首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unicellular diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142 temporally separates N(2) fixation from photosynthesis. We are analyzing the mechanism by which photosynthesis is down-regulated so that O(2) evolution is minimized during N(2) fixation. Previous results suggested changes in photosynthesis that are mediated through the redox poise of the plastoquinone pool (a process involving state transitions, in which the redistribution of excitation energy between the two photosystems helps to optimize photosynthetic yield) and the oligomerization state of the photosystems. Our working hypothesis was that the regulation of photosynthesis involved changes in the oligomerization of the photosystems. To analyze this hypothesis, we utilized a low-ionic strength, non-denaturing gel electrophoresis system to study the Chl-protein complexes. We determined that PSI is mostly trimeric, whereas PSII appears mainly as monomers. We demonstrated that most of the Chl-protein complexes in Cyanothece sp. remained constant throughout the diurnal cycle, except for the transient accumulation of a Chl-protein complex (band C) which appeared only during the late light period. Based on the size of this complex, band C represents either an interaction of PSI and PSII or a PSII dimer. These results provide support for the dynamic nature of the photosystems with respect to the diurnal cycle.  相似文献   

2.
Oxygenic photosynthesis in cyanobacteria, algae, and plants requires photosystem II (PSII) to extract electrons from H(2)O and depends on photosystem I (PSI) to reduce NADP(+). Here we demonstrate that mixotrophically-grown mutants of the cyanobacterium Synechocystis sp. PCC 6803 that lack PSI (ΔPSI) are capable of net light-induced O(2) evolution in vivo. The net light-induced O(2) evolution requires glucose and can be sustained for more than 30min. Utilizing electron transport inhibitors and chlorophyll a fluorescence measurements, we show that in these mutants PSII is the source of the light-induced O(2) evolution, and that the plastoquinone pool is reduced by PSII and subsequently oxidized by an unidentified electron acceptor that does not involve the plastoquinol oxidase site of the cytochrome b(6)f complex. Moreover, both O(2) evolution and chlorophyll a fluorescence kinetics of the ΔPSI mutants are highly sensitive to KCN, indicating the involvement of a KCN-sensitive enzyme(s). Experiments using (14)C-labeled bicarbonate show that the ΔPSI mutants assimilate more CO(2) in the light compared to the dark. However, the rate of the light-minus-dark CO(2) assimilation accounts for just over half of the net light-induced O(2) evolution rate, indicating the involvement of unidentified terminal electron acceptors. Based on these results we suggest that O(2) evolution in ΔPSI cells can be sustained by an alternative electron transport pathway that results in CO(2) assimilation and that includes PSII, the platoquinone pool, and a KCN-sensitive enzyme.  相似文献   

3.
Cyanothece sp. ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates diurnal rhythms for photosynthesis and N(2) fixation, with peaks of O(2) evolution and nitrogenase activity approximately 12 h out of phase. We cloned and sequenced the nifHDK operon, and determined that the amino acid sequences of all three proteins were highly conserved relative to those of other cyanobacteria and bacteria. However, the Fe-protein, encoded by the nifH gene, demonstrated two differences from the related protein in Azotobacter vinelandii, for which a 3-D structure has been determined. First, the Cyanothece Fe-protein contained a 37 amino acid extension at the N-terminus. This approximately 4 kDa addition to the protein appeared to fold as a separate domain, but remained a part of the active protein, as was verified by migration on acrylamide gels. In addition, the Cyanothece Fe-protein had amino acid differences at positions involved in formation of the Fe-protein dimer-dimer contacts in A. vinelandii nitrogenase. There were also changes in residues involved with interaction between the Fe-protein and the MoFe-protein when compared with A. vinelandii. Since the Cyanothece Fe-protein is quickly degraded after activity, it is suggested that the extension and the amino acid alterations were somehow involved in this degradative process.  相似文献   

4.
We analyzed the metabolic rhythms and differential gene expression in the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under N(2)-fixing conditions after a shift from normal 12-h light-12-h dark cycles to continuous light. We found that the mRNA levels of approximately 10% of the genes in the genome demonstrated circadian behavior during growth in free-running (continuous light) conditions. The genes for N(2) fixation displayed a strong circadian behavior, whereas photosynthesis and respiration genes were not as tightly regulated. One of our main objectives was to determine the strategies used by these cells to perform N(2) fixation under normal day-night conditions, as well as under the greater stress caused by continuous light. We determined that N(2) fixation cycled in continuous light but with a lower N(2) fixation activity. Glycogen degradation, respiration, and photosynthesis were also lower; nonetheless, O(2) evolution was about 50% of the normal peak. We also demonstrated that nifH (encoding the nitrogenase Fe protein), nifB, and nifX were strongly induced in continuous light; this is consistent with the role of these proteins during the assembly of the enzyme complex and suggested that the decreased N(2) fixation activity was due to protein-level regulation or inhibition. Many soluble electron carriers (e.g., ferredoxins), as well as redox carriers (e.g., thioredoxin and glutathione), were strongly induced during N(2) fixation in continuous light. We suggest that these carriers are required to enhance cyclic electron transport and phosphorylation for energy production and to maintain appropriate redox levels in the presence of elevated O(2), respectively.  相似文献   

5.
Previous experiments have shown that a Synechocystis sp. PCC 6803 mutant (delta psbO) lacking the extrinsic manganese-stabilizing protein (MSP) exhibits impaired, but significant levels of H2O-splitting activity [Burnap, R., & Sherman, L.A. (1991) Biochemistry 30, 440-446]. [14C]DCMU-binding experiments now show that the number and affinity of DCMU-binding sites (normalized to chlorophyll) are equivalent in delta psbO and the wild type, suggesting equal concentrations of assembled reaction centers. A similar conclusion is reached on the basis of measurements of PSII electron transport (DPC-supported DCPIP reduction) by mutant and wild-type thylakoids. The pattern of flash O2 yield by delta psbO cells measured with a bare platinum electrode exhibits a period four oscillation (with a maximum on the third flash), indicating that the H2O-splitting enzyme in delta psbO retains the basic mechanistic features found in normal cells. However, the amplitude of these signals is smaller and more highly damped than those obtained from wild-type cells, suggesting the absence of MSP results in a higher miss probability and/or a reduction in the number of centers competent in oxygen evolution. Analysis of the rise kinetics of the ampermeric signal on the bare platinum electrode indicates that the S3-[S4]-S0 transition is retarded by at least a factor of 5 in the mutant. Thermoluminescence emission peak temperatures indicate that the S2QA-, S2QB-, and S3QB-charge pairs are significantly more stable with respect to recombination in the mutant. The intensities of the thermoluminescence emissions are also significantly reduced in the mutant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The unicellular Cyanobacterium Cyanothece sp. ATCC 51142, grown under alternating 12-h light/12-h dark conditions, temporally separated N2 fixation from photosynthesis. The regulation of photosynthesis was studied using fluorescence spectra and kinetics to determine changes in state transitions and photosystem organization. The redox poise of the plastoquinone (PQ) pool appeared to be central to this regulation. Respiration supported N2 fixation by oxidizing carbohydrate granules, but reduced the PQ pool. This induced state 2 photosystem II monomers and lowered the capacity for O2 evolution. State 2 favored photosystem I trimers and cyclic electron transport, which could stimulate N2 fixation; the stimulation suggested an ATP limitation to N2 and CO2 fixation. The exhaustion of carbohydrate granules at around 6 h in the dark resulted in reduced respiratory electron flow, which led to a more oxidized PQ pool and produced a sharp transition from state 2 to state 1. This transient state 1 returned to state 2 in the remaining hours of darkness. In the light phase, photosystem II dimerization correlated with increased phycobilisome coupling to photosystem II (state 1) and increased rates of O2 evolution. However, dark adaptation did not guarantee state 2 and left photosystem I centers in a mostly monomeric state at certain times.  相似文献   

7.
8.
It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.  相似文献   

9.
Photosynthetic quantum yield dynamics: from photosystems to leaves   总被引:1,自引:0,他引:1  
The mechanisms underlying the wavelength dependence of the quantum yield for CO(2) fixation (α) and its acclimation to the growth-light spectrum are quantitatively addressed, combining in vivo physiological and in vitro molecular methods. Cucumber (Cucumis sativus) was grown under an artificial sunlight spectrum, shade light spectrum, and blue light, and the quantum yield for photosystem I (PSI) and photosystem II (PSII) electron transport and α were simultaneously measured in vivo at 20 different wavelengths. The wavelength dependence of the photosystem excitation balance was calculated from both these in vivo data and in vitro from the photosystem composition and spectroscopic properties. Measuring wavelengths overexciting PSI produced a higher α for leaves grown under the shade light spectrum (i.e., PSI light), whereas wavelengths overexciting PSII produced a higher α for the sun and blue leaves. The shade spectrum produced the lowest PSI:PSII ratio. The photosystem excitation balance calculated from both in vivo and in vitro data was substantially similar and was shown to determine α at those wavelengths where absorption by carotenoids and nonphotosynthetic pigments is insignificant (i.e., >580 nm). We show quantitatively that leaves acclimate their photosystem composition to their growth light spectrum and how this changes the wavelength dependence of the photosystem excitation balance and quantum yield for CO(2) fixation. This also proves that combining different wavelengths can enhance quantum yields substantially.  相似文献   

10.
Exposure of isolated thylakoids or intact plants to elevated temperature is known to inhibit photosynthesis at multiple sites. We have investigated the effect of elevated temperature (40 degrees C) for 24 hr in dark on rice seedlings to characterize the extent of damage by in vivo heat stress on photofunctions of photosystem II (PSII). Chl a fluorescence transient analysis in the intact rice leaves indicated a loss in PSII photochemistry (Fv) and an associated loss in the number of functional PSII units. Thylakoids isolated from rice seedlings exposed to mild heat stress exhibited >50% reduction in PSII catalyzed oxygen evolution activity compared to the corresponding control thylakoids. The ability of thylakoid membranes from heat exposed seedlings to photooxidize artificial PSII electron donor, DPC, subsequent to washing the thylakoids with alkaline Tris or NH2OH was also reduced by approximately 40% compared to control Tris or NH2OH washed thylakoids. This clearly indicated that besides the disruption of oxygen evolving complex (OEC) by 40 degrees C heat exposure for 24 hr, the PSII reaction centers were impaired by in vivo heat stress. The analysis of Mn and manganese stabilizing protein (MSP) contents showed no breakdown of 33 kDa extrinsic MSP and only a marginal loss in Mn. Thus, we suggest that the extent of heat induced loss of OEC must be due to disorganization of the OEC complex by in vivo heat stress. Studies with inhibitors like DCMU and atrazine clearly indicated that in vivo heat stress altered the acceptor side significantly. [14C] Atrazine binding studies clearly demonstrated that there is a significant alteration in the QB binding site on D1 as well as altered QA to QB equilibrium. Thus, our results show that the loss in PSII photochemistry by in vivo heat exposure not only alters the donor side but significantly alters the acceptor side of PSII.  相似文献   

11.
Nostoc   punctiforme strain Pasteur Culture Collection (PCC) 73102, a sequenced filamentous cyanobacterium capable of nitrogen fixation, is used as a model organism for characterization of bioenergetic processes during nitrogen fixation in Nostoc . A protocol for isolating thylakoid membranes was developed to examine the biochemical and biophysical aspects of photosynthetic electron transfer. Thylakoids were isolated from filaments of N.   punctiforme by pneumatic pressure-drop lysis. The activity of photosynthetic enzymes in the isolated thylakoids was analysed by measuring oxygen evolution activity, fluorescence spectroscopy and electron paramagnetic resonance spectroscopy. Electron transfer was found functional in both PSII and PSI. Electron transfer measurements in PSII, using diphenylcarbazide as electron donor and 2,6-dichlorophenolindophenol as electron acceptor, showed that 80% of the PSII centres were active in water oxidation in the final membrane preparation. Analysis of the membrane protein complexes was made by 2D gel electrophoresis, and identification of representative proteins was made by mass spectrometry. The ATP synthase, several oligomers of PSI, PSII and the NAD(P)H dehydrogenase (NDH)-1L and NDH-1M complexes, were all found in the gels. Some differences were noted compared with previous results from Synechocystis sp. PCC 6803. Two oligomers of PSII were found, monomeric and dimeric forms, but no CP43-less complexes. Both dimeric and monomeric forms of Cyt b 6/ f could be observed. In all, 28 different proteins were identified, of which 25 are transmembrane proteins or membrane associated ones.  相似文献   

12.
The photosystem II (PSII) reaction center complex coordinates a cluster of Mn atoms that are involved in the accumulation of oxidizing equivalents generated by light-induced charge separations within the intrinsic portion of the PSII complex. A 33-kDa extrinsic protein, termed the Mn-stabilizing protein (MSP), has been implicated in the stabilization of two of the four Mn atoms of the cluster, yet the precise role of this protein in O2 evolution remains to be elucidated. Here we describe the construction of a mutant of the cyanobacterium Synechocystis sp. PCC6803 in which the entire gene encoding MSP has been deleted. Northern and immunoblot analyses indicate that other PSII proteins are expressed and accumulated, despite the absence of MSP. Fluorescence emission spectra at 77 K indicate PSII assembles in the mutant, but that the binding of MSP is required for the normal fluorescence characteristics of the PSII complex, and suggest a specific interaction between MSP and CP47. Fluorescence induction measurements indicate a reduced rate of forward electron transport to the primary electron donor, P680, in the mutant. It is concluded that in contrast to previous reports, MSP is not required for the assembly of active PSII complexes nor is it essential for H2O-splitting activity in vivo.  相似文献   

13.
Norihiro Sato  Kunihiro Suda 《BBA》2004,1658(3):235-243
Phosphatidylglycerol (PG) ubiquitous in thylakoid membranes of photosynthetic organisms was previously shown to contribute to accumulation of chlorophyll through analysis of the cdsA mutant of a cyanobacterium Synechocystis sp. PCC6803 defective in PG synthesis (SNC1). Here, we characterized effects of manipulation of the PG content in thylakoid membranes of Synechocystis sp. PCC6803 on the photosystem complexes to specify roles of PG in biogenesis of thylakoid membranes. SNC1 cells with PG deprivation in vivo, together with the chlorophyll decrease, exhibited a decline not in PSII, but in PSI, at the complex level as well as the subunit levels. On the other hand, the decrease in the PSI complex was accounted for by a remarkable decrease in the PSI trimer with an increase in the monomer. These symptoms of SNC1 cells were complemented in vivo by supplementation of PG. Besides, a reduction in the PG content of thylakoid membranes isolated from the wild type in vitro on treatment with phospholipase A2 (PLA2), similar to the PG-deprivation in SNC1 in vivo, brought about a decrease in the trimer population of PSI with accumulation of the monomer. These results demonstrated that PG contributes to the synthesis and/or stability of the PSI complex for maintenance of the cellular content of chlorophyll, and also to construction of the PSI trimer from the monomer at least through stabilization of the trimerized conformation.  相似文献   

14.
Plectonema boryanum exhibits temporal separation of photosynthesis and nitrogen fixation under diazotrophic conditions. During nitrogen fixation, the photosynthetic electron transport chain becomes impaired, which leads to the uncoupling of the PSII and PSI activities. A 30-40% increase in PSI activity and continuous generation of ATP through light-dependent processes seem to support the nitrogen fixation. The use of an artificial electron carrier that shuttles electrons between the plastoquinone pool and plastocyanin, bypassing cytochrome b/f complex, enhanced the photosynthetic electron transport activity five to six fold during nitrogen fixation. Measuring of full photosynthetic electron transport activity using methyl voilogen as a terminal acceptor revealed that the photosynthetic electron transport components beyond plastocyanin might be functional. Further, glycolate can act as a source of electrons for PSI for the nitrogen fixing cells, which have residual PSII activity. Under conditions when PSI becomes largely independent of PSII and glycolate provides electrons for PSI activity, the light-dependent nitrogen fixation also was stimulated by glycolate. These results suggest that during nitrogen fixation, when the photosynthetic electron transport from PSII is inhibited at the level of cytochrome b/f complex, an alternate electron donor system for PSI may be required for the cells to carry out light dependent nitrogen fixation.  相似文献   

15.
The effects of short-term cold stress and long-term cold acclimation on the light reactions of photosynthesis were examined in vivo to assess their contributions to photosynthetic acclimation to low temperature in Arabidopsis thaliana (L.) Heynh.. All photosynthetic measurements were made at the temperature of exposure: 23 degrees C for non-acclimated plants and 5 degrees C for cold-stressed and cold-acclimated plants. Three-day cold-stress treatments at 5 degrees C inhibited light-saturated rates of CO2 assimilation and O2 evolution by approximately 75%. The 3-day exposure to 5 degrees C also increased the proportion of reduced QA by 50%, decreased the yield of PSII electron transport by 65% and decreased PSI activity by 31%. In contrast, long-term cold acclimation resulted in a strong but incomplete recovery of light-saturated photosynthesis at 5 degrees C. The rates of light-saturated CO2 and O2 gas exchange and the in vivo yield of PSII activity under light-saturating conditions were only 35-40% lower, and the relative redox state of QA only 20% lower, at 5 degrees C after cold acclimation than in controls at 23 degrees C. PSI activity showed full recovery during long-term cold acclimation. Neither short-term cold stress nor long-term cold acclimation of Arabidopsis was associated with a limitation in ATP, and both treatments resulted in an increase in the ATP/NADPH ratio. This increase in ATP/NADPH was associated with an inhibition of PSI cyclic electron transport but there was no apparent change in the Mehler reaction activity in either cold-stressed or cold-acclimated leaves. Cold acclimation also resulted in an increase in the reduction state of the stroma, as indicated by an increased total activity and activation state of NADP-dependent malate dehydrogenase, and increased light-dependent activities of the major regulatory enzymes of the oxidative pentose-phosphate pathway. We suggest that the photosynthetic capacity during cold stress as well as cold acclimation is altered by limitations at the level of consumption of reducing power in carbon metabolism.  相似文献   

16.
Chlamydomonas reinhardtii double mutant npq2 lor1 lacks the beta, epsilon-carotenoids lutein and loroxanthin as well as all beta,beta-epoxycarotenoids derived from zeaxanthin (e.g. violaxanthin and neoxanthin). Thus, the only carotenoids present in the thylakoid membranes of the npq2 lor1 cells are beta-carotene and zeaxanthin. The effect of these mutations on the photochemical apparatus assembly and function was investigated. In cells of the mutant strain, the content of photosystem-II (PSII) and photosystem-I (PSI) was similar to that of the wild type, but npq2 lor1 had a significantly smaller PSII light-harvesting Chl antenna size. In contrast, the Chl antenna size of PSI was not truncated in the mutant. SDS-PAGE and Western blot analysis qualitatively revealed the presence of all LHCII and LHCI apoproteins in the thylakoid membrane of the mutant. The results showed that some of the LHCII and most of the LHCI were assembled and functionally connected with PSII and PSI, respectively. Photon conversion efficiency measurements, based on the initial slope of the light-saturation curve of photosynthesis and on the yield of Chl a fluorescence in vivo, showed similar efficiencies. However, a significantly greater light intensity was required for the saturation of photosynthesis in the mutant than in the wild type. It is concluded that zeaxanthin can successfully replace lutein and violaxanthin in most of the functional light-harvesting antenna of the npq2 lor1 mutant.  相似文献   

17.
18.
Two marine, unicellular aerobic nitrogen-fixing cyanobacteria, Cyanothece strain BH63 and Cyanothece strain BH68, were isolated from the intertidal sands of the Texas Gulf coast in enrichment conditions designed to favor rapid growth. By cell morphology, ultrastructure, a GC content of 40%, and aerobic nitrogen fixation ability, these strains were assigned to the genus Cyanothece. These strains can use molecular nitrogen as the sole nitrogen source and are capable of photoheterotrophic growth in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and glycerol. The strains demonstrated a doubling time of 10 to 14 h in the presence of nitrate and 16 to 20 h under nitrogen-fixing conditions. Rapid growth of nitrogen-fixing cultures can be obtained in continuous light even when the cultures are continuously shaken or bubbled with air. Under 12-h alternating light and dark cycles, the aerobic nitrogenase activity was confined to the dark phase. The typical rates of aerobic nitrogenase activity in Cyanothece strains BH63 and BH68 were 1,140 and 1,097 nmol of C2H2 reduced per mg (dry weight) per h, respectively, and nitrogenase activity was stimulated twofold by light. Ultrastructural observations revealed that numerous inclusion granules formed between the photosynthetic membranes in cells grown under nitrogen-fixing conditions. These Cyanothece strains posses many characteristics that make them particularly attractive for a detailed analysis of the interaction of nitrogen fixation and photosynthesis in an aerobic diazotroph.  相似文献   

19.
Photosystem I and Photosystem II activities, as well as polypeptide content of chlorophyll (Chl)-protein complexes were analyzed in mesophyll (M) and bundle sheath (BS) chloroplasts of maize (Zea mays L.) growing under moderate and very low irradiance. This paper discusses the application of two techniques: mechanical and enzymatic, for separation of M and BS chloroplasts. The enzymatic isolation method resulted in depletion of polypeptides of oxygen evolving complex (OEC) and alphaCF1 subunit of coupling factor; D1 and D2 polypeptides of PSII were reduced by 50%, whereas light harvesting complex of photosystem II (LHCII) proteins were still detectable. Loss of PSII polypeptides correlated with the decreasing of Chl fluorescence measured at room temperature. Using mechanical isolation of chloroplasts from BS cells, all tested polypeptides could be detected. We found a total lack of O2 evolution in BS chloroplasts, but dichlorophenolindophenol (DCPIP) was photoreduced. PSI activity of chloroplasts isolated from 14- and 28-day-old plants was similar in BS chloroplasts in moderate light (ML), but in low light (LL) it was reduced by about 20%. PSI and PSII activities in M chloroplasts of plants growing in ML decreased with aging of plants. In older LL-grown plants, activities of both photosystems were higher than those observed in chloroplasts from ML-grown plants. We suggest that in BS chloroplasts of maize, PSII complex is assembled typically for the agranal membranes (containing mainly stroma thylakoids) and is able to perform very limited electron transport activity. This in turn suggests the role of PSII for poising the redox state of PSI.  相似文献   

20.
The rfrA gene was identified in a suppressor screen of a Synechocystis sp. PCC 6803 strain deficient in both mntC, encoding a component of an ABC transport system for manganese, and psbO, encoding the extrinsic manganese stabilizing protein of photosystem II (PSII). A spontaneous suppressor mutant (DeltaCDeltaO rfrA-Sup) has a point mutation in rfrA, which restores photosynthetic activity to the DeltamntCDeltapsbO double mutant. Manganese transport and photosynthesis are related in that manganese is essential to the function of PSII, and the state of cellular manganese availability influences the rate of oxygen evolution mediated by PSII. Oxygen evolution experiments with the DeltaCDeltaO rfrA-Sup mutant revealed that the mechanism of suppression is not through a direct modification of PSII. Instead, radioactive manganese uptake experiments indicated that RfrA is a regulator of a high affinity manganese transport system different from the more thoroughly characterized manganese ABC transport system in Synechocystis 6803. RfrA was named for the repeated five-residues domain in the amino terminus of the protein. The RFR domain defines a 16-member family in Synechocystis 6803. Predicted proteins with RFR domains have also been identified in other organisms, but RfrA is the first member of this family to be linked to a physiological process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号