首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infections of animals with parasitic worms, such as Schistosoma mansoni, induce humoral immune responses to carbohydrate antigens, raising the possibility that such antigens might be useful targets for the development of vaccines and new diagnostic approaches. Here we describe the identification of fucosylated LacdiNAc (LDNF) [GalNAc beta 1-4(Fuc alpha 1-3)GlcNAc-R] as a new carbohydrate antigen in S. mansoni that induces humoral immune responses in infected mice. The presence of antibodies was determined by ELISA using a neoglycoconjugate synthesized to express LDNF sequences. Sera from S. mansoni-infected, but not uninfected, mice contain IgM, IgG, IgA, and IgE antibodies to LDNF. The IgG antibodies are primarily of the IgG1 and IgG3 subclasses, with no detectable levels of the complement-fixing IgG2a and IgG2b isotypes. An IgM monoclonal antibody, designated SMLDNF1, was generated from the spleens of S. mansoni-infected mice, and the antibody exhibits specific recognition of LDNF sequences, but not other fucosylated glycans tested. Immunocytochemical analysis demonstrates that LDNF antigens are localized on the tegumental surface of adult S. mansoni. Western blot analysis indicates that LDNF sequences are expressed on numerous high-molecular-weight glycoproteins from the three major human schistosome species, as well as the bird schistosome Trichobilharzia ocellata. The identification of LDNF antigen on the tegumental glycoproteins of schistosomes and the ability to synthesize LDNF conjugates should aid in the development of glycan-based vaccines and immunodiagnostic tests for schistosomiasis and in determining the role(s) of the glycans in worm development and pathogenesis.  相似文献   

2.
The major humoral immune responses in animals infected with Schistosoma mansoni are directed toward carbohydrate antigens. Among these antigens are complex-type N-glycans expressing LDN [GalNAcbeta1-4GlcNAc-R], LDNF [GalNAcbeta1-4(Fucalpha1-3)GlcNAc-R], and polymeric Lewis x (Lex) [Galbeta1-4(Fucalpha1-3)GlcNAc]n-R epitopes. We have now evaluated the potential of the three glycan antigens as targets for immune-mediated intervention of infections and serodiagnosis. A variety of approaches were employed, including ELISA, Western blot, immunohistology, and in vitro complement lysis assays, to determine the immunogenicity of the glycans in infected humans, their localization on the parasites and their efficacy as targets for parasite lysis. Our results show that S. mansoni-infected patients, with either intestinal or hepatosplenic disease, generate predominantly IgM, but also IgG and IgA, antibodies to LDN, LDNF, and Lex. However, immune responses to Lex are generally lower than responses to LDN and LDNF and less specific to schistosome infections. Western blot analysis with monoclonal antibodies (mAb) to LDN, LDNF, and Lex determinants show that the glycan antigens occur on multiple glycoproteins from cercariae, 3-h, 48-h, and lung stage schistosomula, as well as adults and eggs. Immunohistological studies demonstrate that LDN, LDNF, and Lex are expressed on the parasite surface at all stages of development in the vertebrate host. Importantly, a mAb to LDN in the presence of complement efficiently kills schistosomula in vitro, as demonstrated by flow-cytometric assays that quantify cytolysis by propidium iodide uptake into damaged parasites. These findings raise the possibility that LDN and LDNF may be targets for vaccination and/or serodiagnosis of chronic schistosomiasis in humans.  相似文献   

3.
Cercarial glycoproteins of Schistosoma mansoni were purified by concanavalin A affinity chromatography. The purified fraction consisted of at least 15 polypeptides when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Sera of infected humans specifically immunoprecipitated all of these polypeptides. These purified glycoproteins were used as antigen for preparing monoclonal antibodies. One of these monoclonal antibodies immunoprecipitated cercarial polypeptides that were identical to polypeptides immunoprecipitated with sera of infected humans as analyzed by two-dimensional gel electrophoresis. Direct binding assays with 125I-labeled monoclonal antibody showed that proteins sharing antigenic determinants recognized by this monoclonal antibody were present not only in cercariae (the source of the immunogen) but also in adult male and female worms and in eggs. The protein molecules expressing these antigenic determinants were glycosylated in each of the developmental stages of the larvae, but differed with respect to molecular weight. These findings indicate a role for this monoclonal antibody in serodiagnosis and immunoprophylaxis.  相似文献   

4.
We report the expression of 3 well-characterized adult Schistosoma mansoni glycan antigens among molluscan stages of the parasite. These antigens are LacdiNAc (LDN; GalNAcbeta1-4GlcNAc-R), fucosylated LacdiNAc (LDNF; GalNAc[Fucal-3]beta1-4GlcNAc-R), and Lewis x (Le(x); Gal[Fucalpha1-3]beta1-4GlcNAc-R). The presence of the glycans was determined by both immunoblot and immunohistological methods using monoclonal antibodies that specifically recognize each glycan epitope. Immunoblot analyses reveal that LDN and LDNF epitopes are expressed on many different glycoproteins, including eggs, mother sporocysts, daughter sporocysts, and cercariae, although LDN expression among daughter sporocysts is greatly reduced. LDN and LDNF epitopes are localized on the tegument and in the intrasporocyst cell masses of both in vitro-derived and in vivo-derived mother sporocysts and in the daughter sporocysts derived on day 16 after infection. Unexpectedly, high levels of LDN and LDNF glycans were detected in the infected, but not in the uninfected, snail hemolymph, suggesting that the infecting larvae secrete LDN and LDNF glycoconjugates into the snail hosts. In contrast, the expression of Le(x) antigen among the molluscan stages is highly restricted. Le(x) is present on a few high-molecular weight glycoproteins in eggs and cercariae but is undetectable in mother and daughter sporocysts. Taken together with our earlier studies on vertebrate stages of S. mansoni, these results show that LDN and LDNF glycans are conserved during schistosome development. The study further extends the evidence that Le(x) is a developmentally regulated antigen in schistosomes.  相似文献   

5.
The humoral immune responses of mice patently infected with Schistosoma mansoni and of mice vaccinated with radiation-attenuated cercariae were compared by radioimmunoassays and one- and two-dimensional polyacrylamide gel analyses of radioimmunoprecipitates. The binding observed with antibodies of mice vaccinated twice with radiation-attenuated cercariae over a period of 7 to 11 wk was less than 50% of the binding observed with antibodies of mice patently infected for 20 wk, but three to four times greater than that obtained with antibodies of mice infected for 6 wk, irrespective of whether the test antigen extracts were derived from schistosomula or adult worms. Sera of vaccinated mice precipitated a restricted number of predominantly high m.w. glycoproteins of both schistosomula and adult worms metabolically labeled with [35S] methionine. Each of the glycoproteins of 36 hr in vitro-cultured schistosomula that was precipitated by the sera of vaccinated mice was also precipitated by sera of infected mice. In contrast, sera of vaccinated mice uniquely precipitated a 38,000 m.w. glycoprotein of schistosomula cultured for 5 days and a 94,000 m.w. glycoprotein of adult male worms. Although radiation-attenuated larvae do not reach the adult stage, mice vaccinated with these still elicit a strong immune response against egg glycoproteins. In particular, an egg glycoprotein of 85,000 to 70,000 and isoelectric point of 4.8 showed an enhanced reactivity with sera of vaccinated mice in comparison with infected mice. These results show that the antibody response in mice vaccinated with radiation-attenuated larvae differs qualitatively and quantitatively from that of infected mice.  相似文献   

6.
Glycans present on glycoproteins from the eggs of the parasite Schistosoma mansoni are mediators of various immune responses of the human host, including T-cell modulation and granuloma formation, and they are the target of glycan-specific antibodies. Here we have analyzed the glycosylation of kappa-5, a major glycoprotein antigen from S. mansoni eggs using a targeted approach of lectin purification followed by mass spectrometry of glycopeptides as well as released glycans. We demonstrate that kappa-5 has four fully occupied N-glycosylation sites carrying unique triantennary glycans composed of a difucosylated and xylosylated core region, and immunogenic GalNAcβ1-4GlcNAc (LDN) termini. Furthermore, we show that the kappa-5 specific IgE antibodies in sera of S. mansoni-infected individuals are directed against the core region of the kappa-5 glycans. Whereas two previously analyzed immunomodulatory egg glycoproteins, IPSE/alpha-1 and omega-1, both express diantennary N-glycans with a difucosylated core and one or two Galβ1-4(Fucα1-3)GlcNAc (Lewis X) antennae, the kappa-5 glycosylation appears unique among the major soluble egg antigens of S. mansoni. The distinct structural and antigenic properties of kappa-5 glycans suggest a specific role for kappa-5 in schistosome egg immunogenicity.  相似文献   

7.
Macrophages from Schistosoma mansoni-infected mice kill significant numbers of skin stage schistosomula and murine fibrosarcoma cells in vitro. In order to determine whether the macrophage tumoricidal and larvicidal activation observed in mice as a result of S. mansoni infection are mediated through T cell-dependent (lymphokine) or B cell-dependent (antibody or immune complex) mechanisms, the development of macrophage populations with cytotoxic activity against schistosome larvae or tumor cells was monitored in S. mansoni-infected nude or mu-suppressed mice. Whereas peritoneal cells from S. mansoni-infected congenitally athymic mice had no activity in either assay, cells from mu-suppressed S. mansoni-infected mice showed cytotoxic activity equivalent to that of cells from untreated S. mansoni-infected counterparts. Cells from mu-suppressed uninfected mice were not activated. The mu-suppressed animals had no detectable nonspecific IgM or specific antischistosome IgM, IgG, or IgE antibodies and showed a 90% reduction in numbers of splenic IgM+ cells upon fluorescence activated cell sorter analysis. These results indicate that antibody is not required for in vivo activation of macrophages during S. mansoni infection. Further experiments showed that lymphoid cells from S. mansoni infected mice respond in culture with various specific antigens (such as living or dead whole schistosomula or soluble adult worm antigens) by production of factors capable of activating macrophages from uninfected control mice to kill schistosomula or tumor cells in vitro. Macrophage-activating factors were produced by T cell-enriched, but not T cell-depleted or B cell-enriched, populations from spleens of schistosome-infected mice in response to schistosome antigen. Similar lymphokines may be responsible for the macrophage activation observed during chronic murine schistosomiasis. These observations emphasize the potential contribution of T cell-mediated immune mechanisms in resistance to S. mansoni infection.  相似文献   

8.
Monoclonal antibodies that bind to the surface of developing schistosomula were generated from the spleens of chronically infected mice that were boosted with cercarial glycoproteins. The two most reactive monoclonal antibodies, denoted 152-66-9B and 152-66-1C, were used for identification of surface antigens. The antigen detected by these monoclonal antibodies persisted on the surface of the developing larva for 72 hr posttransformation. This monoclonal antibody effected complement-mediated killing of schistosomula in vitro as efficiently as infected mouse sera. It was also very efficient in inhibiting the infectivity of both cercariae and schistosomula. The antigen reactive with the 152-66-9B monoclonal antibody contains two major polypeptides (45 and 30 KD). These polypeptide chains might have originated from the same protein, because they have the same isoelectric point in two-dimensional gel electrophoresis. Moreover, the affinity-purified antigen migrated as only one protein band of approximately 200 KD in SDS-PAGE in nonreducing conditions. The 9B antigen was isolated, purified, and used for immunization, resulting in an antigen dose-dependent partial protection against S. mansoni infection.  相似文献   

9.
The purified Schistosoma mansoni adult microsomal antigen, MAMA, was used in the quantitative single-tube kinetic dependent enzyme-linked immunosorbent assay (k-ELISA) to measure antibody levels of various human patient sera. The 511 serum specimens tested were from patients with both homologous and heterologous infections. Sera from U.S., Egyptian, Brazilian, and Puerto Rican patients infected with S. mansoni reacted strongly with MAMA. Chinese patients infected with S. japonicum, and Nigerians or Egyptians infected with S. haematobium produced much lower responses to this antigen than those infected with S. mansoni. Sera from patients with echinococcosis, filariasis, paragonimiasis, clonorchiasis, trichinosis, amebiasis, and hepatitis and from healthy uninfected control individuals generally contained no detectable antibodies against this antigen. The S. mansoni adult microsomal antigen, MAMA, therefore, appears to be a highly potent and specific reagent for the serodiagnosis of S. mansoni infections.  相似文献   

10.
The parasitic helminth Schistosoma mansoni is a major public health concern in many developing countries. Glycoconjugates, and in particular the carbohydrate component of these products, represent the main immunogenic challenge to the host and could therefore represent one of the crucial determinants for successful parasite establishment. Here we report a comparative glycomics analysis of the N- and O-glycans derived from glycoproteins present in S. mansoni egg (egg-secreted protein) and cercarial (0-3-h released protein) secretions by a combination of mass spectrometric techniques. Our results show that S. mansoni secrete glycoproteins with glycosylation patterns that are complex and stage-specific. Cercarial stage secretions were dominated by N-glycans that were core-xylosylated, whereas N-glycans from egg secretions were predominantly core-difucosylated. O-Glycan core structures from cercarial secretions primarily consisted of the core sequence Galbeta1-->3(Galbeta1-->6)GalNAc, whereas egg-secreted O-glycans carried the mucin-type core 1 (Galbeta1-->3GalNAc) and 2 (Galbeta1-->3(GlcNAcbeta1-->6)GalNAc) structures. Additionally we identified a novel O-glycan core in both secretions in which a Gal residue is linked to the protein. Terminal structures of N- and O-glycans contained high levels of fucose and include stage-specific structures. These glycan structures identified in S. mansoni secretions are potentially antigenic motifs and ligands for carbohydrate-binding proteins of the host immune system.  相似文献   

11.
Infection of vertebrates with the parasitic blood fluke Schistosoma mansoni induces a variety of host immune responses, which are directed against both protein and carbohydrate antigens. In this report, we describe our studies on the structures of antigenic oligosaccharides derived from glycoproteins synthesized by S. mansoni. Immobilized antibodies derived from the sera of infected hamsters and mice bind to a family of high molecular weight Asn-linked oligosaccharides in glycoproteins from the adult parasite. Structural analysis of the major antigenic oligosaccharides revealed that they have high amounts of fucose-linked alpha 1,3 to N-acetylglucosamine residues within the linear repeating disaccharide (3Gal beta 1-4GlcNAc beta 1)n, a poly-N-acetyllactosamine sequence containing the Lewis X antigenic blood group. The remarkable ability of S. mansoni to synthesize these vertebrate-type oligosaccharides may have implications in both the mechanisms of host-parasite interactions and on the development of vaccines to prevent this disease in humans.  相似文献   

12.
N-Glycans from glycoproteins of the worm stage of the human parasite Schistosoma mansoni were enzymatically released, fluorescently labelled and analysed using various mass spectrometric and chromatographic methods. A family of 28 mainly core-alpha1-6-fucosylated, diantennary N-glycans of composition Hex(3-4)HexNAc(6-12)Fuc(1-6) was found to carry dimers of N,N'-diacetyllactosediamine [LacdiNAc or LDN; GalNAc(beta1-4)GlcNAc(beta1-] with or without fucose alpha1-3-linked to the N-acetylglucosamine residues in the antennae {GalNAc(beta1-4)[+/-Fuc(alpha1-3)]GlcNAc(beta1-3)GalNAc(beta1-4)[+/-Fuc(alpha1-3)]GlcNAc(beta1-}. To date, oligomeric LDN and oligomeric fucosylated LDN (LDNF) have been found only on N-glycans from mammalian cells engineered to express Caenorhabditis elegansbeta4-GalNAc transferase and human alpha3-fucosyltransferase IX [Z. S. Kawar et al. (2005) J Biol Chem280, 12810-12819]. It now appears that LDN(F) repeats can also occur in a natural system such as the schistosome parasite. Like monomeric LDN and LDNF, the dimeric LDN(F) moieties found here are expected to be targets of humoral and cellular immune responses during schistosome infection.  相似文献   

13.
The immunoreactivity of sera of infected hosts against glycolipids derived from Schistosoma mansoni eggs, adult male worms, and cercariae was analyzed by immunostaining of glycolipids resolved by high-performance thin-layer chromatography. Eggs contained the greatest number of immunogenic glycolipids and bound the largest proportion of serum antibodies. Virtually all of the immunogenic egg glycolipids were neutrally charged and contained oligosaccharide chains larger in size than five sugar residues. The glycolipids of each developmental stage were shown by use of five monoclonal antibodies to share schistosome-specific carbohydrate epitopes that were also present on glycoproteins. Several of the carbohydrate epitopes were expressed throughout the life cycle, yet the overall structures of the glycolipids were not conserved. Quantitative analyses by solid-phase binding assays indicated that the carbohydrate epitopes were differentially expressed between the glycolipids and glycoproteins of developmental stages. Sera from infected humans and mice both contained very high levels of anti-carbohydrate antibodies that were reactive with the glycolipids, irrespective of the stage or intensity of disease. Mice harboring unisexual infections of either male or female worms also recognized the egg glycolipids in a pattern indistinguishable from that of patently infected mice. A greater proportion of the humoral response against egg antigens in infected humans was directed against protein determinants, as compared with infected mice.  相似文献   

14.
Xylosylated and core alpha1,3-fucosylated N-glycans from plants are immunogenic, and they play a still obscure role in allergy and in the field of plant-made protein pharmaceuticals. We immunized mice to generate monoclonal antibodies (mAbs) binding plant N-glycans specifically via the epitope containing either the xylose or the core alpha1,3-fucose residue. Splenocytes expressing N-glycan-specific antibodies derived from C57BL/6 mice previously immunized with plant glycoproteins were preselected by cell sorting to generate hybridoma lines producing specific antibodies. However, we obtained only mAbs unable to distinguish fucosylated from xylosylated N-glycans and reactive even with the pentasaccharide core Man3GlcNAc2. In contrast, immunization of rabbits yielded polyclonal sera selectively reactive with either fucosylated or xylosylated N-glycans. Purification of these sera using glyco-modified neoglycoproteins coupled to a chromatography matrix provided polyclonal sera suitable for affinity determination. Surface plasmon resonance measurements using sensor chips with immobilized glyco-modified transferrins revealed dissociation constants of around 10(-9) M. This unexpectedly high affinity of IgG antibodies toward carbohydrate epitopes has repercussions on our conception of the binding strength and significance of antiglycan IgE antibodies in allergy.  相似文献   

15.
We have previously characterized seven unique antigenic epitopes on the two envelope glycoproteins of the Venezuelan equine encephalomyelitis (VEE) virus vaccine strain, TC-83, by using monoclonal antibodies. The in vitro function of virus neutralization was primarily associated with one epitope on the gp56 (gp56c). To determine which epitopes were important in protecting animals from VEE infection, purified monoclonal antibodies were inoculated i.v. into 3-wk-old Swiss mice. Twenty-four hours later these animals were challenged i.p. with 100 IPLD50 of virulent VEE virus (Trinidad donkey). High-avidity anti-gp56c, anti-gp50b, anti-gp50c, and anti-gp50d monoclonal antibodies protected animals from virus challenge. Rabbit antisera to the gp56 and the gp50 glycoproteins were also effective in protecting mice from challenge with virulent VEE virus. Less antibody was needed to protect animals if the antibody was directed against the critical neutralization site. Less avid antibodies to the gp56c and gp50b epitopes demonstrated little or no protection in vivo. Protection, therefore, appeared to be a function of the passive antibody's specificity, avidity, and ability to bind to virion antigenic determinants topologically proximal to the critical neutralization site.  相似文献   

16.
Recent evidence supports the involvement of inducible, highly diverse lectin-like recognition molecules in snail hemocyte-mediated responses to larval Schistosoma mansoni. Because host lectins likely are involved in initial parasite recognition, we sought to identify specific carbohydrate structures (glycans) shared between larval S. mansoni and its host Biomphalaria glabrata to address possible mechanisms of immune avoidance through mimicry of elements associated with the host immunoreactivity. A panel of monoclonal antibodies (mABs) to specific S. mansoni glycans was used to identify the distribution and abundance of shared glycan epitopes (glycotopes) on plasma glycoproteins from B. glabrata strains that differ in their susceptibilities to infection by S. mansoni. In addition, a major aim of this study was to determine if larval transformation products (LTPs) could bind to plasma proteins, and thereby alter the glycotopes exposed on plasma proteins in a snail strain-specific fashion. Plasma fractions (< 100 kDa/> 100 kDa) from susceptible (NMRI) and resistant (BS-90) snail strains were subjected to SDS-PAGE and immunoblot analyses using mAB to LacdiNAc (LDN), fucosylated LDN variants, Lewis X and trimannosyl core glycans. Results confirmed a high degree of glycan sharing, with NMRI plasma exhibiting a greater distribution/abundance of LDN, F-LDN and F-LDN-F than BS-90 plasma (< 100 kDa fraction). Pretreatment of blotted proteins with LTPs significantly altered the reactivity of specific mABs to shared glycotopes on blots, mainly through the binding of LTPs to plasma proteins resulting in either glycotope blocking or increased glycotope attachment to plasma. Many LTP-mediated changes in shared glycans were snail-strain specific, especially those in the < 100 kDa fraction for NMRI plasma proteins, and for BS-90, mainly those in the > 100 kDa fraction. Our data suggest that differential binding of S. mansoni LTPs to plasma proteins of susceptible and resistant B. glabrata strains may significantly impact early anti-larval immune reactivity, and in turn, compatibility, in this parasite-host system.  相似文献   

17.
We compared the humoral immune response of mice protected against Schistosoma mansoni by vaccination with radiation-attenuated cercariae to that of patently infected mice, and we identified antigens that elicit a greater, or unique, immune response in the vaccinated mice. These comparisons were based upon radioimmunoprecipitations and immunodepletion of [35S]methionine-labeled schistosomular and adult worm polypeptides, followed by one- and two-dimensional polyacrylamide gel analyses. The humoral responses of patently infected mice and of mice vaccinated once were remarkably similar and were directed against schistosome glycoproteins ranging in molecular size from greater than 300 to less than 10 kDa. Exposing mice to a second vaccination resulted in a marked change in the immune response, to one predominantly directed toward high molecular size glycoproteins. Sequential immunodepletion techniques identified five schistosomular and seven adult worm antigens that showed a greater or unique immunogenicity in vaccinated mice as compared with patently infected mice. These adult worm antigens were purified by preparative sequential immunoaffinity chromatography and used to prepare a polyclonal antiserum, anti-irradiated vaccine. This antiserum bound to the surface of live newly transformed and lung-stage schistosomula, as assessed by immunofluorescence assays, and was reactive with a number of 125I-labeled schistosomular surface polypeptides, including a doublet of 150 kDa that was also recognized by sera of vaccinated mice but not by sera of patently infected mice.  相似文献   

18.
Antibodies directed against diagnostic Mr 31,000 polypeptide(s) of adult Schistosoma mansoni were already formed in mice during prepatency. In contrast, repeated immunization of mice with homogenates of adult schistosomes failed to elicit antibodies detectable in immunoblots in the Mr 31,000 region. Therefore, spleen cells of infected mice were used to produce hybridoma lines. The "miniblot technique" was developed in order to detect in hybridoma supernatants antibodies against schistosome Mr 31,000 components. Electrophoretically separated total S. mansoni proteins were transferred onto nitrocellulose, and the position of the Mr 31,000 components was determined with polyclonal antisera and immunoblotting. Pieces of about 3 square mm of nitrocellulose bearing the diagnostic proteins were incubated with about 100 microliter of hybridoma supernatant in microtitre plates and subsequently probed with peroxidase-conjugated antibody to mouse IgG. This screening technique identified hybridomas secreting antibody to the relevant S. mansoni antigens. It is applicable to other defined parasite antigens, which are, however, not available in biochemically purified form. The monoclonal antibodies produced against the proteins with diagnostic potential reacted with antigens localized in the schistosome gut.  相似文献   

19.
Immunoreactive egg glycoproteins of Schistosoma mansoni, S. haematobium, and S. japonicum which are genus- and species-specific, or react with sera of patients infected with other parasites, have been identified. Egg proteins were labeled with Iodine-125, and the concanavalin A-binding glycoproteins were immunoprecipitated with sera of patients infected with one of four species of Schistosoma or Trichinella spiralis, Taenia solium, Echinococcus granulosus, Entamoeba histolytica, or Wuchereria bancrofti. These immunoprecipitates were analyzed by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Despite the strikingly different patterns of glycoproteins of the African species, the antibody immune responses of patients infected with S. mansoni and S. haematobium were found to be so similar that differentiation could not be established. In contrast, sera of patients infected with S. japonicum, S. mekongi, or parasites not of the genus Schistosoma, immunoprecipitated fewer of the major S. mansoni or S. haematobium glycoproteins. Likewise, antibody immune responses of patients infected with the Oriental schistosomes (S. japonicum and S. mekongi) could not be differentiated. Only a few quantitative differences were noted between our S. mansoni egg glycoprotein extract and a standardized soluble egg antigen extract. This study provides an explanation for the extensive cross-reactivity observed in diagnostic assays which utilize various fractions of schistosomal egg extracts as the antigen.  相似文献   

20.
To study common and variant specific antigenic determinants on variant surface glycoproteins from Trypanosoma brucei, we have selected four serologically cross-reacting variant populations. Monoclonal antibodies were raised against the purified variant surface glycoproteins from each variant trypanosome population. Six monoclonal antibodies bind to segmental epitopes and one binds to a topographically assembled epitope. Amino acid compositions of these variant surface glycoproteins reveal striking conservation of certain residues including cysteine and charged amino acids. We also find that all seven monoclonal antibodies used in this study bind to protein determinants not exposed on the surface of the living trypanosome. Only one monoclonal antibody exhibits homologous specificity, while the remainder display cross-reactivity for three or all four variant surface glycoproteins. In addition, polyacrylamide gel electrophoresis peptide mapping and Western blots probed with each monoclonal antibody reveal significant peptide homologies. Furthermore, two pairs of monoclonal antibodies recognize two epitopes that are possibly immunodominant. The significance of these findings is discussed in terms of the structural similarities and differences among variant surface glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号