首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
The summation of contractile forces of motor units (MUs) was analyzed by comparing the recorded force during parallel stimulation of two and four individual MUs or four groups of MUs to the algebraic sum of their individual forces. Contractions of functionally-isolated single MUs of the medial gastrocnemius muscle were evoked by electrical stimulation of thin filaments of the split L5 or L4 ventral roots of spinal nerves. Additionally, contractions of large groups of MUs were evoked by stimuli delivered to four parts of the divided L5 ventral root. Single twitches, 40 Hz unfused tetani, and 150 Hz fused maximum tetani were recorded. In these experimental situations the summation was more effective for unfused tetani than for twitches or maximum tetani. The results obtained for pairs of MUs were highly variable (more- or less-than-linear summation), but coactivation of more units led to progressively weaker effects of summation, which were usually less-than-linear in comparison to the algebraic sums of the individual forces. The variability of the results highlights the importance of the structure of the muscle and the architecture of its MUs. Moreover, the simultaneous activity of fast and slow MUs was considerably more effective than that of two fast units.  相似文献   

2.
During normal daily activity, muscle motor units (MUs) develop unfused tetanic contractions evoked by trains of motoneuronal firings at variable interpulse intervals (IPIs). The mechanical responses of a MU to successive impulses are not identical. The aim of this study was to develop a mathematical approach for the prediction of each response within the tetanus as well as the tetanic force itself. Experimental unfused tetani of fast and slow rat MUs, evoked by trains of stimuli at variable IPIs, were decomposed into series of twitch-shaped responses to successive stimuli using a previously described algorithm. The relationships between the parameters of the modeled twitches and the tetanic force level at which the next response begins were examined and regression equations were derived. Using these equations, profiles of force for the same and different stimulation patterns were mathematically predicted by summating modeled twitches. For comparison, force predictions were made by the summation of twitches equal to the first one. The recorded and the predicted tetanic forces were compared. The results revealed that it is possible to predict tetanic force with high accuracy by using regression equations. The force predicted in this way was much closer to the experimental record than the force obtained by the summation of equal twitches, especially for slow MUs. These findings are likely to have an impact on the development of realistic muscle models composed of MUs, and will assist our understanding of the significance of the neuronal code in motor control and the role of biophysical processes during MU contractions.  相似文献   

3.
Repeated stimulation of motor units (MUs) causes an increase of the force output that cannot be explained by linear summation of equal twitches evoked by the same stimulation pattern. To explain this phenomenon, an algorithm for reconstructing the individual twitches, that summate into an unfused tetanus is described in the paper. The algorithm is based on an analytical function for the twitch course modeling. The input parameters of this twitch model are lead time, contraction and half-relaxation times and maximal force. The measured individual twitches and unfused tetani at 10, 20, 30 and 40 Hz stimulation frequency of three rat motor units (slow, fast resistant to fatigue and fast fatigable) are processed. It is concluded that: (1) the analytical function describes precisely the course of individual twitches; (2) the summation of equal twitches does not follow the results from the experimentally measured unfused tetani, the differences depend on the type of the MU and are bigger for higher values of stimulation frequency and fusion index; (3) the reconstruction of individual twitches from experimental tetanic records can be successful if the tetanus is feebly fused (fusion index up to 0.7); (4) both the maximal forces and time parameters of individual twitches subtracted from unfused tetani change and influence the course of each tetanus. A discrepancy with respect to the relaxation phase was observed between experimental results and model prediction for tetani with fusion index exceeding 0.7. This phase was predicted longer than the experimental one for better fused tetani. Therefore, a separate series of physiological experiments and then, more complex model are necessary for explanation of this distinction.  相似文献   

4.
During a voluntary contraction, motor units (MUs) fire a train of action potentials, causing summation of the twitch forces, resulting in fused or unfused tetanus. Twitches have been important in studying whole-muscle contractile properties and differentiation between MU types. However, there are still knowledge gaps concerning the voluntary force generation mechanisms. Current methods rely on the spike-triggered averaging technique, which cannot track changes in successive twitches’ properties in response to individual neural firings. This study proposes a method that estimates successive twitches contractile parameters of single MUs during low force voluntary isometric contractions in human biceps brachii. We used a previously developed ultrafast ultrasound imaging method to estimate unfused tetanic activity signals of single MUs. A twitch decomposition model was used to decompose unfused tetanic activity signals into individual twitches. This study found that the contractile parameters varied within and across MUs. There was an association between the inter-spike interval and the contraction time (r = 0.49, p < 0.001) and the half-relaxation time (r = 0.58, p < 0.001), respectively. The method shows the proof-of-concept to study MU contractile properties of individual twitches in vivo, which can provide further insights into the force generation mechanisms of voluntary contractions and response to individual neural discharges.  相似文献   

5.
Effects of the summation of forces generated by functionally isolated slow-twitch motor units (MU) of the rat soleus muscle were examined in this study. Initially, the twitch, fused tetanic and unfused tetanic contractions evoked by trains of stimuli at variable interpulse intervals were recorded for each MU. Then, two, three or four MUs were co-activated, and the recorded forces were compared to the algebraic sum of the forces of individual MUs. The mean cumulative force of twitches and the mean cumulative force of fused tetani were not statistically different from the respective algebraic sums of forces, which revealed a high degree of linearity in the summation. However, relaxation of the recorded tetanic contractions (either fused or unfused) was faster than that predicted by the linear summation of individual contractions. Moreover, for twitch and tetanic contractions, a tendency to shorten relaxation with an increasing number of co-active MUs was noted. The results indicate that forces of rat soleus slow MUs sum up more linearly than in the respective cat muscle as well as more linearly than for fast MUs in the medial gastrocnemius muscle.  相似文献   

6.
The contraction and relaxation times of the twitches and the last contractions within 32 unfused tetani of FF and 27 unfused tetani of FR motor units in the rat medial gastrocnemius muscle were studied during prolonged activity. The pattern of the MU stimulation included single pulses (to evoke twitches) and series of three trains of stimuli at 40, 50 and 60 Hz (to evoke unfused tetani), repeated 30 times. The analysis concerned changes of force and time parameters at the beginning of activity, during the potentiation and then during the fatigue. It was found that changes of force during the potentiation and the fatigue were mainly accompanied by changes in the course of relaxation. The significant prolongation of the half-relaxation time during the potentiation of either twitches or unfused tetani was revealed in both types of fast MU. The twitch contraction time did not change markedly, whereas significantly shortened in the last contractions of unfused tetani during the potentiation. These changes of time parameters correlated to the increase of the fusion degree. During the fatigue, the time parameters shortened, however, changes of the half-relaxation times were remarkably higher. The shortening of relaxation was responsible for the decrease of the fusion degree. Changes of the fusion index exceeding 0.75 during the potentiation or decreasing below this value during the fatigue, were accompanied by respective appearance or disappearance of the biphasic relaxation.  相似文献   

7.
More accurate muscle models require appropriate modelling of individual twitches of motor units (MUs) and their unfused tetanic contractions. It was shown in our previous papers, using a few MUs, that modelling of unfused tetanic force curves by summation of equal twitches is not accurate, especially for slow MUs. The aim of this study was to evaluate this inaccuracy using a statistical number of MUs of the rat medial gastrocnemius muscle (15 of slow, 15 of fast resistant and 15 of fast fatigable type). Tetanic contractions were evoked by trains of 41 stimuli at random interpulse intervals and different mean frequencies, resembling discharge patterns observed during natural muscle activity. The tetanic curves were calculated by the summation of equal twitches according to the respective experimental patterns. The previously described 6-parameter analytical function for twitch modelling was used. Comparisons between the experimental and the modelled curves were made using two coefficients: the fit coefficient and the area coefficient. The errors between modelled and experimental tetanic forces were substantially different between the three MU types. The error was the most significant for slow MUs, which develop much higher forces in real contractions than could be predicted based on the summation of equal twitches, while the smallest error was observed for FF MUs – their recorded tetanic forces were similar to those predicted by modelling. The obtained results indicate the importance of the inclusion of the type-specific non-linearity in the summation of successive twitch-like contractions of MUs in order to increase the reliability of modelling skeletal muscle force.  相似文献   

8.
The influence of activity-related changes in tension on properties of the mechanomyogram (MMG) was investigated in fast fatigable, fast resistant and slow motor units (MUs). A standard fatigue test was used in which rhythmically repeated unfused tetani were evoked. The amplitudes of the rise in tension of the first and the last contraction within the unfused tetanus and the amplitudes of accompanying signals in MMG were calculated. For fast fatigable MUs a parallel decrease in the amplitudes of both analysed contractions and in the amplitudes of accompanying MMG signals during the fatigue test was observed. For majority of fast resistant MUs at the beginning of the fatigue test a potentiation occurred and this phenomenon increased the tension of the first contraction and of the peak tetanic tension. However, the potentiation coincided also with a decrease of the amplitude of the last contraction in the tension recording of an unfused tetanus. The MMG reflected both, the increase of amplitude of the first contraction and the decrease of the amplitude of the further contractions within the tetanus. The single twitch contraction evoked immediately before and after the fatigue test was additionally recorded. A decrease (fatigue) or an increase (potentiation) of the twitch tension after the fatigue test was reflected by a decrease or an increase in the amplitude of MMG, respectively. However, the fatigue failed to change significantly the time parameters of MMG. To conclude, fatigue and potentiation can occur during activity of fast MUs and both these phenomena involve changes in the amplitude of oscillations in tension of unfused tetani which are reflected in MMG.  相似文献   

9.
Force responses to transcranial magnetic stimulation of motor cortex (TMS) during exercise provide information about voluntary activation and contractile properties of the muscle. Here, TMS-generated twitches and muscle relaxation during the TMS-evoked silent period were measured in fresh, heated, and fatigued muscle. Subjects performed isometric contractions of elbow flexors in two studies. Torque and EMG were recorded from elbow flexor and extensor muscles. One study (n = 6) measured muscle contraction times and relaxation rates during brief maximal and submaximal contractions in fresh and fatigued muscle. Another study (n = 7) aimed to 1) assess the reproducibility of muscle contractile properties during brief voluntary contractions in fresh muscle, 2) validate the technique for contractile properties in passively heated muscle, and 3) apply the technique to study contractile properties during sustained maximal voluntary contractions. In both studies, muscle contractile properties during voluntary contractions were compared with the resting twitch evoked by motor nerve stimulation. Measurement of muscle contractile properties during voluntary contractions is reproducible in fresh muscle and reveals faster and slower muscle relaxation rates in heated and fatigued muscle, respectively. The technique is more sensitive to altered muscle state than the traditional motor nerve resting twitch. Use of TMS during sustained maximal contractions reveals slowing of muscle contraction and relaxation with different time courses and a decline in voluntary activation. Voluntary output from the motor cortex becomes insufficient to maintain complete activation of muscle, although slowing of muscle contraction and relaxation indicates that lower motor unit firing rates are required for fusion of force.  相似文献   

10.
Unfused tetanic contractions evoked in fast motor units exhibit extra-efficient force production at the onset of contraction, an effect called “boost”. Boost is diminished in subsequent contractions if there is a short rest period between contractions, but can be re-established with a longer period of rest. We tested the hypothesis that contractile activity and rest could enhance boost-related metrics. Two sets of 3 unfused tetani were evoked 3 min apart in fast fatigable (FF) and fast fatigue-resistant (FR) motor units of the rat medial gastrocnemius. The greatest changes occurred in the first unfused tetanic contractions. Relative to the first contraction in the first set, the first contraction in the second set exhibited higher peak force during boost in a subset of motor units (76% of FF and 48% of FR). Enhanced force during boost was influenced by interaction of slowing of twitch contraction time (up to 20% and 25%, for FF and FR motor units, respectively), half-relaxation time (up to 37% and 49% for FF and FR motor units, respectively), and potentiation of the first twitch (up to 13% and 5% for FF and FR motor units, respectively). Examination of twitches evoked between sets suggested opportunity for greater enhancement of boost with shorter intervening rest periods. The phenomenon of enhanced boost following motor unit activity may interest sports scientists.  相似文献   

11.
This study compared twitch contractile properties of plantar flexor muscles among three groups of 12 subjects each: endurance and power trained athletes and untrained subjects. The posterior tibial nerve was stimulated by supramaximal square wave pulses of 1-ms duration. Power trained athletes had higher twitch maximal force, maximal rates of force development and relaxation and also maximal voluntary contraction (MVC) force. The trained subjects had a smaller twitch maximal force: MVC force ratio and shorter twitch contraction and half-relaxation times than the untrained subjects with no significant differences between the two groups. Thus, the short time for evoked twitches in the athletes compared to the untrained subjects would seem unrelated to the type of training. It is concluded that power training induces a more evident increase of muscle force-generating capacity and speed of contraction and relaxation than endurance training. Accepted: 24 April 1999  相似文献   

12.
The contractile properties of motor units (MUs) were electrophysiologically investigated in the medial gastrocnemius (MG) muscle in 17 Wistar three-month-old female rats: 14, 30, 90 and 180 days after the total transection of the thoracic spinal cord and compared to those in intact (control) rats. A sag phenomenon, regularly observed in unfused tetani of fast units in intact animals at 40 Hz stimulation, almost completely disappeared in spinal rats. Therefore, the MUs of intact and spinal rats were classified as fast or slow types basing on 20 Hz tetanus index, the value of which was lower or equal 2.0 for fast and higher than 2.0 for slow MUs. The MUs composition of MG muscle changed with time after the spinal cord transection: an increasing proportion of fast fatigable (FF) units starting one month after injury and a disappearance of slow (S) units within the three months were observed. In all MUs investigated the twitch contraction and half-relaxation time were significantly prolonged after injury (p < 0.01, Mann–Whitney U-test). Moreover, a decrease of the fatigue index for fast resistant (FR) and slow MUs was observed in subsequent groups of spinal rats. No significant changes were found between twitch forces in all MU types of spinal animals (p > 0.05). However, due to a decrease of the maximal tetanic force, a significant rise of the twitch-to-tetanus ratio of all MUs in spinal rats was detected (p < 0.01). The considerable reduction of ability to potentiate the force was noticed for fast, especially FF type MUs. In conclusion, the spinal cord transection leads to changes in the proportion of the three MU types in rat MG muscle. The majority of changes in MUs’ contractile properties were developed progressively with time after the spinal cord injury. However, the most intensive alterations of twitch-time parameters were observed in rats one month after the transection.  相似文献   

13.
The relationship between the force of a single twitch of the medial gastrocnemius muscle of the rat and contraction and half-relaxation times, on one hand, and the load of the muscle on the other, was studied. Twitches of the whole muscle and its individual motor units were induced. The optimal load, at which the majority of motor units reached the greatest twitch force, was 10 G. Mean optimal loads for twitches of different types of motor units were very similar. Slow motor units reached a slightly greater twitch force at greater loads (12.5 G) than at 10 G. However, the optimal load for the twitch of the whole muscle was much greater. It was 47 G on the average. The contraction and half-relaxation times of motor units, as well as of the whole muscle, became longer as the force stretching the muscle increased. Half-relaxation time changed more rapidly than contraction time. Both parameters were undergoing the greatest changes in slow motor units.  相似文献   

14.
The effects of hypothermia and hyperthermia on mammalian skeletal muscle function have previously been reported. However, their effects on the contractile properties of different motor unit (MU) types were not described. This study aimed to explore the effect of temperature on contractile properties of MUs in rat medial gastrocnemius kept at 25 °C (hypothermia), 37 °C (normothermia), and 41 °C (hyperthermia). Hypothermia prolonged the twitch time parameters of all MU types, shifting the steep part of the force-frequency curve towards lower frequencies and increasing its steepness. In addition, it reduced the rate of force development but not the twitch and tetanus forces of slow-twitch (S) MUs. Moreover, it reduced the tetanic force of fast-twitch fatigable (FF) MUs and increased the twitch force of fast-twitch fatigue-resistant (FR) MUs. In contrast, hyperthermia had opposite effects on twitch time properties and the force-frequency relationship. The twitch-to-tetanus ratio decreased for FF and FR MUs, and the steep part of the force-frequency curve shifted towards higher frequencies and decreased in steepness. Our findings indicate that FF MUs are the most sensitive and S MUs are the least sensitive to temperature. Furthermore, force control processes involving changes in motoneuronal firing frequency were radically modified for fast MUs, especially FF MUs.  相似文献   

15.
Zebrafish muscles were examined at an early developmental stage (larvae 5-7 d). Using aluminum clips, preparations (approximately 1.5 mm length, 150 microm diameter) were mounted for force registration and small angle x-ray diffraction. Sarcomeres were oriented mainly in parallel with the preparation long axis. Electrical stimulation elicited fast and reproducible single twitch contractions. Length-force relations showed an optimal sarcomere length of 2.15 microm. X-ray diffraction revealed clear equatorial 1.1/1.0 reflections, showing that myofilaments are predominantly arranged along the preparation long axis. In contrast, reflections from older (2 mo) zebrafish showed two main filament orientations each at an approximately 25 degrees angle relative to the preparation long axis. Electrical stimulation of larvae muscles increased the 1.1/1.0 intensity ratio, reflecting mass transfer to thin filaments during contraction. The apparent lattice volume was 3.42 x 10(-3) microm(3), which is smaller than that of mammalian striated muscle and more similar to that of frog muscles. The relation between force and stimulation frequency showed fusion of responses at a comparatively high frequency (approximately 186 Hz), reflecting a fast muscle phenotype. Inhibition of fast myosin with N-benzyl-p-toluene sulphonamide (BTS) showed that the later phase of the tetanus was less affected than the initial peak. This suggests that, although the main contractile phenotype is fast, slow twitch fibers can contribute to sustained contraction. A fatigue stimulation protocol with repeated 220 ms/186 Hz tetani showed that tetanic force decreased to 50% at a train rate of 0.1 s(-1). In conclusion, zebrafish larvae muscles can be examined in vitro using mechanical and x-ray methods. The muscles and myofilaments are mainly orientated in parallel with the larvae long axis and exhibit a significant fast contractile component. Sustained contractions can also involve a small contribution from slower muscle types.  相似文献   

16.
The slow-twitch soleus muscle (SOL) exhibits decreased twitch tension (cold depression) in response to a decreased temperature, whereas the fast-twitch extensor digitorum longus (EDL) muscle shows enhanced twitch tension (cold potentiation). On the other hand, the slow-twitch SOL muscle is more sensitive to twitch potentiation and contractures evoked by caffeine than the fast-twitch EDL muscle. In order to reveal the effects of these counteracting conditions (temperature and caffeine), we have studied the combined effects of temperature changes on the potentiation effects of caffeine in modulating muscle contractions and contractures in both muscles. Isolated muscles, bathed in a Tyrode solution containing 0.1-60 mM caffeine, were stimulated directly and isometric single twitches, fused tetanic contractions and contractures were recorded at 35 degrees C and 20 degrees C. Our results showed that twitches and tetani of both SOL and EDL were potentiated and prolonged in the presence of 0.3-10 mM caffeine. Despite the cold depression, the extent of potentiation of the twitch tension by caffeine in the SOL muscle at 20 degrees C was by 10-15 % higher than that at 35 degrees C, while no significant difference was noted in the EDL muscle between both temperatures. Since the increase of twitch tension was significantly higher than potentiation of tetani in both muscles, the twitch-tetanus ratio was enhanced. Higher concentrations of caffeine induced contractures in both muscles; the contracture threshold was, however, lower in the SOL than in the EDL muscle at both temperatures. Furthermore, the maximal tension was achieved at lower caffeine concentrations in the SOL muscle at both 35 degrees C and 20 degrees C compared to the EDL muscle. These effects of caffeine were rapidly and completely reversed in both muscles when the test solution was replaced by the Tyrode solution. The results have indicated that the potentiation effect of caffeine is both time- and temperature-dependent process that is more pronounced in the slow-twitch SOL than in the fast-twitch EDL muscles.  相似文献   

17.
To study its summation principle, the phonomyogram (PMG) from the first interosseus dorsalis muscle was recorded in five subjects during single twitches evoked by electrical stimulation over the motor point. By increasing the current pulse from threshold to maximal intensity, PMG amplitude increased linearly with motor unit recruitment. The twitch amplitude-intensity relationship was also linear. The PMG amplitude was therefore linearly related to the external force. For all these relationships highly significant correlation coefficients were found. These relationships were interpreted as being a consequence of an orderly recruitment, although, contrary to what happens during voluntary contraction, the largest and strongest motor units were recruited before the smallest and weakest ones during axon electrical stimulation. The PMG onset always preceded twitch onsets as indicated by latency measurements [mean 3.2 (SD 1.3) ms versus 11.5 (SD 3.9) ms, respectively]. Moreover, PMG and twitch latencies may have been significantly reduced by recruitment, suggesting that orderly recruitment influenced both PMG amplitude and occurrence. These results were interpreted as being the result of the summation of elementary PMG from every contracting motor unit and the stiffness change of the muscle medium occurring with recruitment. Accepted: 25 August 1997  相似文献   

18.
Single, functionally isolated motor units were studied in the medial gastrocnemius (MG) muscle of cats and rats. Axons of their motoneurons were stimulated with trains of pulses at frequencies increasing from 1 to 150 Hz and forces developed by muscle fibers were measured and force-frequency curves were compared between species. The following observations were made: (1) the most steep parts of curves (related to unfused tetani of motor units) begun at lower frequencies of stimulations in all types of feline motor units, (2) for fast motor units, the same relative values of force of unfused tetani were achieved at significantly lower frequencies of stimulations in the cat than in the rat. Twitch time parameters of both species influenced the course of force-frequency curves. It was showed that the contraction times of feline units varied in the wide range (21-81 ms), and these units reached 60% of the maximum force at stimulation frequencies between 10 and 38 Hz. On the other hand, contraction times of rat units ranged from 10 to 34 ms, whereas stimulation frequencies necessary to reach 60% of the maximum force varied considerably, from 12 to 65 Hz. The correlations between the above parameters were found for motor units of each species. However, the regression lines drown for the collected population of cat and rat units did not form linear continuity. Thus it seems that interspecies differences in the twitch contraction times do not fully explain different force-frequency relationships in mammalian skeletal muscles.  相似文献   

19.
Application of a supramaximal electrical twitch to the voluntarily contracted muscle is used to assess the level of muscle activation. Large variability in the interpolated twitch torque (ITT) has been observed when repeated stimulations are performed. It is hypothesized that this variability in ITT is caused by the stochastic nature of the timing of twitch application relative to pulses of voluntary excitation trains. Two experiments were performed on 12 subjects each to test this hypothesis. For the first experiment, a single twitch was superimposed on a train stimulation at different time intervals relative to the train pulses. For the second experiment, single, double, triple, or quadruple twitches were applied on a voluntarily contracted muscle. The ITT critically depended on the time point of twitch application: a single pulse applied 5 ms before a train pulse consistently evoked higher ITTs than all other stimulation conditions. Furthermore, variability of the ITT decreased as the number of applied twitches increased. The results support the hypothesis that a large part of the variability in the ITT may be caused by the timing of the superimposed twitch relative to the motor unit trains. The variability may be reduced by increasing the number of superimposed twitches.  相似文献   

20.
Voluntary activation of muscle is commonly quantified by comparison of the extra force added by motor nerve stimulation during a contraction [superimposed twitch (SIT)] with that produced at rest by the same stimulus (resting twitch). An inability to achieve 100% voluntary activation implies that failure to produce maximal force output from the muscle must have occurred at a site at or above the level of the motoneurons. We have used cortical stimulation to quantify voluntary activation. Here, incomplete activation implies a failure at or above the level of motor cortical output. With cortical stimulation, it is inappropriate to compare extra force evoked during a contraction with the twitch evoked in resting muscle because motor cortical and spinal cord excitability both increase with activity. However, an appropriate "resting twitch" can be estimated. We previously estimated its amplitude by extrapolation of the linear relation between SIT amplitude and voluntary torque calculated from 35 contractions of >50% maximum (Todd G, Taylor JL, and Gandevia SC. J Physiol 551: 661-671, 2003). In this study, we improved the utility of this method to enable evaluation of voluntary activation when it may be changing over time, such as during the development of fatigue, or in patients who may be unable to perform large numbers of contractions. We have reduced the number of contractions required to only three. Estimation of the resting twitch from three contractions was reliable over time with low variability. Furthermore, its reliability and variability were similar to the resting twitch estimated from 30 contractions and to that evoked by conventional motor nerve stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号