首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of quenching of the fluorescence of pyridoxal 5'-phosphate in the active site of the beta 2 subunit of tryptophan synthase from Escherichia coli was measured to estimate the accessibility of the coenzyme to the small molecules iodide and acrylamide. The alpha subunit and the substrate L-serine substantially reduced the quenching rate. For iodide, the order of decreasing quenching was: Schiff's base of N alpha-acetyl-lysine with pyridoxal 5'-phosphate greater than holo beta 2 subunit greater than holo alpha 2 beta 2 complex approximately equal to holo beta 2 subunit + L-serine greater than holo alpha 2 beta 2 complex + L-serine. The coenzyme in the beta 2 subunit is apparently freely accessible to both iodide and acrylamide (kappa approximately equal to 2 X 10(9) M-1 s-1), but the alpha subunit and L-serine decrease the rate by factors of 2-5. Quenching of the fluorescence of the single tryptophan residue of the beta 2 subunit revealed that the apo and holo forms exist in different states, whereas the alpha subunit stabilizes a third conformation. As the alpha subunit binds to the beta 2 subunit, the tryptophan residue, which is within 2.2 nm of the active site of the beta 2 subunit, probably rotates with respect to the plane of the ring of the coenzyme, such that fluorescence energy transfer from tryptophan to pyridoxal phosphate is greatly reduced. The alpha subunit strongly protects the active-site ligand indole propanol phosphate from quenching with acrylamide, consistent with the active site being deep in a cleft in the protein. Iodide induces dissociation of the holo alpha 2 beta 2 complex [E. W. Miles & M. Moriguchi (1977) J. Biol. Chem. 252, 6594-6599]. The effect of iodide on the fluorescence properties of holo alpha 2 beta 2 complex allows us to estimate an upper limit for the dissociation constant for the alpha 2 beta 2 complex of 10(-8) M, in the absence of iodide.  相似文献   

2.
H M Eun  E W Miles 《Biochemistry》1984,23(26):6484-6491
The alpha subunit of tryptophan synthase from Escherichia coli is inactivated by phenylglyoxal and by (p-hydroxyphenyl)glyoxal. The use of these chemical modification reagents to determine the role of arginyl residues in the alpha subunit of tryptophan synthase has been complicated by our finding that these reagents react with sulfhydryl groups of the alpha subunit, as well as with arginyl residues. Analyses of the data for incorporation of phenyl[2-14C]glyoxal, for inactivation, and for sulfhydryl modification in the presence and absence of indole-3-glycerol phosphate indicate that two sulfhydryl groups and one arginine are essential for the activity. Our finding that the substrate protects the single essential arginyl residue but not the two sulfhydryl groups is consistent with the observed kinetics of partial protection by substrate or by a substrate analogue, indole-3-propanol phosphate. In contrast to phenylglyoxal, (p-hydroxyphenyl)glyoxal modifies two to three sulhydryl groups that are not protected by indole-3-glycerol phosphate and modifies none of the arginyl residues that are modified by phenylglyoxal.  相似文献   

3.
The possible interaction of the phosphate moiety of pyridoxal phosphate with a guanidinium group in glutamate apodecarboxylase was investigated. The holoenzyme is not inactivated significantly by incubation with butanedione, glyoxal, methylglyoxal, or phenylglyoxal. However, the apoenzyme is inactivated by these arginine reagents in time-dependent processes. Phenylgloxal inactivates the apoenzyme most rapidly. The inactivation follows pseudo-first-order kinetics at high phenylglyoxal to apoenzyme ratios. The rate of inactivation is proportional to phenylglyoxal concentration, increases with increasing pH, and is also dependent on the type of buffer present. The rate of inactivation of the apoenzyme by phenylglyoxal is fastest in bicarbonate — carbonate buffer and increases with increasing bicarbonate — carbonate concentration. Phosphate, which inhibits the binding of pyridoxal phosphate to the apoenzyme, protects the apodecarboxylase against inactivation by phenylglyoxal. When the apodecarboxylase is inactivated with [14C]phenylglyoxal, approximately 1.6 mol of [14C]phenylglyoxal is incorporated per mol subunit. The phenylglyoxal is thought to modify an arginyl residue at or near the pyridoxal phosphate binding site of glutamate apodecarboxylase.  相似文献   

4.
Our studies, which are aimed at understanding the catalytic mechanism of the beta subunit of tryptophan synthase from Salmonella typhimurium, use site-directed mutagenesis to clarify the functional roles of several putative active site residues. Although previous chemical modification studies have suggested that histidine 86, arginine 148, and cysteine 230 are essential residues in the beta subunit, our present findings that beta subunits with single amino acid replacements at these positions have partial activity show that these 3 residues are not essential for catalysis or substrate binding. These conclusions are consistent with the recently determined three-dimensional structure of the tryptophan synthase alpha 2 beta 2 complex. Amino acid substitution of lysine 87, which forms a Schiff base with pyridoxal phosphate in the wild type beta subunit, yields an inactive form of the beta subunit which binds alpha subunit, pyridoxal phosphate, and L-serine. We also report a rapid and efficient method for purifying wild type and mutant forms of the alpha 2 beta 2 complex from S. typhimurium from an improved enzyme source. The enzyme, which is produced by a multicopy plasmid encoding the trpA and trpB genes of S. typhimurium expressed in Escherichia coli, is crystallized from crude extracts by the addition of 6% poly(ethylene glycol) 8000 and 5 mM spermine. This new method is also used in the accompanying paper to purify nine alpha 2 beta 2 complexes containing mutant forms of the alpha subunit.  相似文献   

5.
Yeast enolase is rapidly inactivated by butanedione in borate buffer, complete inactivation correlating with the modification of 1. 8 arginyl residues per subunit. Protection against inactivation is provided by either an equilibrium mixture of substrates or inorganic phosphate, a competitive inhibitor of the enzyme. Complete protection by substrates correlates with the shielding of 1. 3 arginyl residues per subunit, while phosphate protects 1. 0 arginyl residue per subunit from modification.  相似文献   

6.
Pyruvate kinase from pig heart is inactivated by the specific arginyl reagent phenylglyoxal. The loss of activity is caused by the reaction of a single molecule of phenylglyoxal per subunit of enzyme. During inactivation 3 - 6 arginyl residues are modified dependent on the concentration of phenylglyoxal used for modification. The solubility of the protein is reduced by the modification. ATP or phosphoenolpyruvate protect against inactivation. A single arginine is less subject to chemical modification in their presence. Therefore we assume that an arginine is essential at the substrate binding site. The activating ion K does not affectinactivation, where as Mg2 diminishes inactivation. Pyruvate kinase from rabbit muscle is modified by phenylglyoxal in a similar manner.  相似文献   

7.
The origin of reaction and substrate specificity and the control of activity by protein-protein interaction are investigated using the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium. We have compared some spectroscopic and kinetic properties of the wild type beta subunit and five mutant forms of the beta subunit that have altered catalytic properties. These mutant enzymes, which were engineered by site-directed mutagenesis, have single amino acid replacements in either the active site or in the wall of a tunnel that extends from the active site of the alpha subunit to the active site of the beta subunit in the alpha 2 beta 2 complex. We find that the mutant alpha 2 beta 2 complexes have altered reaction and substrate specificity in beta-elimination and beta-replacement reactions with L-serine and with beta-chloro-L-alanine. Moreover, the mutant enzymes, unlike the wild type alpha 2 beta 2 complex, undergo irreversible substrate-induced inactivation. The mechanism of inactivation appears to be analogous to that first demonstrated by Metzler's group for inhibition of two other pyridoxal phosphate enzymes. Alkaline treatment of the inactivated enzyme yields apoenzyme and a previously described pyridoxal phosphate derivative. We demonstrate for the first time that enzymatic activity can be recovered by addition of pyridoxal phosphate following alkaline treatment. We conclude that the wild type and mutant alpha 2 beta 2 complexes differ in the way they process the amino acrylate intermediate. We suggest that the wild type beta subunit undergoes a conformational change upon association with the alpha subunit that alters the reaction specificity and that the mutant beta subunits do not undergo the same conformational change upon subunit association.  相似文献   

8.
Modification of Escherichia coli robosomes with phenylglyoxal and butanedione, protein reagents specific for arginyl residues, inactivates polypeptide polymerization, assayed as poly(U)-dependent polyphenylalanine synthesis, and the binding of poly(U). Inactivation is produced by modification of the 30-S subunit. Both the RNA and the protein moieties of 30-S subunits are modified by phenylglyoxal, and modification of either of them is accompanied by inactivation of polypeptide synthesis. Modification of only the split proteins released from 30-S subunits by prolonged dialysis against a low-ionic-strength buffer, which contain mainly protein S1, produces inhibition of poly(U) binding and inactivation of polypeptide synthesis. Amino acid analysis of the modified split proteins showed a significant modifications of arginyl residues. These results indicate that the arginyl residues of a few 30-S proteins might be important in the interaction between mRNA and the 30-S subunit, which agrees with the general role assigned to the arginyl residues of proteins as the positively charged recognition site for anionic ligands.  相似文献   

9.
Inactivation of formate dehydrogenase by formaldehyde, pyridoxal and pyridoxal phosphate was studied. The effects of concentrations of the modifying agents, substrates, products and inhibitors on the extent of the enzyme inactivation were examined. A complete formate dehydrogenase inactivation by pyridoxal, pyridoxal, phosphate and formaldehyde is achieved by the blocking of 2, 5 and 13 lysine residues per enzyme subunit, respectively. The coenzymes do not protect formate dehydrogenase against inactivation. In the case of modification by pyridoxal and pyridoxal phosphate a complete maintenance of the enzyme activity and specific protection of one lysine residue per enzyme subunit is observed during formation of a binary formate-enzyme complex, or a ternary enzyme--NAD--azide complex. One lysine residue is supposed to be located at the formate-binding site of the formate dehydrogenase active center.  相似文献   

10.
E W Miles  R S Phillips 《Biochemistry》1985,24(17):4694-4703
The photoaffinity reagent 6-azido-L-tryptophan was synthesized by chemical methods. It binds reversibly in the dark to the alpha 2 beta 2 complex of tryptophan synthase of Escherichia coli and forms a quinonoid intermediate with enzyme-bound pyridoxal phosphate (lambda max = 476 nm). The absorbance of this chromophore has been used for spectrophotometric titrations to determine the binding of 6-azido-L-tryptophan (the half-saturation value [S]0.5 = 6.3 microM). Photolysis of the quinonoid form of the alpha 2 beta 2 complex results in time-dependent inactivation of the beta 2 subunit but not of the alpha subunit. The extent of photoinactivation is directly proportional to the absorbance at 476 nm of the quinonoid intermediate prior to photolysis. The substrate L-serine is a competitive inhibitor of 6-azido-L-tryptophan binding and photoinactivation. The competitive inhibitors L-tryptophan, D-tryptophan, and oxindolyl-L-alanine also protect against photoinactivation. The results demonstrate that 6-azido-L-tryptophan is a quasi-substrate for the alpha 2 beta 2 complex of tryptophan synthase and that photolysis of the enzyme-quasi-substrate quinonoid intermediate results in photoinactivation. The modified alpha 2 beta 2 complex retains its ability to bind pyridoxal phosphate and to cleave indole-3-glycerol phosphate, a reaction catalyzed by the alpha subunit. 6-Azido-L-tryptophan (side-chain 1,2,3-14C3 labeled) was synthesized enzymatically from 6-azidoindole and uniformly labeled L-[14C]serine by the alpha 2 beta 2 complex of tryptophan synthase on a preparative scale and has been isolated. Incorporation of 14C label from 6-azido-L-[14C]tryptophan is stoichiometric with inactivation. Our finding that most of the incorporated 14C label is bound in an unstable linkage suggests that an active site carboxyl residue is the major site of photoaffinity labeling by 6-azido-L-tryptophan.  相似文献   

11.
To probe the structural and functional roles of active-site residues in the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium, we have determined the effects of mutation of His(86) in the beta subunit. His(86) is located adjacent to beta subunit Lys(87), which forms an internal aldimine with the pyridoxal phosphate and catalyzes the abstraction of the alpha-proton of L-serine. The replacement of His(86) by leucine (H86L) weakened pyridoxal phosphate binding approximately 20-fold and abolished the circular dichroism signals of the bound coenzyme and of a reaction intermediate. Correlation of these results with previous crystal structures indicates that beta-His(86) plays a structural role in binding pyridoxal phosphate and in stabilizing the correct orientation of pyridoxal phosphate in the active site of the beta subunit. The H86L mutation also altered the pH profiles of absorbance and fluorescence signals and shifted the pH optimum for the synthesis of L-tryptophan from pH 7.5 to 8.8. We propose that the interaction of His(86) with the phosphate of pyridoxal phosphate and with Lys(87) lowers the pK(a) of Lys(87) in the wild-type alpha(2)beta(2) complex and thereby facilitates catalysis by Lys(87) in the physiological pH range.  相似文献   

12.
The role of arginyl residues in porphyrin binding to ferrochelatase   总被引:1,自引:0,他引:1  
The role of cationic amino acid residues in the binding of porphyrin substrates by purified bovine ferrochelatase (protoheme ferro-lyase, EC 4.99.1.1) have been examined via chemical modification with camphorquinone-10-sulfonic acid, phenylglyoxal, butanedione, and trinitrobenzene sulfonate. The data obtained show that modification of arginyl, but not lysyl, residues results in the rapid inactivation of ferrochelatase. The 2,4-disulfonate deuteroporphyrin, which is a competitive inhibitor of mammalian ferrochelatase, protects the enzyme against inactivation. Ferrous iron has no protective effect. Reaction with radiolabeled phenylglyoxal shows that modification of 1 arginyl residue causes maximum inhibition of enzyme activity. The inactivation does not follow simple pseudo-first order reaction kinetics, but is distinctly biphasic in nature. Comparison of the enzyme kinetics for modified versus unmodified enzyme show that modification with camphorquinone-10-sulfonic acid has no effect on the Km for iron but does alter the Km for porphyrin.  相似文献   

13.
Yeast hexokinase PII is rapidly inactivated (assayed at pH 8.0) by either butanedione in borate buffer or phenylglyoxal, reagents which are highly selective for the modification of arginyl residues. MgATP alone offers no protection against inactivation, consistent with low affinity of hexokinase for this nucleotide in the absence of sugar. Glucose provides slight protection against inactivation, while the combined presence of glucose and MgATP gives significant protection, suggesting that modified arginyl residues may lie at the active site, possibly serving to bind the anionic polyphosphate of the nucleotide in the ternary enzyme:sugar:nucleotide complex. Extrapolation to complete inactivation suggests that inactivation by butanedione correlates with the modification of 4.2 arginyl residues per subunit, and complete protection against inactivation by the combined presence of glucose and MgATP correlates with the protection of 2 to 3 arginyl residues per subunit. When the modified enzyme is assayed at pH 6.5, significant activity remains. However, modification by butanedione in borate buffer abolishes the burst-type slow transient process, observed when the enzyme is assayed at pH 6.5, to such an extent that after extensive modification the kinetic assays are characterized by a lag-type slow transient process. But even after extensive modification, hexokinase PII still demonstrates negative cooperativity with MgATP and is still strongly activated by citrate when assayed at pH 6.5.  相似文献   

14.
We have synthesized bromoacetylpyridoxamine phosphate and bromoacetylpyridoxamine and have shown that they meet three criteria for affinity labels of the beta2 subunit of tryptophan synthase: (i) the kinetic data of inactivation indicate that a binary complex is formed prior to covalent attachment; (ii) inactivation is largely prevented by the presence of pyridoxal phosphate; and (iii) inactivation is stoichiometric with incorporation of 0.7 to 0.8 mol of chromophore/mol of beta monomer. Our conclusion that inactivation of the apo beta2 subunit by bromoacetylpyridoxamine phosphate is due to the modification of cysteine is based on the disappearance of 1 mol of -SH/beta monomer and on the finding that [14C]carboxymethyl derivative in the acid hydrolysate of the protein modified by bromo[14C]acetylpyridixamine phosphate. A 39-residue tryptic peptide containing this essential cysteine has been isolated and purified from the bromo[14C]acetylpyridoxamine phosphate-labeled beta2 subunit.  相似文献   

15.
The effect of side chain modification on the organic anion exchanger in the renal brush-border membrane was examined to identify what amino acid residues constitute the substrate binding site. One histidyl-specific reagent, diethyl pyrocarbonate (DEPC), and 2 arginyl-specific reagents, phenylglyoxal and 2,3-butanedione, were tested for their effect on the specifically mediated transport of p-amino[3H]hippurate (PAH), a prototypic organic anion. The specifically mediated transport refers to the difference in the uptake of [3H]PAH in the absence and presence of a known competitive inhibitor, probenecid, and was examined in brush-border membrane vesicles isolated from the outer cortex of canine kidneys. The experiments were performed utilizing a rapid filtration assay. DEPC, phenylglyoxal, and 2,3-butanedione inactivated the specifically mediated PAH transport, i.e. probenecid inhibitable transport with IC50 values of 160, 710, and 1780 microM, respectively. The rates of PAH inactivation by DEPC and phenylglyoxal were suggestive of multiple pseudo first-order reaction kinetics and were consistent with a reaction mechanism whereby more than 1 arginyl or histidyl residue is inactivated. Furthermore, PAH (5 mM) did not affect the rate of phenylglyoxal inactivation. In contrast, PAH (5 mM) affected the rate of DEPC inactivation. The modification by DEPC was specific for histidyl residues since transport could be restored by treatment with hydroxylamine. The results demonstrate that histidyl and arginyl residues are essential for organic anion transport in brush-border membrane vesicles. We conclude that the histidyl residue constitutes the cationic binding site for the anionic substrate, whereas the arginyl residue(s) serves to guide the substrate to or away from the histidyl site.  相似文献   

16.
The role of arginine residues in interleukin 1 receptor binding.   总被引:1,自引:0,他引:1  
Interleukin 1 (IL-1) is a family of polypeptide cytokines that plays an essential role in modulating immune and inflammatory responses. IL-1 activity is mediated by either of two distinct proteins, IL-1 alpha or IL-1 beta, both of which bind to the same receptor found on T-lymphocytes, fibroblasts and endothelial cells (Type 1 receptor). The effect of specific chemical modification of recombinant IL-1 alpha and IL-1 beta on receptor binding was examined. Modification of the proteins with phenylglyoxal, an arginine-specific reagent, resulted in the loss of Type 1 IL-1 receptor binding activity. The stoichiometry of this modification revealed that a single arginine in either IL-1 alpha or IL-1 beta is responsible for the loss of activity. Cyanogen bromide cleavage of phenylglyoxal modified IL-1 alpha and IL-1 beta, followed by sequencing of the peptides, revealed that arginine-12 in IL-1 alpha and arginine-4 in IL-1 beta, which occupy the same topology in the respective crystallographic structures, are the target of phenylglyoxal. These results suggest that an arginine residue plays an important role in ligand-receptor interaction.  相似文献   

17.
The inactivation of yeast hexokinase A (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) by phenylglyoxal obeys pseudo first-order kinetics. Formation of a reversible enzyme-reagent complex prior to modification is suggested by the observed saturation kinetics. Loss of activity correlates with the incorporation of 1 mol of [14C]phenylglyoxal per mol 50 000 dalton subunit. No significant conformational change occurs concomitantly. Inactivation is attributable to modification of an arginyl residue. The pattern of protection by substrates and analogs favors an interaction of this essential residue with the terminal phosphoryl group of ATP or glucose 6-phosphate.  相似文献   

18.
Reaction of phenylglyoxal with glutamate dehydrogenase (EC 1.4.1.4), but not with glutamate synthase (EC 2.6.1.53), from Bacillus megaterium resulted in complete loss of enzyme activity. NADPH alone or together with 2-oxoglutarate provided substantial protection from inactivation by phenylglyoxal. Some 2mol of [14C]Phenylglyoxal was incorporated/mol of subunit of glutamate dehydrogenase. Addition of 1mM-NADPH decreased incorporation by 0.7mol. The Ki for phenylglyoxal was 6.7mM and Ks for competition with NADPH was 0.5mM. Complete inactivation of glutamate dehydrogenase by butane-2,3-dione was estimated by extrapolation to result from the loss of 3 of the 19 arginine residues/subunit. NADPH, but not NADH, provided almost complete protection against inactivation. Butane-2,3-dione had only a slight inactivating effect on glutamate synthase. The data suggest that an essential arginine residue may be involved in the binding of NADPH to glutamate dehydrogenase. The enzymes were inactivated by pyridoxal 5'-phosphate and this inactivation increased 3--4-fold in the borate buffer. NADPH completely prevented inactivation by pyridoxal 5'-phosphate.  相似文献   

19.
Our findings that the apo β2 subunit of tryptophan synthase of Escherichia coli is inactivated by the modification of one sulfhydryl residue per monomer by nitrothiocyanobenzoic acid and is reactivated by removal of the CN group indicate that the reactive sulfhydryl residue (SH-I) is essential for catalytic activity. SH-I is shown to be the same residue which was previously found to react with bromoacetylpyridoxamine phosphate and different from a sulfhydryl (SH-II) which reacts with N-ethylmaleimide in the presence of pyridoxal phosphate. The results of partial tryptic digestions of β2 subunit labeled selectively at SH-I or SH-II show that both sulfhydryl residues are located in the F1 fragment which also contains the pyridoxal phosphate binding site.  相似文献   

20.
Phosphoglycerate mutase is inactivated by butanedione in borate buffer. Inactivation by 0.13 mM reagent correlates with the modification of one arginyl residue per subunit, and is prevented by either 2, 3-diphosphoglycerate or 3-phosphoglycerate. With 0.50 mM butanedione, inactivation is accompanied by the modification of three arginyl residues per subunit, two of which are protected by the combined presence of cofactor and substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号