects of community structure if they do not refer to patterns of dispersal.
From these findings we infer that the regional distribution of core species might be shaped by species interactions and processes of niche divisions whereas the spatial distribution of satellite species are best interpreted as stemming from random dispersal.  相似文献   

19.
On the meaning and measurement of nestedness of species assemblages   总被引:13,自引:0,他引:13  
Nestedness of species assemblages occurs when thebiotas of sites with lower numbers of species tend to be subsets of the biotas at richer sites. We develop new quantitative and statistical techniques for measuring, testing, and comparing nestedness, and apply these methods to data from the literature. Significantly nonrandom nestedness was present in all 27 assemblages examined, and tended to be stronger in systems dominated by extinction, such as landbridge islands. Sets of assemblages that were very strongly nested were more likely to have greater species richness on one or a few large sites than on several smaller sites of equivalent total area — that is, to fall toward the single large side of the Single Large Or Several Small (SLOSS) continuum. Our analysis indicates that nestedness, when quantified as a single number for a presence-absence matrix, measures community-wide differences in incidence (the frequency of occurrence or distribution of species). Factors that lead to consistent differences among species in immigration or extinction rates cause strong patterns of nestedness of species assemblages. Nestedness is negatively related to beta diversity: nestedness is low when beta diversity is high, and vice versa. Conservation managers will thus seek to minimize nestedness and the development of nested structure in systems of nature reserves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号