首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We designed a simple and reproducible electroporation-mediated transfection procedure with which to screen mammalian expression vector-constructed cDNA libraries. Using a specific chamber composed of five parallel electrodes, the recipient cells can be electroporated separately with 40 plasmid DNA preparations in a single experiment. Over 300 crude plasmids prepared from E. coli (DH-5) carrying a pcD2neo-vector-derived cDNA library were tested. The efficiency of stable transfection by electroporation with crude plasmid DNA preparations was 10-times higher than with the CsCl-purified plasmid DNA. When the crude plasmids were digested with RNase, the efficiency of stable transfection markedly decreased, indicating that the contaminating bacterial RNA in the crude plasmid preparations has a strong carrier effect during the electroporation. Even when salmon sperm DNA or genomic DNA from the recipient cells was used as the carrier of the purified plasmid, the efficiency was not higher than that using the crude preparations. This procedure is useful not only for screening a number of cDNAs but also for routinely introducing biologically active foreign genes into cultured mammalian cells.  相似文献   

2.
DHFR-deficient Chinese hamster ovary (CHO DHFR) cells are the most popular mammalian expression system for inducible amplification of transgene. In order to obtain more stable transfected CHO DHFR cell clones, transfection efficiency of electroporation under different conditions were systemically investigated using plasmid pSV-β-Gal as reporter gene. Transfection efficiency was proportionally increased with pulse duration and number of pulse applied. In addition, higher transfection efficiency was found in high salt extracellular solution (Berg's and Hank's buffers) than in intracellular solution (cytomix buffer) under the same electroporation condition. The highest transfection efficiency in examined conditions was about 1 in 350 cells (or 0.289%) when cells were electroporated with twice pulses at 400 V, 375 μF. The present study offers an optimized guideline for introducing exogenous DNA into CHO DHFR cells by electroporation.  相似文献   

3.
The improvement of gene therapy protocols is intimately related to the establishment of efficient gene transfer methods. Electroporation has been increasingly employed in in vitro and in vivo protocols, and much attention has been given to increasing its transfection potential. The method is based on the application of an electric field of short duration and high voltage to the cells, forming reversible pores through which molecules can enter the cell. In this work, we describe the optimization of a protocol for the electroporation of K562 cells involving the combination of electric field, resistance and capacitance values. Using RPMI 1640 as pulsing buffer and 30 μg of pEGFP-N1 plasmid, 875 V cm−1, 500 μF and infinite resistance, we achieved transfection rates of 82.41 ± 3.03%, with 62.89 ± 2.93% cell viability, values higher than those reported in the literature. Analyzing cell cycle after electroporation, with three different electric field conditions, we observed that in a heterogeneous population of cells, viability of G1 cells is less affected by electroporation than that of cells in late S and G2/M phases. We also observed that efficiency of electroporation can be improved using the DNAse inhibitor Zn, immediately after the pulse. These results can represent a significant improvement of current methods of electroporation of animal and plant cells.  相似文献   

4.
Electroporation is a simple and versatile approach for DNA transfer but needs to be optimized for specific cells. We conducted square wave electroporation experiments for rat dental follicle cells under various conditions. These experiments indicated that the optimal electroporation electric field strength was 375 V/cm, and that plasmid concentrations greater than 0.18 μg/μL were required to achieve high transfection efficiency. BSA or fetal bovine serum in the pulsing buffer significantly improved cell survival and increased the number of transfected cells. The optimal pulsing duration was in the range of 45–120 ms at 375 V/cm. This electroporation protocol can be used to deliver DNA into dental follicle cells to study the roles of candidate genes in regulating tooth eruption. This is the first report showing the transfection of dental follicle cells using electroporation. The parameters determined in this study are likely to be applied to transfection of other fibroblast cells.  相似文献   

5.
Electroporation of plasmid and chromosomal DNAs were tested in Haemophilus influenzae because of an interest in introducing DNA into mutants that are deficient in competence for transformation. The initial experiments were designed to investigate and optimize conditions for electroporation of H. influenzae. Plasmid DNA was introduced into the competence proficient strain Rd and its competence-deficient uptake mutants com-52, com-59, and com-88, and the recombination deficient mutant rec1. Plasmid DNA could also be electroporated into the non-transforming strains Ra, Rc, Re and Rf. Plasmid DNA without sequences that are involved in tight binding (uptake) of DNA by competent cells of H. influenzae Rd was electroporated into both competent and non-competent cells. Competent cells were several orders of magnitude less efficient than non-competent cells for electroporation of plasmid DNAs. Electroporation of H. influenzae chromosomal DNA was not successful. Low levels of integration of chromosomal markers were observed following electroporation and these could be ascribed to transformation. The treatment of cells with DNasel following electroporation separated the effects due to electroporation from those due to transformation. The DNasel treatment did not affect the efficiency of plasmid incorporation, but severely restricted effects due to natural DNA transformation.  相似文献   

6.
We show an inexpensive design for an electroporation chamber which subjects electroporated cells to a nonuniform electrical field. Our design, which we call an electroporation cylinder, improved transfection efficiency over that of a uniform field design (electroporation cuvettes) by about sixfold when tested in five mouse cell lines with a transient gene expression assay. Electroporation cylinders subjected cells to electrical field strengths at least as powerful as those of electroporation cuvettes, as judged by comparing the percentages of cells killed by electroporation. Cylinder and cuvette designs were similar in their effect on the variability of transfection efficiency. Electroporation cylinders may be particularly useful when the optimal electrical field strength for a cell line is not known or is unattainable with a given power supply.  相似文献   

7.
Simian Cos-1 cells were transfected electrically with the plasmid pCH110 carrying the beta-galactosidase gene. The efficiency of transfection was determined by a transient expression of this gene. When the plasmid was introduced into a cell suspension 2 s after pulse application, the transfection efficiency was shown to be less than 1% as compared with a prepulse addition of DNA. Addition of DNAase to suspension immediately after a pulse did not decrease transfection efficiency, thus the time of DNA translocation was estimated to be less than 3 s. The use of electric treatment medium, in which the postpulse colloid-osmotic cell swelling was prevented, did not affect the transfection efficiency. These results contradict both assumptions of free DNA diffusion into cell through the long-lived pores and of involvement of osmotic effects in DNA translocation. Transfection of cells in monolayer on a porous film allowed creation of the spatial asymmetry of cell-plasmid interaction along the direction of electric field applied. A pulse with a polarity inducing DNA electrophoresis toward the cells resulted in the 10-fold excess of transfection efficiency compared with a pulse with reverse polarity. Ficoll (10%) which increases medium viscosity or Mg2+ ions (10 mM) which decrease the effective charge of DNA, both reduced transfection efficiency 2-3-fold. These results prove a significant role of DNA electrophoresis in the phenomenon considered. The permeability of cell membranes for an indifferent dye was shown to increase noticeably if the cells were pulsed in the presence of DNA. This indicates a possible interaction of DNA translocated with the pores in an electric field, that results in pore expansion.  相似文献   

8.
链霉菌质粒pSET152电转化稀有放线菌小单孢菌的研究   总被引:1,自引:0,他引:1  
利用链霉菌(Streptomyces)噬菌体ΦC31所构建的整合型载体pSET152作为供体质粒,分别以小单孢菌(Micromonospora)40027菌株的萌发孢子和新鲜菌丝体作为受体菌,在不同的电场强度下进行电转化实验,结果表明:以小单孢菌40027菌株萌发孢子为受体菌,未获得电转化子;以小单孢菌40027菌株新鲜菌丝体为受体菌,获得了电转化子。电场强度为13kV/cm时可获得最高转化效率。Southern杂交结果表明:质粒pSET152可通过菌丝体电转化法导入小单孢菌40027菌株,并整合到小单孢菌40027菌株的染色体上,暗示链霉菌噬菌体ΦC31的整合酶基因和整合位点在异源宿主小单孢菌40027菌株中仍具有相同的功能。质粒稳定性检测实验表明:质粒pSET152可稳定地存在于小单孢菌40027菌株中。  相似文献   

9.
Reversible electropermeabilization (or electroporation) of cell membranes is a very efficient method for intracellular delivery of xenomolecules, particularly of DNA. In the case of anchorage-dependent cells, however, enzymatic or mechanical detachment from the substratum is required prior to electropulsing. This can damage the plasma membrane and lead to low transfection yields. Here we present an efficient method for in situ electroporation of mammalian cells while they are attached to a solid substratum. For this purpose an electroporation chamber was constructed that housed a cell culture insert with a cell monolayer grown on a porous filter. By real-time monitoring the transmonolayer resistance, the field pulse parameters resulting in transient and reversible permeabilization of cell membranes were determined for two adherent cell lines, which were found to differ markedly in their sensitivity to electropulsing. Based on the transmonolayer resistance data, the pulsing conditions for optimum electrotransfection of two murine cell lines with plasmid DNA could be established in a very short time. The transfection yield and gene expression were significantly higher in cell monolayers facing the cathode compared to those exposed to field pulses of the reverse direction. This might be due to contribution of the electrophoresis to the translocation of the polyanionic plasmid DNA across the electropermeabilized cell membrane. The experimental setup presented here appears to be a promising tool not only for rapid optimization of in situ electrotransfection of anchorage-dependent cells but also for studying the molecular/biophysical mechanisms of the membrane breakdown and resealing.  相似文献   

10.
Traditional electroporation devices use direct current electric fields to stimulate the uptake of oligonucleotides, plasmids, short peptides, and proteins into a variety of cell types. A variation of this widely used technique is now available which relies on radio frequency (RF) electrical pulses. This oscillating type of electrical field reportedly elicits greater uptake of plasmid DNA across the plasma membrane. We evaluated a protocol for RF electroporation of the a human embryonic kidney cell line and a Burkitt's lymphoma (BL) cell line for effeciency of transfection by RF electroporation. The plasmid EGFP, which codes for the widely used fusion protein, enhanced green fluorescent protein (EGFP), was used as a reporter of plasmid uptake after transfections. Transfection efficiency consistently increased approximately 30% from that typically obtained with conventional DC type electroporation and was accompanied by greater survivability of cells. Additionally, in some instances, percent transfection efficiency increased to over 70%. Thus, RF electroporation represents an improved methodology for transfection of human cell lines. Moreover, the RF protocol is simple to incorporate in laboratories already utilizing conventional electroporation devices and techniques.  相似文献   

11.
A new method has been developed for introduction of foreign genes into fish eggs. The procedure is based on the incubation of fish sperm cells suspended in dilute citrate solution with plasmid DNA, followed by application of high-field-strength electrical pulses (electroporation) to increase DNA binding., uptake, or both. Tissue homogenates and genomic DNA extracts of free swimming fry developed from eggs fertilized with treated sperm was tested to evaluate the efficiency of gene transfer. Dot blot hybridization and gene expression assay demonstrated the presence and expression of the reporter genes introduced in 2.6 to 4.2% of several hundreds of tested larvae of common carp (Cyprinus carpio L.), African catfish (Clarias gariepinus), and tilapia (Oreochromis niloticus). No transgene has been found in the fry resulting from parallel experiments without sperm electroporation. This is the first report on successful application of electroporated sperm cells for production of transgenic fish.  相似文献   

12.
13.
Optimization of electroporation for transfection of mammalian cell lines   总被引:6,自引:0,他引:6  
Electroporation can be a highly efficient method for introducing DNA molecules into cultured cells for transient expression of genes or for permanent genetic modification. However, effective transformation by electroporation requires careful optimization of electric field strength and pulse characteristics. We have used the transient expression of the firefly luciferase gene as a rapid and sensitive indicator of gene expression to describe the effects on transfection efficiency of altering electroporation field strength and shape. Using the luciferase assay, we investigated the correlation of cell viability with optimal transfection efficiency and determined the optimal parameters for a number of phenotypically distinct mammalian cell lines derived from the nervous and immune systems. The efficiency of electroporation under optimal conditions was compared with that obtained using DEAE-dextran or calcium phosphate-mediated transformation. Transfection by electroporation using square wave pulses, as opposed to exponentially decaying pulses, was found to be significantly increased by repetitive pulses. These methods improve the ability to obtain high efficiency gene transfer into many mammalian cell types.  相似文献   

14.
H Melkonyan  C Sorg    M Klempt 《Nucleic acids research》1996,24(21):4356-4357
Electroporation is one of the most common methods used transform mammalian cells with plasmids. This method is versatile and can be adapted to meet the requirements of many cell lines. However, sometimes the efficiency of this method is low. We demonstrate that dimethyl sulfoxide (DMSO) facilitated a better DNA uptake in four different cell lines (HL60, TR146, Cos-7 and L132). The cells were electroporated with a beta-Gal expression plasmid in a medium containing DMSO (1.25%) during, and for 24 h after the pulse. In all these cells a dramatic (up to 8-fold) increase in transfection efficiency occurred after this treatment. This method opens up the possibility of using electroporation even in cells which are difficult to transfect.  相似文献   

15.
The goals of this study were to identify mammalian cell lines which could be efficiently transiently-transfected and scaled-up for protein production. The transfection efficiencies of eight cell lines (NSO, NSO-TAg, CV-1, COS-7, CHO, CHO-TAg, HEK 293, and 293-EBNA) were measured using electroporation for DNA delivery and green fluorescent protein (Evans, 1996) as the reporter gene. In addition, we have evaluated the effects of stable expression of viral proteins, cell cycle manipulation, and butyrate post-treatment in small scale experiments. The cell lines varied widely in their GFP transfection efficiencies. Stable expression of simian virus 40 large T-antigen or Epstein Barr nuclear antigen failed to significantly increase transfection efficiency above that seen in the parental lines. Aphidicolin (a DNA polymerase inhibitor), which blocked cells from S or G2/M, brought about an increase in transfection efficiency in two cell lines. The primary effect of butyrate (a histone deacetylase inhibitor) post-treatment was an increased intensity of the fluorescent signal of green fluorescent protein, as measured by flow cytometry (1.0 to 4.2-fold, depending on the cell line). The combined use of aphidicolin pretreatment followed by butyrate treatment post- electroporation yielded increases in fluorescence intensities ranging from 0.9 to 6.8-fold. Based on their high transfection efficiencies in small scale experiments, rapid growth, and ability to grow in suspension culture, CHO, CHO-TAg, and 293-EBNA were selected to assess the feasibility of using flow electroporation for large-scale transfections. Using secreted placental alkaline phosphatase as a reporter, 293-EBNA cells produced the highest protein levels in both the presence and absence of butyrate. These data indicate that flow electroporation provides an efficient method of DNA delivery into large numbers of cells for mammalian protein production. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
A study of mechanisms of electrotransfection using Escherichia coli (JM 105) and the plasmid DNA pBR322 as model system is reported. pBR322 DNA carries an ampicillin resistance gene: E. coli transformants are conveniently assayed by counting colonies in a selection medium containing 50 micrograms/ml ampicillin and 25 micrograms/ml streptomycin. Samples not exposed to the electric field showed no transfection. In the absence of added cations, the plasmid DNA remains in solution and the efficiency of the transfection was 2 x 10(6)/micrograms DNA for cells treated with a 8-kV/cm, 1-ms electric pulse (square wave). DNA binding to the cell membrane greatly enhanced the efficiency of the transfection and this binding was increased by milimolar concentrations of CaCl2, MgCl2, or NaCl (CaCl2 greater than MgCl2 greater than NaCl). For example, in the presence of 2.5 mM CaCl2, 55% of the DNA added bound to E. coli and the transfection efficiency was elevated by two orders of magnitude (2 x 10(8)/micrograms DNA). These ions did not cause cell aggregation. With a low ratio of DNA to cells (less than 1 copy/cell), transfection efficiency correlated with the amount of DNA bound to the cell surface irrespective of salts. When the DNA binding ratio approached zero, the transfection efficiency was reduced by two to three orders, indicating that DNA entry by diffusion through the bulk solution was less than 1%. Square pulses of up to 12 kV/cm and 1 ms were used in the electrotransfection experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Introduction of foreign genes into target cells is a crucial step for achievement of gene therapy. We have recently developed a novel transfection system for eukaryotic cells, namely the electric pulse-activated gas plasma generator. To measure the transfection efficiency and mortality by flow-cytometry, we employed enhanced green fluorescent protein and propidium iodide staining, respectively. One day after the 1-3s plasma exposures with DNA concentration at 0.5 microg/microl, favorable transfection efficiencies (17.8-21.6%) and mortalities (0.65-2.86%) were obtained for HeLa-S3, HT-1080 and MCF-7 cells. The recipient cells became transiently permeable for plasmid DNA during the plasma exposure, suggesting that plasma-mediated transfection may involve similar mechanisms that accounts for electroporation. The relatively low mortality rates are encouraging in our attempt to apply this system to the various cell lines including the primary cell cultures.  相似文献   

18.
BACKGROUND: Existing methods of non-viral airway gene transfer suffer from low levels of efficiency. Electroporation has been used to enhance gene transfer in a range of tissues. Here we assess the usefulness of electroporation for enhancing gene transfer in the lungs of mice and sheep. METHODS: Naked plasmid DNA (pDNA) expressing either luciferase or green fluorescent protein (GFP) was delivered to mouse lungs by instillation. Following surgical visualisation, the lungs were directly electroporated and the level and duration of luciferase activity was assessed and cell types that were positive for GFP were identified in lung cryosections. Naked pDNA was nebulised to the sheep lung and electrodes attached to the tip of a bronchoscope were used to electroporate airway segment bifurcations, Luciferase activity was assessed in electroporated and control non-electroporated regions, after 24 h. RESULTS: Following delivery of naked pDNA to the mouse lung, electroporation resulted in up to 400-fold higher luciferase activity than naked pDNA alone when luciferase was under the control of a cytomegalovirus (CMV) promoter. Following delivery of a plasmid containing the human polyubiquitin C (UbC) promoter, electroporation resulted in elevated luciferase activity for at least 28 days. Visualisation of GFP indicated that electroporation resulted in increased GFP detection compared with non-electroporated controls. In the sheep lung electroporation of defined sites in the airways resulted in luciferase activity 100-fold greater than naked pDNA alone. CONCLUSIONS: These results indicate that electroporation can be used to enhance gene transfer in the lungs of mice and sheep without compromising the duration of expression.  相似文献   

19.
We have increased the efficiency of electroporation of lymphoid cells over fifty fold by optimising several biological and electrical parameters. Under optimised conditions, the electroporation efficiency was comparable to that reported for other cell types. Actively dividing cells were crucial for high transient transfection signal. The two most important electrical parameters were high capacitance (960 microF) and moderate decay constants in the range of 10-15 ms. The optimal field strength depended on the cell line, but was in the range 0.6-1 kV/cm. Administering the pulse in medium lacking serum gave higher efficiency than when isotonic salt solution was used and the transfection signal was depressed if cells and DNA were allowed to incubate for several minutes either before or after the pulse. Electroporation was carried out at room temperature and there was no advantage in using low temperatures (0-4 degrees C). When electroporated cells were grown in conditioned medium, the signal was enhanced about two fold depending on the source of the conditioned medium.  相似文献   

20.
Electroporation of bovine spermatozoa to carry foreign DNA in oocytes   总被引:6,自引:0,他引:6  
In the present study, electroporation was used to test the ability of spermatozoa to carry foreign DNA into the bovine oocytes. Frozen-thawed bovine spermatozoa (10(7)/ml) were electroporated using six different combinations of voltage (500, 1,000, or 1,500 V) and capacitance (1 or 25 microFarads) in the presence of 1 mg/ml of plasmid pRGH527. The portions of plasmids retained by sperm cells after three washings (stable for ten washings) were 4.3, 5.5, 5.1, 6.0, 6.8, and 5.8% for 1 microFarad, 500, 1,000, and 1,500 V and 25 microFarads, 500, 1,000, and 1,500 V, respectively. Nonelectroporated cells have retained only 1% of plasmids. In the same experiment, electroporated spermatozoa were acrosome reacted by treatment with ionophore A23187 to evaluate the fraction of marked plasmids joined at the acrosomal membrane. The results show that 3.5, 5.0, 4.4, 5.0, 6.3, and 4.4% remain tied to the ionophore-treated sperm. Only 0.7% of plasmid was retained after removal of the acrosome of nonelectroporated cells. Acrosome reaction was not significantly induced by the electrical field (EF) (P less than 0.005). EF decrease motility significantly for greater than 100 V in 0.3 M mannitol (M) and mannitol-TALP (MT) (1/1) media and greater than or equal to 500 V (P less than 0.05) in TALP medium. The retained plasmid rate was compared between TALP medium M and MT media and resulted in a percentage of 1.0, 2.5, 6.5 at 1 microFarads, 100 V, and 0.9, 3.8, and 3.8 at 25 microFarads, 100 V in TALP, MT, and M medium, respectively. Sperm cells electroporated at 1 microFarad, 500 or 1,000 V, 25 microFarad, 500 V or 1,000 in TALP medium hold plasmids in proportion of 5.2, 5.4, 7.4, and 6.0%. Electroporation above 100 V in M and MT killed the cells. In a part of this experiment, spermatozoa electroporated in the presence of radiolabeled plasmids have been treated with DNase I and results revealed that 35, 28, 54, 58, and 3% of marked DNA remains in sperm cells following digestion after electroporation in TALP (1,000 V, 1 and 25 microFarads), M medium (100 V, 1 and 25 microFarads), and control, respectively. Using in vitro matured bovine oocytes, the electroporation conditions were correlated with the fertilization rate (85% for control and 55% for electroporated spermatozoa). Autoradiography of embryos following fertilization indicated the presence of plasmids in the cytoplasm and in the zona pellucida.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号