共查询到20条相似文献,搜索用时 15 毫秒
1.
Wilson AB 《Molecular ecology》2006,15(7):1857-1871
Continental glaciation has played a major role in shaping the present-day phylogeography of freshwater and terrestrial species in the Northern Hemisphere. Recent work suggests that coastal glaciation during ice ages may have also had a significant impact on marine species. The bay pipefish, Syngnathus leptorhynchus , is a near-shore Pacific coast fish species with an exceptionally wide latitudinal distribution, ranging from Bahia Santa Maria, Baja California to Prince William Sound, Alaska. Survey data indicate that S. leptorhynchus is experiencing a range expansion at the northern limit of its range, consistent with colonization from southern populations. The present study uses six novel microsatellite markers and mitochondrial DNA (mtDNA) sequence data to study the present-day population genetic structure of four coastal populations of S. leptorhynchus . Deficits in mtDNA and nuclear DNA diversity in northern populations from regions glaciated during the last glacial maximum (LGM) [ c . 18 000 years before present ( bp )] suggest that these populations were effected by glacial events. Direct estimates of population divergence times derived from both isolation and isolation-with-migration models of evolution are also consistent with a postglacial phylogenetic history of populations north of the LGM. Sequence data further indicate that a population at the southern end of the species range has been separated from the three northern populations since long before the last interglacial event ( c . 130 000 years bp ), suggesting that topographical features along the Pacific coast may maintain population separation in regions unimpacted by coastal glaciation. 相似文献
2.
Allozymes and mitochondrial DNA sequences were used to examine the phylogeographical history of the rough-skinned newt, Taricha granulosa, in western North America. Nineteen populations were analysed for allozyme variation at 45 loci, and 23 populations were analysed for cytochrome b sequence variation. Both data sets agree that populations in the southern part of the range are characterized by isolation by distance, whereas northern populations fit the expectations of a recent range expansion. However, the northern limit of isolation by distance (and the southern limit of range expansion) is located in Oregon State by the mtDNA data, and in Washington State by the allozyme data. Nevertheless, both data sets are consistent with the known Pleistocene history of western North America, with phylogenetically basal populations in central and northern California, and a recent range expansion in the north following the retreat of the Cordilleran ice sheet 10,000 years ago. Additionally, a population in Idaho, previously considered introduced from central California based on morphometric analyses, possesses a distinct mtDNA haplotype, suggesting it could be native. The relevance of these results for Pacific Northwest biogeography is discussed. 相似文献
3.
Cameron M. Nugent;Tony Kess;Barbara L. Langille;Samantha V. Beck;Steven Duffy;Amber Messmer;Nicole Smith;Sarah J. Lehnert;Brendan F. Wringe;Matthew Kent;Paul Bentzen;Ian R. Bradbury; 《Journal of Biogeography》2024,51(9):1767-1782
In northern environments, periods of isolation during Pleistocene glaciations and subsequent recolonization and secondary contact have had a significant influence on contemporary diversity of many species. The recent advent of high-resolution genomic analyses allows unprecedented power to resolve genomic signatures of such events in northern species. Here, we provide the highest resolution genomic characterization of Atlantic salmon in North America to date to infer glacial refugia and the geographic scales of post-glacial secondary contact. 相似文献
4.
The phylogeography and demographic history of two closely related species of the red wood ant (Formica pratensis and F. lugubris) were examined across Eurasia. The phylogeny based on a 1.5-kilobase mitochondrial DNA fragment, including the cytochrome b gene and part of the ND6 gene, showed one phylogeographical division in F. pratensis. This division (0.7% of nucleotide divergence) suggests postglacial colonization of western Europe and of a wide area ranging from Sweden on the west to Lake Baikal on the east from separate forest refugia. In two localities, mitochondrial DNA has been transferred from F. lugubris to F. pratensis and all the individuals of F. pratensis sampled from the Pyrenees had haplotypes clustering in the lugubris clade. No phylogeographical divisions were detected in F. lugubris. Comparison of species-wide phylogeography between the two sympatrically distributed species of ant demonstrates a difference in phylogeographical structure that implies different vicariant histories. However, over most of the species' distribution ranges, similar signs of demographic expansion predating the last glaciation and the lack of phylogeographical structure were found in both the eastern phylogroup of F. pratensis and F. lugubris. This finding is highly consistent with the results reported for all other boreal forest animal species studied to date in Eurasia. Contraction of the distribution range of each species to a single refugial area at different times during the late Pleistocene and a subsequent population expansion seem to be an explanation for the lack of phylogeographical structure across most of Eurasia in species that are ecologically associated with the boreal forest. 相似文献
5.
From August to September 2013, c. 21 specimens of the blue runner Caranx crysos were caught by commercial fishermen in two locations off the south coast of Newfoundland, Canada. These samples represent the first records of C. crysos in Newfoundland waters, and a potential northward range expansion of this species in the north‐western Atlantic Ocean. They also illustrate the importance of fisher‐derived sampling that spans times and locations outside of the limited range targeted by scientific surveys in this region. 相似文献
6.
Riginos C 《Molecular ecology》2010,19(20):4389-4390
How and why ecological communities change their species membership over time and space is a central issue in ecology and evolution. Phylogeographic approaches based on animal mitochondrial DNA sequences have been important for revealing historical patterns of individual species and can provide qualitative comparisons among species. Exciting new methods, particularly implementing approximate Bayesian computation (ABC – Beaumont et al. 2002 ), now allow model‐based quantitative comparisons among species and permit the probabilistic exploration of alternative community‐level hypotheses (see review by Hickerson et al. 2010 ). In this issue of Molecular Ecology, Ilves et al. (2010) use an ABC approach to bring fresh insights into the well‐studied question of how North Atlantic coastal species contracted and expanded their ranges in response to late Pleistocene/Holocene climate fluctuations. 相似文献
7.
Hanna M. Laakkonen Michael Hardman Petr Strelkov Risto Vinl 《Journal of evolutionary biology》2021,34(1):73-96
The amphi‐boreal faunal element comprises closely related species and conspecific populations with vicarious distributions in the North Atlantic and North Pacific basins. It originated from an initial trans‐Arctic dispersal in the Pliocene after the first opening of the Bering Strait, and subsequent inter‐oceanic vicariance through the Pleistocene when the passage through the Arctic was severed by glaciations and low sea levels. Opportunities for further trans‐Arctic dispersal have risen at times, however, and molecular data now expose more complex patterns of inter‐oceanic affinities and dispersal histories. For a general view on the trans‐Arctic dynamics and of the roles of potential dispersal–vicariance cycles in generating systematic diversity, we produced new phylogeographic data sets for amphi‐boreal taxa in 21 genera of invertebrates and vertebrates, and combined them with similar published data sets of mitochondrial coding gene variation, adding up to 89 inter‐oceanic comparisons involving molluscs, crustaceans, echinoderms, polychaetes, fishes and mammals. Only 39% of the cases correspond to a simple history of Pliocene divergence; in most taxonomical groups, the range of divergence estimates implies connections through the entire Pliocene–Pleistocene–Holocene time frame. Repeated inter‐oceanic exchange was inferred for 23 taxa, and the latest connection was usually post‐glacial. Such repeated invasions have usually led to secondary contacts and occasionally to widespread hybridization between the different invasion waves. Late‐ or post‐glacial exchange was inferred in 46% of the taxa, stressing the importance of the relatively recent invasions to the current diversity in the North Atlantic. Individual taxa also showed complex idiosyncratic patterns and histories, and several instances of cryptic speciation were recognized. In contrast to a simple inter‐oceanic vicariance scenario underlying amphi‐boreal speciation, the data expose complex patterns of reinvasion and reticulation that complicate the interpretation of taxon boundaries in the region. 相似文献
8.
In December 1997, one specimen of the Atlantic bumper, Chloroscombrus chrysurus was recorded for the first time in the Mediterranean Sea, off Almuñécar (Granada, Spain: 36° 43′ 26″ N; 3° 41′ 39″ W). This species probably entered the Mediterranean Sea via the Strait of Gibraltar. 相似文献
9.
10.
Both current and historical patterns of variation are relevant to understanding and managing ecological diversity. Recently derived species present a challenge to the reconstruction of historical patterns because neutral molecular data for these taxa are more likely to exhibit effects of recent and ongoing demographic processes. We studied geographical patterns of neutral molecular variation in a species thought to be of relatively recent origin, Tympanuchus phasianellus (sharp-tailed grouse), using mitochondrial control region sequences (CR-I), amplified fragment length polymorphisms (AFLP), and microsatellites. For historical context, we also analysed CR-I in all species of Tympanuchus. Within T. phasianellus, we found evidence for restricted gene flow between eastern and western portions of the species range, generally corresponding with the range boundary of T. p. columbianus and T. p. jamesi. The mismatch distribution and molecular clock estimates from the CR-I data suggested that all Tympanuchus underwent a range expansion prior to sorting of mitotypes among the species, and that sorting may have been delayed as a result of mutation-drift disequilibrium. This study illustrates the challenge of using genetic data to detect historical divergence in groups that are of relatively recent origin, or that have a history dominated by nonequilibrium conditions. We suggest that in such cases, morphological, ecological, and behavioural data may be particularly important adjuncts to molecular data for the recognition of historically or adaptively divergent groups. 相似文献
11.
Marcela G. M. Lima Janet C. Buckner José de Sousa e Silva‐Júnior Alexandre Aleixo Amely B. Martins Jean P. Boubli Andrés Link Izeni P. Farias Maria Nazareth da Silva Fabio Röhe Helder Queiroz Kenneth L. Chiou Anthony Di Fiore Michael E. Alfaro Jessica W. Lynch Alfaro 《Journal of Biogeography》2017,44(4):810-820
12.
Data analysis in phylogeographic investigations is typically conducted in either a qualitative manner, or alternatively via the testing of null hypotheses. The former, where inferences about population processes are derived from geographical patterns of genetic variation, may be subject to confirmation bias and prone to overinterpretation. Testing the predictions of null hypotheses is arguably less prone to bias than qualitative approaches, but only if the tested hypotheses are biologically meaningful. As it is difficult to know a priori if this is the case, there is the general need for additional methodological approaches in phylogeographic research. Here, we explore an alternative method for analysing phylogeographic data that utilizes information theory to quantify the probability of multiple hypotheses given the data. We accomplish this by augmenting the model‐selection procedure implemented in ima with calculations of Akaike Information Criterion scores and model probabilities. We generate a ranking of 17 models each representing a set of historical evolutionary processes that may have contributed to the evolution of Plethodon idahoensis, and then quantify the relative strength of support for each hypothesis given the data using metrics borrowed from information theory. Our results suggest that two models have high probability given the data. Each of these models includes population divergence and estimates of ancestral θ that differ from estimates of descendent θ, inferences consistent with prior work in this system. However, the models disagree in that one includes migration as a parameter and one does not, suggesting that there are two regions of parameter space that produce model likelihoods that are similar in magnitude given our data. Results of a simulation study suggest that when data are simulated with migration, most of the optimal models include migration as a parameter, and further that when all of the shared polymorphism results from incomplete lineage sorting, most of the optimal models do not. The results could also indicate a lack of precision, which may be a product of the amount of data that we have collected. In any case, the information‐theoretic metrics that we have applied to the analysis of our data are statistically rigorous, as are hypothesis‐testing approaches, but move beyond the ‘reject/fail to reject’ dichotomy of conventional hypothesis testing in a manner that provides considerably more flexibility to researchers. 相似文献
13.
The intertidal biota of the North Atlantic is characterized by two disjunct communities (North American and European) exposed to different climatic regimes during the Pleistocene and in the Holocene. We collect multilocus DNA sequence data from the nearshore fish Pholis gunnellus to help uncover processes determining biogeographical persistence during periodic coastal glaciations. Coalescent-based estimates from the multilocus DNA sequence data suggest that P. gunnellus persisted on both sides of the North Atlantic throughout the last two glacial maxima (> 202,000 years) with little trans-Atlantic gene flow since divergence, very little structure among populations within Europe (Phi(ST) < 0.05) and some structure within the North American coastline (Phi(ST) = 0.0-0.21). Although the ecological flexibility and high local migration of P. gunnellus could have enhanced this species' survival across the Atlantic, logistic regression did not find a significant determinant of trans-Atlantic persistence when considering 12 other North Atlantic phylogeographical studies from the literature. 相似文献
14.
Kurt E. Galbreath David J. Hafner Kelly R. Zamudio 《Evolution; international journal of organic evolution》2009,63(11):2848-2863
The genetic consequences of climate-driven range fluctuation during the Pleistocene have been well studied for temperate species, but cold-adapted (e.g., alpine, arctic) species that may have responded uniquely to past climatic events have received less attention. In particular, we have no a priori expectation for long-term evolutionary consequences of elevation shifts into and out of sky islands by species adapted to alpine habitats. Here, we examined the influence of elevation shifts on genetic differentiation and historical demography in an alpine specialist, the American pika ( Ochotona princeps ). Pika populations are divided into five genetic lineages that evolved in association with separate mountain systems, rather than lineages that reflect individual sky islands. This suggests a role for glacial-period elevation shifts in promoting gene flow among high-elevation populations and maintaining regional cohesion of genetic lineages. We detected a signature of recent demographic decline in all lineages, consistent with the expectation that Holocene climate warming has driven range retraction in southern lineages, but unexpected for northern populations that presumably represent postglacial expansion. An ecological niche model of past and future pika distributions highlights the influence of climate on species range and indicates that the distribution of genetic diversity may change dramatically with continued climate warming. 相似文献
15.
16.
Understanding the factors that contribute to the formation of population genetic structure is a central goal of phylogeographic research, but achieving this goal can be complicated by the stochastic variance inherent to genetic processes. Statistical approaches to testing phylogeographic hypotheses accommodate this stochasticity by evaluating competing models of putative historical population structure, often by simulating null distributions of the expected variance. The effectiveness of these tests depends on the biological realism of the models. Information from the fossil record can aid in reconstructing the historical distributions of some taxa. However, for the majority of taxa, which lack sufficient fossils, paleodistributional modeling can provide valuable spatial-geographic data concerning ancestral distributions. Paleodistributional models are generated by projecting ecological niche models, which predict the current distribution of each species, onto a model of past climatic conditions. Here, we generate paleodistributional models describing the suitable habitat during the last glacial maximum for lineages from the mesic forests of the Pacific Northwest of North America, and use these models to generate alternative phylogeographic hypotheses. Coalescent simulations are then used to test these hypotheses to improve our understanding of the historical events that promoted the formation of population genetic structure in this ecosystem. Results from Pacific Northwest mesic forest organisms demonstrate the utility of these combined approaches. Paleodistribution models and population genetic structure are congruent across three amphibian lineages, suggesting that they have responded in a concerted manner to environmental change. Two other species, a willow and a water vole, despite being currently codistributed and having similar population genetic structure, were predicted by the paleodistributional model to have had markedly different distributions during the last glacial maximum. This suggests that congruent phylogeographic patterns can arise from incongruent ancestral distributions. Paleodistributional models introduce a much-needed spatial-geographic perspective to statistical phylogeography. In conjunction with coalescent models of population genetic structure, they have the potential to improve our understanding of the factors that promote population divergence and ultimately produce regional patterns of biodiversity. 相似文献
17.
Rosenberg NA 《Evolution; international journal of organic evolution》2007,61(2):317-323
The observation of monophyly for a specified set of genealogical lineages is often used to place the lineages into a distinctive taxonomic entity. However, it is sometimes possible that monophyly of the lineages can occur by chance as an outcome of the random branching of lineages within a single taxon. Thus, especially for small samples, an observation of monophyly for a set of lineages--even if strongly supported statistically--does not necessarily indicate that the lineages are from a distinctive group. Here I develop a test of the null hypothesis that monophyly is a chance outcome of random branching. I also compute the sample size required so that the probability of chance occurrence of monophyly of a specified set of lineages lies below a prescribed tolerance. Under the null model of random branching, the probability that monophyly of the lineages in an index group occurs by chance is substantial if the sample is highly asymmetric, that is, if only a few of the sampled lineages are from the index group, or if only a few lineages are external to the group. If sample sizes are similar inside and outside the group of interest, however, chance occurrence of monophyly can be rejected at stringent significance levels (P < 10(-5)) even for quite small samples (approximately 20 total lineages). For a fixed total sample size, rejection of the null hypothesis of random branching in a single taxon occurs at the most stringent level if samples of nearly equal size inside and outside the index group--with a slightly greater size within the index group--are used. Similar results apply, with smaller sample sizes needed, when reciprocal monophyly of two groups, rather than monophyly of a single group, is of interest. The results suggest minimal sample sizes required for inferences to be made about taxonomic distinctiveness from observations of monophyly. 相似文献
18.
Liu-Yang Wang ;Hiroshi Ikeda ;Teng-Liang Liu ;Yu-Jin Wang ;Jian-Quan Liu 《Acta Botanica Sinica》2009,(7):698-706
To date, little is still known about how alpine species occurring in the Qinghai-Tibetan Plateau (QTP) responded to past climatic oscillations. Here, by using variations of the chloroplast trnT-L, we examined the genetic distribution pattern of 101 individuals of Potentilla glabra, comprising both the interior QTP and the plateau edge. Phylogenetic and network analyses of 31 recovered haplotypes identified three tentative clades (A, B and C). Analysis of molecular variance (AMOVA) revealed that most of the genetic variability was found within populations (0.693), while differentiations between populations were obviously distinct (Fst -- 0.307). Two independent range expansions within clades A and B occurring at approximately 316 and 201 thousand years ago (kya) were recovered from the hierarchical mismatch analysis, and these two expansions were also confirmed by Fu's Fs values and 'g' tests. However, distant distributions of clade C and private haplotypes from clades A and B suggest that they had survived the Last Glacial Maximum (LGM) and previous glaciers in situ since their origins. Our findings based on available limited samples support that multiple refugia of a few cold-enduring species had been maintained in the QTP platform during LGM and/or previous glacial stages. 相似文献
19.
STEPHEN R. KELLER MATTHEW S. OLSON SALIM SILIM WILLIAM SCHROEDER PETER TIFFIN 《Molecular ecology》2010,19(6):1212-1226
Rapid range expansions can cause pervasive changes in the genetic diversity and structure of populations. The postglacial history of the Balsam Poplar, Populus balsamifera, involved the colonization of most of northern North America, an area largely covered by continental ice sheets during the last glacial maximum. To characterize how this expansion shaped genomic diversity within and among populations, we developed 412 SNP markers that we assayed for a range‐wide sample of 474 individuals sampled from 34 populations. We complemented the SNP data set with DNA sequence data from 11 nuclear loci from 94 individuals, and used coalescent analyses to estimate historical population size, demographic growth, and patterns of migration. Bayesian clustering identified three geographically separated demes found in the Northern, Central, and Eastern portions of the species’ range. These demes varied significantly in nucleotide diversity, the abundance of private polymorphisms, and population substructure. Most measures supported the Central deme as descended from the primary refuge of diversity. Both SNPs and sequence data suggested recent population growth, and coalescent analyses of historical migration suggested a massive expansion from the Centre to the North and East. Collectively, these data demonstrate the strong influence that range expansions exert on genomic diversity, both within local populations and across the range. Our results suggest that an in‐depth knowledge of nucleotide diversity following expansion requires sampling within multiple populations, and highlight the utility of combining insights from different data types in population genomic studies. 相似文献
20.
We used frequency-based and coalescent-based phylogeographic analysis of sea urchin (Strongylocentrotus droebachiensis) mitochondrial DNA (mtDNA) sequences and previously published microsatellite data to understand the relative influence of colonization and gene flow from older (north Pacific) and younger (northeast Atlantic) sea urchin populations on genetic variation in the northwest Atlantic. We found strong evidence of survival of northwestern Atlantic populations in local Pleistocene glacial refugia: most haplotypes were the same as or closely related to Pacific haplotypes, with deep gene genealogies that reflect divergence times within the northwestern Atlantic that are much older than the last glacial maximum. We detected gene flow across the North Atlantic in the form of haplotypes shared with or recently descended from European populations. We also found evidence of significant introgression of haplotypes from a closely related species (S. pallidus). The relative magnitude of gene flow estimated by coalescent methods (and the effective population size differences among oceanic regions) depended on the genetic marker used. In general, we found very small effective population size in the northeastern Atlantic and high trans-Arctic gene flow between the Pacific and northwestern Atlantic. Both analyses suggested significant back-migration to the Pacific. However, microsatellites more strongly reflected older Pacific migration (with similar effective population sizes across the Arctic), whereas mtDNA sequences appeared to be more sensitive to recent trans- Atlantic dispersal (with larger differences in effective population size). These differences across marker types might have several biological or methodological causes, and they suggest caution in interpretation of the results from a single locus or class of markers. 相似文献