首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
There are increasing data suggesting that sex hormones, such as estrogen, have immunomodulatory effects and play a role in disease progression and pathogenesis in patients with the autoimmune disorder systemic lupus erythematosus. We have shown previously that treatment with 17beta-estradiol (E2) induces a lupus phenotype in BALB/c mice that express a transgene-encoded H chain of an anti-DNA Ab. Because E2 treatment interferes with normal tolerance of naive DNA-reactive B cells, we elected to study the effects of hormonal modulation on the regulation of autoreactive B cells at early developmental checkpoints. Single-cell PCR was performed to study the repertoire of DNA-reactive B cell subsets. High-affinity DNA-reactive B cells were rescued at both the immature and transitional B cell stage in E2-treated mice. Interestingly, although low-affinity DNA-reactive B cells survive negative selection in control mice, the frequency of these cells was significantly reduced in the mature pool of E2-treated mice, suggesting that the high-affinity DNA-reactive cells that mature to immunocompetence out-compete the low-affinity population for survival as mature B cells. These data provide evidence that an elevation in serum levels of E2 facilitates the maturation of a pathogenic naive autoreactive B cell repertoire and hampers the maturation of a potentially protective autoreactive B cell repertoire. Furthermore, these data show that both positive and negative selection occur within the transitional B cell stage.  相似文献   

2.
Bruton's tyrosine kinase (Btk) is a nonreceptor protein kinase that is defective in X-linked agammaglobulinemia in humans and in X-linked immunodeficiency in mice. To study the effect of Btk activation in early B cell development in vivo, we have created transgenic mouse strains expressing Btk under the control of the human CD19 promoter region. The transgenic expression of wild-type human Btk corrected all X-linked immunodeficiency features in mice carrying a targeted disruption of the Btk gene. In contrast, expression of an activated form of Btk, the E41K mutant, resulted in an almost complete arrest of B cell development in the immature IgM+IgD- B cell stage in the bone marrow, irrespective of the presence of the endogenous intact Btk gene. Immature B cells were arrested at the progression from IgMlow into IgMhigh cells, which reflects the first immune tolerance checkpoint at which autoreactive B cells become susceptible to apoptosis. As the constitutive activation of Btk is likely to mimic B cell receptor occupancy by autoantigens in the bone marrow, our findings are consistent with a role for Btk as a mediator of B cell receptor-induced apoptotic signals in the immature B cell stage. Whereas the peripheral mature B cell pool was reduced to <1% of the normal size, significant numbers of IgM-secreting plasma cells were present in the spleen. Serum IgM levels were substantial and increased with age, but specific Ab responses in vivo were lacking. We conclude that the residual peripheral B cells were efficiently driven into IgM+ plasma cell differentiation, apparently without functional selection.  相似文献   

3.
4.
Previously we defined a Thy1(dull) bone marrow-derived cell population that regulated fate decisions by immature B cells after Ag receptor signaling. The microenvironmental signals provided by this cell population were shown to redirect the B cell Ag receptor -induced apoptotic response of immature B cells toward continued recombination-activating gene (RAG) expression and secondary light chain recombination (receptor editing). Neither the identity of the cell responsible for this activity nor its role in immature B cell development in vivo were addressed by these previous studies. Here we show that this protective microenvironmental niche is defined by the presence of a novel Thy1(dull), DX5(pos) cell that can be found in close association with immature B cells in vivo. Depletion of this cell eliminates the anti-apoptotic effect of bone marrow in vitro and leads to a significant decrease in the number and frequency of bone marrow immature B cells in vivo. We propose that, just as the bone marrow environment is essential for the survival and progression of pro-B and pre-B cells through their respective developmental checkpoints, this cellular niche regulates the progression of immature stage B cells through negative selection.  相似文献   

5.
Autoreactive T cells clearly mediate the pancreatic beta cell destruction causing type 1 diabetes (T1D). However, studies in NOD mice indicate that B cells also contribute to pathogenesis because their ablation by introduction of an Igmunull mutation elicits T1D resistance. T1D susceptibility is restored in NOD.Igmunull mice that are irradiated and reconstituted with syngeneic bone marrow plus NOD B cells, but not syngeneic bone marrow alone. Thus, we hypothesized some non-MHC T1D susceptibility (Idd) genes contribute to disease by allowing development of pathogenic B cells. Supporting this hypothesis was the finding that unlike those from NOD donors, engraftment with B cells from H2g7 MHC-matched, but T1D-resistant, nonobese-resistant (NOR) mice failed to restore full disease susceptibility in NOD.Igmunull recipients. T1D resistance in NOR mice is mainly encoded within the Idd13, Idd5.2, and Idd9/11 loci. B cells from NOD congenic stocks containing Idd9/11 or Idd5.1/5.2-resistance loci, respectively, derived from the NOR or C57BL/10 strains were characterized by suppressed diabetogenic activity. Immature autoreactive B cells in NOD mice have an impaired ability to be rendered anergic upon Ag engagement. Interestingly, both Idd5.1/5.2 and Idd9/11-resistance loci were found to normalize this B cell tolerogenic process, which may represent a mechanism contributing to the inhibition of T1D.  相似文献   

6.
B cells are known to play an important role in the pathogenesis of several autoimmune diseases. NOD.H-2h4 mice develop spontaneous autoimmune thyroiditis (SAT) and anti-mouse thyroglobulin (MTg) autoantibodies, the levels of which correlate closely with the severity of thyroid lesions. NOD.H-2h4 mice genetically deficient in B cells (NOD.Kmu(null)) or rendered B cell-deficient by treatment from birth with anti-IgM develop minimal SAT. B cells were required some time in the first 4-6 wk after birth, because NOD.Kmu(null) or NOD.H-2h4 mice did not develop SAT when they were reconstituted with B cells as adults. The requirement for B cells was apparently not solely to produce anti-MTg autoantibodies, because passive transfer of anti-MTg Ab did not enable B cell-deficient mice to develop SAT, and mice given B cells as adults produced autoantibodies but did not develop SAT. B cell-deficient mice developed SAT if their T cells developed from bone marrow precursors in the presence of B cells. Because B cells are required early in life and their function cannot be replaced by anti-MTg autoantibodies, B cells may be required for the activation or selection of autoreactive T cells. These autoreactive T cells are apparently unable to respond to Ag if B cells are absent in the first 4-6 wk after birth.  相似文献   

7.
In aged mice the population of mature peripheral B cells is maintained despite a severalfold decrease in the population of bone marrow B cell progenitors. The analysis of the rate of accumulation of 5'-bromo-2-deoxyuridine (BrdU)-labeled splenic B cells in mice fed BrdU for 8 days to 8 wk demonstrated a severalfold increase in the half-life of mature B cells in aged mice. Consistent with a role for decreased B cell turnover in maintaining the mature B cell population of aged mice, several findings indicate that fewer newly generated B cells enter the spleen from the bone marrow in aged vs young adult mice. These include 1) a fourfold decrease in the population of relatively immature splenic B cells, defined as cells that express high levels of heat-stable Ag and accumulate BrdU within 8 wk of labeling; and 2) an equivalent decrease in the population of bone marrow cells representative of later stages of B cell maturation (sIgD-sIgM(int-high)). Surprisingly, despite a four- to sixfold decrease in pre-B cells, the population of least mature bone marrow B cells (IgD-sIgM(very low)) remains intact. Because this population accumulates BrdU-labeled cells more slowly in aged mice than in younger mice, and bone marrow B cells at more mature developmental stages are diminished, it appears that in aged mice B cell development beyond the sIgM(very low) stage may be retarded and that cells, therefore, accumulate within this population.  相似文献   

8.
These experiments were designed to evaluate whether alterations in Id expression after anti-Id treatments result from direct modulation of Id-producing B cells, and whether idiotypic selection operates in bone marrow or spleen B cells. By using the NPb Id model, we have studied the functional behavior of isolated LPS-reactive B cells transferred from B6 mice into histocompatible LPS-NR B10.Cr hosts and primed with LPS conjugates of anti-Id antibodies. We have found that previous anti-idiotypic manipulation of host mice by neonatal administration of suppressive doses of Ac 38 antibodies, or adult injection of enhancing doses of Ac 146 antibodies, modulated the T cell-independent Id response of either immature bone marrow or mature splenic responding cells, transferred from normal, untreated donors. These results are interpreted to suggest that selection of antibody repertoires by anti-Id may occur at multiple steps of B cell differentiation.  相似文献   

9.
B cell receptor (BCR)-mediated apoptosis plays a key role in the negative selection (deletion) of autoreactive B cells. Mechanisms of BCR-mediated apoptosis have been widely studied in cell lines representing both immature (bone marrow) and mature (germinal center) B cells. However, there is much inconsistency and controversy concerning the possible mechanisms of BCR-mediated apoptosis, which may reflect differences in the origin or the maturational stage of the cell line used. Based on recent studies, collapse of mitochondrial membrane potential (Delta Psi m) seems to be an essential event for BCR-mediated apoptosis in both mature and immature cells. The collapse of Delta Psi m is dependent on the synthesis of new proteins, which are involved in the permeability change of mitochondrial membranes. Mitochondrial dysfunction induces activation of caspases, cysteine proteases, which play a central role in apoptosis. However, instead of caspases, other effector proteases, such as cathepsins or calpains, may also be responsible for the organized destruction of cell components seen during BCR-mediated apoptosis.  相似文献   

10.
In aged mice, new B‐cell development is diminished and the antibody repertoire becomes more autoreactive. Our studies suggest that (i) apoptosis contributes to reduced B lymphopoiesis in old age and preferentially eliminates those B‐cell precursors with higher levels of the surrogate light chain (SLC) proteins (λ5/VpreB) and (ii) λ5low B‐cell precursors generate new B cells which show increased reactivity to the self‐antigen/bacterial antigen phosphorylcholine (PC). Pro‐B cells in old bone marrow as well as pro‐B cells from young adult λ5‐deficient mice are resistant to cytokine‐induced apoptosis (TNFα; TGFβ), indicating that low λ5 expression in pro‐B cells is sufficient to cause increased survival. Transfer of TNFα‐producing ‘age‐associated B cells’ (ABC; CD21/35? CD23?) or follicular (FO) B cells from aged mice into RAG‐2 KO recipients led to preferential loss of λ5high pro‐B cells, but retention of λ5low, apoptosis‐resistant pro‐B cells. In old mice, there is increased reactivity to PC in both immature bone marrow B cells and mature splenic FO B cells. In young mice, absence of λ5 expression led to a similar increase in PC reactivity among bone marrow and splenic B cells. We propose that in old age, increased apoptosis, mediated in part by TNFα‐producing B cells, results in preferential loss of SLChigh pro‐B cells within the bone marrow. Further B‐cell development then occurs via an ‘SLClow’ pathway that not only impairs B‐cell generation, but promotes autoreactivity within the naïve antibody repertoires in the bone marrow and periphery.  相似文献   

11.
ERdj4 is a BiP cochaperone regulated by the unfolded protein response to facilitate degradation of unfolded and/or misfolded proteins in the endoplasmic reticulum. As the unfolded protein response plays a critical role in B cell maturation and antibody production, ERdj4 gene trap mice were generated to determine if this chaperone was required for B cell homeostasis. Homozygosity for the trapped allele resulted in hypomorphic expression of ERdj4 in bone marrow cells and abnormal development of hematopoietic lineages in the bone marrow. The number of myeloid cells was increased, while the number of erythroid and B lymphoid cells was reduced in ERdj4 gene trap mice compared to controls. An intrinsic B cell defect was identified that decreased survival of B cell precursors including large and small pre-B, and immature B cells. Consistent with impaired B lymphopoiesis, the number of mature follicular B cells was reduced in both the bone marrow and spleen of ERdj4 gene trap mice. Paradoxically, unchallenged ERdj4 gene trap mice showed non-specific hypergammaglobulinemia and gene trap B cells exhibited increased proliferation, survival and isotype switching in response to LPS stimulation. Although ERdj4 gene trap mice responded normally to T cell-independent antigen, they failed to mount a specific antibody response to T cell-dependent antigen in vivo. Collectively, these findings demonstrate that the chaperone activity of ERdj4 is required for survival of B cell progenitors and normal antibody production.  相似文献   

12.
Autoreactive B cells can be regulated by deletion, receptor editing, or anergy. Rheumatoid factor (RF)-expressing B lymphocytes in normal mice are not controlled by these mechanisms, but they do not secrete autoantibody and were presumed to ignore self-Ag. Surprisingly, we now find that these B cells are not quiescent, but instead are constitutively and specifically activated by self-Ag. In BALB/c mice, RF B cells form germinal centers (GCs) but few Ab-forming cells (AFCs). In contrast, autoimmune mice that express the autoantigen readily generate RF AFCs. Most interestingly, autoantigen-specific RF GCs in BALB/c mice appear defective. B cells in such GCs neither expand nor are selected as efficiently as equivalent cells in autoimmune mice. Thus, our data establish two novel checkpoints of autoreactive B cell regulation that are engaged only after initial autoreactive B cell activation: one that allows GCs but prevents AFC formation and one that impairs selection in the GC. Both of these checkpoints fail in autoimmunity.  相似文献   

13.
NK cells differentiate in adult mice from bone marrow hemopoietic progenitors. Cytokines, including those that signal via receptors using the common cytokine receptor gamma-chain (gamma(c)), have been implicated at various stages of NK cell development. We have previously described committed NK cell precursors (NKPs), which have the capacity to generate NK cells, but not B, T, erythroid, or myeloid cells, after in vitro culture or transfer to a fetal thymic microenvironment. NKPs express the CD122 Ag (beta chain of the receptors for IL-2/IL-15), but lack other mature NK markers, including NK1.1, CD49b (DX5), or members of the Ly49 gene family. In this report, we have analyzed the roles for gamma(c)-dependent cytokines in the generation of bone marrow NKP and in their subsequent differentiation to mature NK cells in vivo. Normal numbers of NKPs are found in gamma(c)-deficient mice, suggesting that NK cell commitment is not dependent on IL-2, IL-4, IL-7, IL-9, IL-15, or IL-21. Although IL-2, IL-4, and IL-7 have been reported to influence NK cell differentiation, we find that mice deficient in any or all of these cytokines have normal NK cell numbers, phenotype, and effector functions. In contrast, IL-15 plays a dominant role in early NK cell differentiation by maintaining normal numbers of immature and mature NK cells in the bone marrow and spleen. Surprisingly, the few residual NK cells generated in absence of IL-15 appear relatively mature, expressing a variety of Ly49 receptors and demonstrating lytic and cytokine production capacity.  相似文献   

14.
New Zealand Black (NZB) mice develop a lupus-like syndrome. Although the precise immune defects leading to autoantibody production in these mice have not been characterized, they possess a number of immunologic abnormalities suggesting that B cell tolerance may be defective. In the bone marrow, immature self-reactive B cells that have failed to edit their receptors undergo apoptosis as a consequence of Ig receptor engagement. Splenic transitional T1 B cells are recent bone marrow emigrants that retain these signaling properties, ensuring that B cells recognizing self-Ags expressed only in the periphery are deleted from the naive B cell repertoire. In this study we report that this mechanism of tolerance is defective in NZB mice. We show that NZB T1 B cells are resistant to apoptosis after IgM cross-linking in vitro. Although extensive IgM cross-linking usually leads to deletion of T1 B cells, in NZB T1 B cells we found that it prevents mitochondrial membrane damage, inhibits activation of caspase-3, and promotes cell survival. Increased survival of NZB T1 B cells was associated with aberrant up-regulation of Bcl-2 after Ig receptor engagement. We also show that there is a markedly increased proportion of NZB T1 B cells that express elevated levels of Bcl-2 in vivo and provide evidence that up-regulation of Bcl-2 follows encounter with self-Ag in vivo. Thus, we propose that aberrant cell signaling in NZB T1 B cells leads to the survival of autoreactive B cells, which predisposes NZB mice to the development of autoimmunity.  相似文献   

15.
In response to encounter with self-Ag, autoreactive B cells may undergo secondary L chain gene rearrangement (receptor editing) and change the specificity of their Ag receptor. Knowing at what differentiative stage(s) developing B cells undergo receptor editing is important for understanding how self-reactive B cells are regulated. In this study, in mice with Ig transgenes coding for anti-self (DNA) Ab, we report dsDNA breaks indicative of ongoing secondary L chain rearrangement not only in bone marrow cells with a pre-B/B cell phenotype but also in immature/transitional splenic B cells with little or no surface IgM (sIgM(-/low)). L chain-edited transgenic B cells were detectable in spleen but not bone marrow and were still found to produce Ab specific for DNA (and apoptotic cells), albeit with lower affinity for DNA than the unedited transgenic Ab. We conclude that L chain editing in anti-DNA-transgenic B cells is not only ongoing in bone marrow but also in spleen. Indeed, transfer of sIgM(-/low) anti-DNA splenic B cells into SCID mice resulted in the appearance of a L chain editor (Vlambdax) in the serum of engrafted recipients. Finally, we also report evidence for ongoing L chain editing in sIgM(low) transitional splenic B cells of wild-type mice.  相似文献   

16.
17.
The MHC determines susceptibility and resistance to type 1 diabetes in humans and nonobese diabetic (NOD) mice. To investigate how a disease-associated MHC molecule shapes the T cell repertoire in NOD mice, we generated a series of tetramers from I-A(g7)/class II-associated invariant chain peptide precursors by peptide exchange. No CD4 T cell populations could be identified for two glutamic acid decarboxylase 65 peptides, but tetramers with a peptide mimetic recognized by the BDC-2.5 and other islet-specific T cell clones labeled a distinct population in the thymus of young NOD mice. Tetramer-positive cells were identified in the immature CD4(+)CD8(low) population that arises during positive selection, and in larger numbers in the more mature CD4(+)CD8(-) population. Tetramer labeling was specific based on the use of multiple control tetramers, including one with a single amino acid analog peptide in which a critical TCR contact residue was substituted. The T cell population was already present in the thymus of 2-wk-old NOD mice before the typical onset of insulitis and was detected in B10 mice congenic for the NOD MHC locus, but not B10 control mice. These results demonstrate that a T cell population can expand in the thymus of NOD mice to levels that are at least two to three orders of magnitude higher than estimated for a given specificity in the naive T cell pool. Based on these data, we propose a model in which I-A(g7) confers susceptibility to type 1 diabetes by biasing positive selection in the thymus and later presenting peptides from islet autoantigens to such T cells in the periphery.  相似文献   

18.
19.
Genetic control of T and B lymphocyte activation in nonobese diabetic mice.   总被引:1,自引:0,他引:1  
Type 1 diabetes in nonobese diabetic (NOD) mice is characterized by the infiltration of T and B cells into pancreatic islets. T cells bearing the TCR Vbeta3 chain are disproportionately represented in the earliest stages of islet infiltration (insulitis) despite clonal deletion of most Vbeta3(+) immature thymocytes by the mammary tumor virus-3 (Mtv-3) superantigen (SAg). In this report we showed that a high frequency of NOD Vbeta3(+) T cells that escape deletion are activated in vivo and that this phenotype is linked to the Mtv-3 locus. One potential mechanism of SAg presentation to peripheral T cells is by activated B cells. Consistent with this idea, we found that NOD mice harbor a significantly higher frequency of activated B cells than nondiabetes-prone strains. These activated NOD B cells expressed cell surface molecules consistent with APC function. At the molecular level, the IgH repertoire of activated B cells in NOD mice was equivalent to resting B cells, suggesting a polyclonal response in vivo. Genetic analysis of the activated B cell phenotype showed linkage to Idd1, the NOD MHC haplotype (H-2(g7)). Finally, Vbeta3(+) thymocyte deletion and peripheral T cell activation did not require B cells, suggesting that other APC populations are sufficient to generate both Mtv-3-linked phenotypes. These data provide insight into the genetic regulation of NOD autoreactive lymphocyte activation that may contribute to failure of peripheral tolerance and the pathogenesis of type I diabetes.  相似文献   

20.
One mechanism whereby B cells contribute to type 1 diabetes in nonobese diabetic (NOD) mice is as a subset of APCs that preferentially presents MHC class II-bound pancreatic beta cell Ags to autoreactive CD4 T cells. This results from their ability to use cell surface Ig to specifically capture beta cell Ags. Hence, we postulated a diabetogenic role for defects in the tolerance mechanisms normally blocking the maturation and/or activation of B cells expressing autoreactive Ig receptors. We compared B cell tolerance mechanisms in NOD mice with nonautoimmune strains by using the IgHEL and Ig3-83 transgenic systems, in which the majority of B cells recognize one defined Ag. NOD- and nonautoimmune-prone mice did not differ in ability to delete or receptor edit B cells recognizing membrane-bound self Ags. However, in contrast to the nonautoimmune-prone background, B cells recognizing soluble self Ags in NOD mice did not undergo partial deletion and were also not efficiently anergized. The defective induction of B cell tolerance to soluble autoantigens is most likely responsible for the generation of diabetogenic APC in NOD mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号