首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of pH on growth, enterocin P production and glucose consumption by Enterococcus faecium P13 was studied during anaerobic batch fermentation in MRS broth at 32 degrees C in a fermentor. Growth and glucose consumption were maximal at pH 7.0. Enterocin P production displayed primary metabolite kinetics and was strongly dependent on pH. A maximum antimicrobial activity of 1,949 bacteriocin units (BU) ml(-1) was obtained at pH 6.0, which represented a four-fold increase compared with the antimicrobial activity obtained without pH regulation. The pH exerted a marked effect on the decrease in bacteriocin activity, with the decrease being maximal at pH 7.0. In this report, we propose models for the growth of E. faecium P13 as well as enterocin P production and inactivation. Enterocin P production decreased when potentially stress-inducing compounds (NaCl or ethanol) were included in the growth medium.  相似文献   

2.
Streptococcus bovis H13/1 was grown anaerobically at pHs between 5.0 and 6.5 in a glucose-limited chemostat at a dilution rate of 0.05/h. The growth yield and the production of acetate, ethanol and formate decreased at pHs less than 6.5 whereas the production of lactate increased at the lower pH values. When a culture was subjected to sequential pH changes, growth yield and fermentation products were influenced not only by the pH existing in the culture medium but also by the metabolic activity of the cells at the preceding pHs in the sequence. The results are discussed in relation to the mechanisms available for the maintenance of pH homeo-stasis and for the metabolic control of fermentation pathways in Strep. bovis.  相似文献   

3.
Streptococcus bovis H13/1 was grown anaerobically at pHs between 5.0 and 6.5 in a glucose-limited chemostat at a dilution rate of 0.05/h. The growth yield and the production of acetate, ethanol and formate decreased at pHs less than 6.5 whereas the production of lactate increased at the lower pH values. When a culture was subjected to sequential pH changes, growth yield and fermentation products were influenced not only by the pH existing in the culture medium but also by the metabolic activity of the cells at the preceding pHs in the sequence. The results are discussed in relation to the mechanisms available for the maintenance of pH homeostasis and for the metabolic control of fermentation pathways in Strep. bovis.  相似文献   

4.
Detailed physiological studies were done to compare the influence of environmental pH and fermentation end product formation on metabolism, growth, and proton motive force in Sarcina ventriculi. The kinetics of end product formation during glucose fermentation in unbuffered batch cultures shifted from hydrogen-acetate production to ethanol production as the medium pH dropped from 7.0 to 3.3. At a constant pH of 3.0, the production of acetate ceased when the accumulation of acetate in the medium reached 40 mmol/liter. At a constant pH of 7.0, acetate production continued throughout the entire growth time course. The in vivo hydrogenase activity was much higher in cells grown at pH 7.0 than at pH 3.0. The magnitude of the proton motive force increased in relation to a decrease of the medium pH from 7.5 to 3.0. When the organism was grown at pH 3.0, the cytoplasmic pH was 4.25 and the organism was unable to exclude acetic acid or butyric acid from the cytoplasm. Addition of acetic acid, but not hydrogen or ethanol, inhibited growth and resulted in proton motive force dissipation and the accumulation of acetic acid in the cytoplasm. The results indicate that S. ventriculi is an acidophile that can continue to produce ethanol at low cytoplasmic pH values. Both the ability to shift to ethanol production and the ability to continue to ferment glucose while cytoplasmic pH values are low adapt S. ventriculi for growth at low pH.  相似文献   

5.
High titers of a noninducible bacteriocin were produced by Clostridium acetobutylicum in a molasses fermentation medium used for the industrial production of solvents. Release of the bacteriocin towards the end of the exponential growth phase was accompanied by lysis of the culture and inhibition of the production of solvents. The producer cells were sensitive to the bacteriocin, which only affected other C. acetobutylicum strains and a Clostridium felsineum strain. The thermolabile bacteriocin was not inactivated by protease enzymes and had no optimum stability between pH 4 and 5. The sedimentation coefficient of the bacteriocin was 6S.  相似文献   

6.
High titers of a noninducible bacteriocin were produced by Clostridium acetobutylicum in a molasses fermentation medium used for the industrial production of solvents. Release of the bacteriocin towards the end of the exponential growth phase was accompanied by lysis of the culture and inhibition of the production of solvents. The producer cells were sensitive to the bacteriocin, which only affected other C. acetobutylicum strains and a Clostridium felsineum strain. The thermolabile bacteriocin was not inactivated by protease enzymes and had no optimum stability between pH 4 and 5. The sedimentation coefficient of the bacteriocin was 6S.  相似文献   

7.
Carnocin KZ213 is an antilisterial bacteriocin produced by Carnobacterium piscicola 213. The effects of pH and temperature were studied during batch fermentation in MRS* medium (modified MRS without ammonium citrate or sodium acetate). The optimal pH for growth is between 6 and 7. The maximum bacteriocin productivity in the supernatant occurs at pH 7. Operating at controlled pH increases the volumetric activity of the free bacteriocin by 8- to 16-fold, compared with uncontrolled pH. No bacteriocin production is observed below pH 6.5. Temperature has a dramatic effect on carnocin KZ213 production. Growth is optimal at 25 °C and 30 °C, although no bacteriocin production is detected at 30 °C. Also, bacteriocin production is observed at 25 °C in MRS*, but not in complex APT broth, where growth is optimal. The presence of glucose as a carbon and/or energy source is important for carnocin KZ213 synthesis. Hence, bacteriocin synthesis is regulated by temperature, carbon source and medium composition. Quantification studies of bacteriocin adsorbed onto producer cells show that the majority of the carnocin KZ213 secreted is adsorbed onto the producer cells during growth. Only 15% of the total bacteriocin produced is detected in the cell-free supernatant at the end of growth.  相似文献   

8.
The influence of pH on growth, and lactic acid and bacteriocin production byLactococcus lactis subsp.lactis 140 NWC was studied during batch fermentation in a lactose-based complex medium. Growth and lactic acid production were modelled using a simple logistic equation while substrate consumption was found to be a function growth and lactic acid production rate. The optimal pH for growth and lactic acid production was between 6.0 and 6.5. Bacteriocin production showed primary metabolite kinetics. pH had a dramatic effect on the production of the bacteriocin, lactococcin 140. A maximum activity of 15.4 × 106 AU (arbitrary units) 1–1 was obtained after 7 h at pH 5.5. Maximum bacteriocin activity was achieved before the end of growth and was followed by a decrease in activity, which was due to adsorption to the cells of the producing organism, possibly followed by degradation by specific proteases. Both bacteriocin production and degradation rates were higher at pH 5.0 and 5.5, resulting in sharper activity peaks than at pH 6.0 or 6.5. On the basis of the experimental results a qualitative model for bacteriocin production is proposed.  相似文献   

9.
The effect of tryptone, yeast extract, Tween 80 and initial pH on the production of enterocin 1146 and lactocin D, two bacteriocins produced by lactic acid bacteria, was studied in a basal buffered medium (tryptone-yeast extract-tween, TYT) using factorial experiments and empirical modelling. Production of enterocin 1146 was affected by pH, yeast extract and Tween 80 and to a lesser degree, by the initial pH of the medium. On the basis of the predictions of the models developed, three TYT media (TYT10, TYT11 and TYT30) were designed to maximize bacteriocin production while minimizing the amount of peptides in the medium. Growth and bacteriocin production by Enterococcus faecium DPC 1146 (enterocin 1146), Lactococcus lactis subsp. lactis biovar diacetylactis DPC 3286 (lactocin D) and Lact. lactis subsp. cremoris LMG2130 (lactococcin A) was compared in TYT media and seven other culture media (Elliker lactic broth, M17, M17 dialysate, MRS, tryptose phosphate, tryptone yeast extract broth, yeast glucose Lemco broth). Bacteriocin production in TYT media was comparable with that in M17 and MRS, which had a higher peptide content. TYT30 allowed good production of enterocin 1146 and lactocin D while TYT11 proved acceptable for all the strains tested.  相似文献   

10.
The influence of growth parameters on the fermentative production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi was studied. The bacteriocin production was greatly affected by carbon and nitrogen sources. Strain A164 produced at least 4-fold greater bacteriocin in M17 broth supplemented with lactose than other carbon sources. The amount of 3% yeast extract was found to be the optimal organic nitrogen source. While the maximum biomass was obtained at 37 degrees C, the optimal temperature for the bacteriocin production was 30 degrees C. The bacteriocin production was also affected by pH of the culture broth. The optimal pH for growth and bacteriocin production was 6.0. Although the cell growth at pH 6.0 was nearly the same level at pH 5.5 and 6.5, the greater bacteriocin activity was observed at pH 6.0. Exponential growth took place only during an initial period of the cultivation, and then linear growth was observed. Linear growth rates increased from 0.160 g(DCW) x l(-1) x h(-1) to 0.245 g(DCW) x l(-1) x h(-1) with increases in lactose concentrations from 0.5 to 3.0%. Maximum biomass was also increased from 1.88 g(DCW) x l(-1) to 4.29 g(DCW) x l(-1). However, increase in lactose concentration did not prolong the active growth phase. After 20 h cultivation, cell growth stopped regardless of lactose concentration. Production of the bacteriocin showed primary metabolic kinetics. However, bacteriocin yield based on cell mass increased greatly during the late growth phase. A maximum activity of 131x10(3) AU x ml(-1) was obtained at early stationary growth phase (20 h) during the batch fermentation in M17L broth (3.0% lactose) at 30 degrees C and pH 6.0.  相似文献   

11.
G.M. VIGNOLO, M.N. DE KAIRUZ, A.P. DE RUIZ HOLGADO AND G. OLIVER. 1995. The effect of growth parameters on the production of lactocin 705 by Lactobacillus casei CRL 705 isolated from dry sausages was studied. The antimicrobial compound was produced during the growth cycle at temperatures between 15 and 30°C. Maximal activity in MRS broth was achieved at pH 6.5-7.5. Investigation into the influence of supplementation and/or replacement of nutrients on lactocin 705 production demonstrated that large quantities of the bacteriocin could be obtained by addition of Tween 80 (0.5-2.0%), glucose (2.0%), tryptone (1.0%) and yeast extract (2.0%). Bacteriocin production did not decrease in the presence of (w/v) 3% NaC1 and 0.02% NaNO2 in the culture medium. High titres of the antimicrobial compound were obtained in whey permeate supplemented with 2.0% yeast extract and 1.0% Tween 80. Lactocin 705, proved to be stable to pH and temperature at ripening conditions (pH 5.0-6.0 and 15°C) of dry cured sausages.  相似文献   

12.
AIMS: To study the influence of pH, temperature and culture medium on the growth and bacteriocin production by vaginal Lactobacillus salivarius subsp. salivarius CRL 1328. METHODS AND RESULTS: The study was performed using a complete factorial experimental design. Lactobacillus salivarius was cultivated in LAPTg and MRS broths, adjusted to specific initial pH, and at different temperatures of incubation. The growth, which was evaluated by the Gompertz model, was higher in MRS broth than in LAPTg broth. The initial pH of the culture medium and the temperature had a dramatic effect on the production of bacteriocin. The optimal conditions for bacteriocin production were different to those for optimal growth. The decrease in the pH of the culture medium was parallel to the growth; pH had similar final values in both the MRS and the LAPTg broths. CONCLUSIONS: The optimal growth conditions were recorded in MRS broth, with an initial pH of 6.5 and a temperature of 37 degrees C. The maximum bacteriocin activity was obtained in LAPTg after 6 h at 37 degrees C, and at an initial pH of 6.5 or 8.0. SIGNIFICANCE AND IMPACT OF THE STUDY: The application of a complete factorial design, and the evaluation of the growth parameters through the Gompertz model, enabled a rapid and simultaneous exploration of the influence of pH, temperature and growth medium on both growth and bacteriocin production by vaginal Lact. salivarius CRL 1328.  相似文献   

13.
Enterococcus mundtii ST4SA produces a broad-spectrum bacteriocin (bacST4SA), active against Gram-positive and Gramnegative bacteria. Growth in corn steep liquor (CSL) with a sugar content of 5.0 and 10.0 g/l yielded bacST4SA levels of 12800 AU/ml. A four-fold increase in bacST4SA production (51200 AU/ml) was recorded in CSL with a sugar content of 7.5 g/l supplemented with 6.5 g/l yeast extract (CSL-YE). Poor growth and low levels of bacST4SA production were observed when cells were grown in CSL-YE controlled at pH 5.5. Fermentation at pH 7.5 yielded 25600 AU/ml after 6 h, but the activity levels decreased to approximately 1000 AU/ml during the next 6 h. Adjustment of the culture pH from 6.5 to 5.5 after 6 h of fermentation extended bacST4SA activity (51200 AU/ml) over 8 h. Activity then decreased to 25600 AU/ml and was maintained this level for 10 h. Optimal levels of bacST4SA production (102400 AU/ml) were obtained after 6 h of fermentation in CSL-YE supplemented with 7.5 g/l glucose at the start of the fermentation. This level of production was maintained by changing the culture pH from 6.5 after 6 h of fermentation to pH 5.5. This study proved that bacST4SA could be produced at high levels in an inexpensive industrial medium byE. mundtii ST4SA.  相似文献   

14.
Sakacin K is an antilisterial bacteriocin produced by Lactobacillus sake CTC 494, a strain isolated from Spanish dry fermented sausages. The biokinetics of cell growth and bacteriocin production of L. sake CTC 494 in vitro during laboratory fermentations were investigated by making use of MRS broth. The data obtained from the fermentations was used to set up a predictive model to describe the influence of the physical factors temperature and pH on microbial behavior. The model was validated successfully for all components. However, the specific bacteriocin production rate seemed to have an upper limit. Both cell growth and bacteriocin activity were very much influenced by changes in temperature and pH. The production of biomass was closely related to bacteriocin activity, indicating primary metabolite kinetics, but was not the only factor of importance. Acidity dramatically influenced both the production and the inactivation of sakacin K; the optimal pH for cell growth did not correspond to the pH for maximal sakacin K activity. Furthermore, cells grew well at 35 degrees C but no bacteriocin production could be detected at this temperature. L. sake CTC 494 shows special promise for implementation as a novel bacteriocin-producing sausage starter culture with antilisterial properties, considering the fact that the temperature and acidity conditions that prevail during the fermentation process of dry fermented sausages are optimal for the production of sakacin K.  相似文献   

15.
The production of enterocin 1146, a bacteriocin from Enterococcus faecium DPC1146, was studied during batch fermentation at pH 5, 5.5, 6 and 6.5. The bacteriocin was produced throughout the growth of the micro-organism, showing primary metabolite kinetics. Bacteriocin production stopped at the end of growth and was followed by a decrease in activity due primarily to adsorption on the cells of the producer. The optimal pH for enterocin 1146 production was 5.5, because of higher bacteriocin yield per unit of biomass and slower adsorption/degradation, while optimal pH for growth was between 6.0 and 6.5.  相似文献   

16.
AIMS: To assess the inhibitory activity and the influence of culture condition on the growth and bacteriocin, Thermophilin 1277, production by Streptococcus thermophilus SBT1277. METHODS AND RESULTS: Thermophilin 1277, which was produced by S. thermophilus SBT1277, showed an antimicrobial activity against several lactic acid bacteria and food spoilage bacteria including Clostridium butylicum, C. sprogenes and Bacillus cereus. Thermophilin 1277 was inactivated by proteinase K. Heating treatment did not affect the antimicrobial activity. The partially purified Thermophilin 1277 had an apparent molecular mass of 3.7 kDa. N-terminal sequence analysis revealed 15 amino acid residues that correspond with amino acid sequence of the lantibiotics bovicin HJ50 produced by Streptococcus bovis HJ50. The effects of culture condition for the bacteriocin production by S. thermophilus SBT1277 were studied. During the batch fermentation, Thermophilin 1277 was produced in M17 broth, but no bacteriocin production occurred in the sucrose-tryptone (ST) broth. Bacteriocin production was detected in pH controlled ST broth at pH values of 5.5-6.5. CONCLUSIONS: Thermophilin 1277 production from S. thermophilus strain depended on the culture conditions. Some characters and N-terminal amino acid sequence of Thermophilin 1277 differed from bacteriocins produced by S. thermophilus reported previously. SIGNIFICANCE AND IMPACT OF THE STUDY: Streptococcus thermophilus SBT1277 or its bacteriocin which has a wide inhibitory spectrum has a potential use as a biopreservative in dairy products.  相似文献   

17.
The influence of temperature, pH and media on bacteriocin production by Bacillus sp. P34 was investigated. The effect of temperature and initial pH was evaluated by factorial design and response surface methodology (RSM). Statistical analysis of results showed that, in the range studied, the two variables have a significant effect on bacteriocin production. Response-surface data showed maximum antimicrobial activity production at initial pH values between 6.0 and 8.0 and temperatures between 25 and 37 °C. No relationship between bacterial growth and bacteriocin production was observed. RSM proved to be a powerful tool in optimizing the production of antimicrobial activity by Bacillus sp. P34. When different media were tested, maximum bacteriocin production was observed in soybean protein-based medium, but antimicrobial activity was not achieved by cultivation on fish meal, feather meal, whey and grape waste.  相似文献   

18.
Maintenance of high cell viability was the main characteristic of our new strains of thermotolerant Saccharomyces. Total sugar conversion to ethanol was observed for sugarcane juice fermentation at 38-40 degrees C in less than 10 h and without continuous aeration of the culture. Invertase activity differed among the selected strains and increased during fermentation but was not dependent on cell viability. Invertase activity of the cells and optimum temperature for growth, as well as velocity of ethanol formation, were dependent on medium composition and the type of strain used. At high sugarcane syrup concentrations, the best temperature for ethanol formation by strain 781 was 35 degrees C. Distinct differences among the velocities of ethanol production using selected strains were also observed in sugarcane syrup at 35-38 degrees C.  相似文献   

19.
AIMS: Optimization of the growth of Pediococcus damnosus NCFB 1832 and the production of pediocin PD-1 by traditional fermentation methods. METHODS AND RESULTS: Fermentation studies were conducted in De Man Rogosa and Sharpe (MRS) broth (Oxoid), preadjusted to specific pH values, and in MRS broth supplemented with various nitrogen sources, MnSO4, MgSO4 and Tween 80. The production of pediocin PD-1 closely followed the growth curve of Ped. damnosus NCFB 1832. Maximum levels of bacteriocin activity (3249 AU ml(-1)/O.D.max) were recorded in MRS broth with an initial pH of 6.7. In media with an initial pH of 4.5 bacteriocin activity as low as 222 AU ml(-1)/O.D.max was recorded. The highest bacteriocin activity was recorded in growth conditions allowing the greatest pH variation (highest DeltapH). The addition of bacteriological peptone (1.7%, w/v), MnSO4 (0.014%, w/v) and Tween 80 (3%, v/v) to MRS and adjustment of the medium pH to 6.7 resulted in a further increase in activity (from 3249 to 5078 AU ml(-1)/O.D.max). The same medium, but with an initial pH of 6.2, resulted in an 82.5% decrease in bacteriocin activity. CONCLUSIONS: Pediocin PD-1 production is not only stimulated by the presence of specific growth factors (e.g., bacteriological peptone, MnSO4 or Tween 80), but may also be stimulated by the lowering in pH during growth (highest DeltapH), and thus also the amount of organic acids produced. SIGNIFICANCE AND IMPACT OF THE STUDY: The production of pediocin PD-1 by the wild-type producer strain was significantly improved by using a defined medium and traditional fermentation methods.  相似文献   

20.
By screening for bacteriocin-producing lactic acid bacteria of 1,428 strains isolated from authentic Bulgarian dairy products, Lb. bulgaricus BB18 strain obtained from kefir grain was selected. Out of 11 yogurt starters containing Lb. bulgaricus BB18 and S. thermophilus strains resistant to bacteriocin secreted by Lb. bulgaricus BB18 a yogurt culture (S. thermophilus 11A+Lb. bulgaricus BB18) with high growth and bacteriocinogenic activity in milk was selected. Continuous (pH-stat 5.7) prefermentation processes were carried out in milk at 37 degrees C in a 2l MBR bioreactor (MBR AG, Zurich, Switzerland) with an IMCS controller for agitation speed, temperature, dissolved oxygen, CO2 and pH. Prefermented milk with pH 5.7 coagulated in a thermostat at 37 degrees C until pH 4.8-4.9. S. thermophilus 11A and Lb. bulgaricus BB18 grew independently in a continuous mode at similar and sufficiently high-dilution rates (D=1.83 h(-1)-S. thermophilus 11A; D=1.80 h(-1)-Lb. bulgaricus BB18). The yogurt cultures developed in a stream at a high-dilution rate (D=2.03-2.28 h(-1)). The progress of both processes (growth and bacteriocin production) depended on the initial ratio between the two microorganisms. The continuous prefermentation process promoted conditions for efficient fermentation and bacteriocinogenesis of the starter culture during the batch process: strong reduction of the times for bacteriocin production and coagulation of milk (to 4.5-5.0 h); high cell productivity (lactobacilli-4x10(12) CFU ml(-1), streptococci-6x10(12) CFU ml(-1)); high productivity of bacteriocins (4,500 BU ml(-1))-1.7 times higher than the bacteriocinogenic activity of the batch starter culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号