首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uracil DNA glycosylase excises uracil residues from DNA that can arise as a result of deamination of cytosine or incorporation of dUMP residues by DNA polymerase. We have carried out a detailed study to define the specificities and the kinetic parameters for its substrates by using a number of synthetic oligodeoxyribonucleotides of varying lengths and containing uracil residue(s) in various locations. The results show that the Escherichia coli enzyme can remove a 5'-terminal U from an oligomer only if the 5'-end is phosphorylated. The enzyme does not remove U residues from a 3'-terminal position, but U residues can be excised from oligonucleotides with either pd(UN)p or pd(UNN) 3'-termini. The oligomer d(UUUUT) can have the second or third U residues from the 5'-end excised even when the neighboring site is an abasic site (3' or 5', respectively). On the basis of these findings, pd(UN)p was anticipated to be the smallest size substrate. Results show detectable amounts of U release from the substrate pd(UT)p; however, significantly higher amounts of U release were observed from pd(UT-sugar) or pd(UTT). Determinations of the Km and Vmax values show that the different rates of U excision from oligomers of different sizes (trimeric to pentameric) but containing U in the same position are largely due to the differences in the Km values, whereas the different rates of U excision from the substrates of the same size but containing U in different positions are largely due to different Vmax values.  相似文献   

2.
Uracil DNA glycosylase (UDG), a ubiquitous and highly specific enzyme, commences the uracil excision repair pathway. Structural studies have shown that the tyrosine in a highly conserved GQDPY water-activating loop of UDGs blocks the entry of thymine or purines into the active site pocket. To further understand the role of this tyrosine (Y66 in Escherichia coli UDG), we have overproduced and characterized Y66F, Y66H, Y66L and Y66W mutants. The complexes of the wild-type, Y66F, Y66H and Y66L UDGs with uracil DNA glycosylase inhibitor (Ugi) (a proteinaceous substrate mimic) were stable to 8 M urea. However, some dissociation of the complex involving the Y66W UDG occurred at this concentration of urea. The catalytic efficiencies (Vmax / Km) of the Y66L and Y66F mutants were similar to those of the wild-type UDG. However, the Y66W and Y66H mutants were ~7- and ~173-fold compromised, respectively, in their activities. Interestingly, the Y66W mutation has resulted in an enzyme which is resistant to product inhibition. Preferential utilization of a substrate enabling a long range contact between the –5 phosphate (upstream to the scissile uracil) and the enzyme, and the results of modeling studies showing that the uracil-binding cavity of Y66W is wider than those of the wild type and other mutant UDGs, suggest a weaker interaction between uracil and the Y66W mutant. Furthermore, the fluorescence spectroscopy of UDGs and their complexes with Ugi, in the presence of uracil or its analog, 5-bromouracil, suggests compromised binding of uracil in the active site pocket of the Y66W mutant. Lack of inhibition of the Y66W UDG by apyrimidinic DNA (AP-DNA) is discussed to highlight a potential additional role of Y66 in shielding the toxic effects of AP-DNA, by lowering the rate of its release for subsequent recognition by an AP endonuclease.  相似文献   

3.
Kinetic parameters for uracil DNA glycosylase (E. coli)-catalysed excision of uracil from DNA oligomers containing dUMP in different structural contexts were determined. Our results show that single-stranded oligonucleotides (unstructured) are used as somewhat better substrates than the double-stranded oligonucleotides. This is mainly because of the favourable Vmax value of the enzyme for single-stranded substrates. More interestingly, however, we found that uracil release from loop regions of DNA hairpins is extremely inefficient. The poor efficiency with which uracil is excised from loop regions is a result of both increased Km and lowered Vmax values. This observation may have significant implications in uracil DNA glycosylase-directed repair of DNA segments that can be extruded as hairpins. In addition, these studies are useful in designing oligonucleotides for various applications in DNA research where the use of uracil DNA glycosylase is sought.  相似文献   

4.
Escherichia coli MutY is an adenine DNA glycosylase active on DNA substrates containing A/G, A/C, or A/8-oxoG mismatches. Although MutY can form a covalent intermediate with its DNA substrates, its possession of 3' apurinic lyase activity is controversial. To study the reaction mechanism of MutY, the conserved Asp-138 was mutated to Asn and the reactivity of this mutant MutY protein determined. The glycosylase activity was completely abolished in the D138N MutY mutant. The D138N mutant and wild-type MutY protein also possessed different DNA binding activities with various mismatches. Several lysine residues were identified in the proximity of the active site by analyzing the imino-covalent MutY-DNA intermediate. Mutation of Lys-157 and Lys-158 both individually and combined, had no effect on MutY activities but the K142A mutant protein was unable to form Schiff base intermediates with DNA substrates. However, the MutY K142A mutant could still bind DNA substrates and had adenine glycosylase activity. Surprisingly, the K142A mutant MutY, but not the wild-type enzyme, could promote a beta/delta-elimination on apurinic DNA. Our results suggest that Asp-138 acts as a general base to deprotonate either the epsilon-amine group of Lys-142 or to activate a water molecule and the resulting apurinic DNA then reacts with Lys-142 to form the Schiff base intermediate with DNA. With the K142A mutant, Asp-138 activates a water molecule to attack the C1' of the adenosine; the resulting apurinic DNA is cleaved through beta/delta-elimination without Schiff base formation.  相似文献   

5.
Uracil DNA glycosylase inhibitor (Ugi), a protein of 9.4 kDa consists of a five-stranded antiparallel beta sheet flanked on either side by single alpha helices, forms an exclusive complex with uracil DNA glycosylases (UDGs) that is stable in 8M urea. We report on the mutational analysis of various structural elements in Ugi, two of which (hydrophobic pocket and the beta1 edge) establish key interactions with Escherichia coli UDG. The point mutations in helix alpha1 (amino acid residues 3-14) do not affect the stability of the UDG-Ugi complexes in urea. And, while the complex of the deltaN13 mutant with UDG is stable in only approximately 4M urea, its overall structure and thermostability are maintained. The identity of P37, stacked between P26 and W68, was not important for the maintenance of the hydrophobic pocket or for the stability of the complex. However, the M24K mutation at the rim of the hydrophobic pocket lowered the stability of the complex in 6M urea. On the other hand, non-conservative mutations E49G, D61G (cancels the only ionic interaction with UDG) and N76K, in three of the loops connecting the beta strands, conferred no such phenotype. The L23R and S21P mutations (beta1 edge) at the UDG-Ugi interface, and the N35D mutation far from the interface resulted in poor stability of the complex. However, the stability of the complexes was restored in the L23A, S21T and N35A mutations. These analyses and the studies on the exchange of Ugi mutants in preformed complexes with the substrate or the native Ugi have provided insights into the two-step mechanism of UDG-Ugi complex formation. Finally, we discuss the application of the Ugi isolates in overproduction of UDG mutants, toxic to cells.  相似文献   

6.
Mapping the active site tyrosine of Escherichia coli DNA gyrase   总被引:40,自引:0,他引:40  
We have identified tyrosine 122 of the A subunit of Escherichia coli DNA gyrase as the tyrosine that becomes covalently bound to DNA when the enzyme breaks the phosphodiester bonds of DNA. The covalent gyrase X DNA complex was isolated following cleavage of the DNA by gyrase in the presence of the gyrase inhibitor oxolinic acid. The active site tyrosine was first mapped to two overlapping peptides. Its precise position in the sequence of the A subunit of gyrase was then determined by sequencing of a peptide bound to DNA. We also present a method for mapping sites of DNA attachment in a protein of known amino acid sequence. The covalent complex of DNA and protein is treated with proteases that cut specifically. The electrophoretic mobilities of the resulting peptide-bound DNA molecules are correlated with the sizes of the bound peptides, allowing determination of the site of attachment of the DNA.  相似文献   

7.
Uracil DNA glycosylase (UDG), a highly conserved DNA repair enzyme, initiates the uracil excision repair pathway. Ugi, a bacteriophage-encoded peptide, potently inhibits UDGs by serving as a remarkable substrate mimic. Structure determination of UDGs has identified regions important for the exquisite specificity in the detection and removal of uracils from DNA and in their interaction with Ugi. In this study, we carried out mutational analysis of the Escherichia coli UDG at Leu191 within the 187HPSPLS192 motif (DNA intercalation loop). We show that with the decrease in side chain length at position 191, the stability of the UDG-Ugi complexes regresses. Further, while the L191V and L191F mutants were as efficient as the wild type protein, the L191A and L191G mutants retained only 10 and 1% of the enzymatic activity, respectively. Importantly, however, substitution of Leu191 with smaller side chains had no effect on the relative efficiencies of uracil excision from the single-stranded and a corresponding double-stranded substrate. Our results suggest that leucine within the HPSPLS motif is crucial for the uracil excision activity of UDG, and it contributes to the formation of a physiologically irreversible complex with Ugi. We also envisage a role for Leu191 in stabilizing the productive enzyme-substrate complex.  相似文献   

8.
The role of the conserved histidine-187 located in the leucine intercalation loop of Escherichia coli uracil-DNA glycosylase (Ung) was investigated. Using site-directed mutagenesis, an Ung H187D mutant protein was created, overproduced, purified to apparent homogeneity, and characterized in comparison to wild-type Ung. The properties of Ung H187D differed from Ung with respect to specific activity, substrate specificity, DNA binding, pH optimum, and inhibition by uracil analogues. Ung H187D exhibited a 55000-fold lower specific activity and a shift in pH optimum from pH 8.0 to 7.0. Under reaction conditions optimal for wild-type Ung (pH 8.0), the substrate preference of Ung H187D on defined single- and double-stranded oligonucleotides (25-mers) containing a site-specific uracil target was U/G-25-mer > U-25-mer > U/A-25-mer. However, Ung H187D processed these same DNA substrates at comparable rates at pH 7.0 and the activity was stimulated approximately 3-fold relative to the U-25-mer substrate. Ung H187D was less susceptible than Ung to inhibition by uracil, 6-amino uracil, and 5-fluorouracil. Using UV-catalyzed protein/DNA cross-linking to measure DNA binding affinity, the efficiency of Ung H187D binding to thymine-, uracil-, and apyrimidinic-site-containing DNA was (dT20) = (dT19-U) >/= (dT19-AP). Comparative analysis of the biochemical properties and the X-ray crystallographic structures of Ung and Ung H187D [Putnam, C. D., Shroyer, M. J. N., Lundquist, A. J., Mol, C. D., Arvai, A. S., Mosbaugh, D. W., and Tainer, J. A. (1999) J. Mol. Biol. 287, 331-346] provided insight regarding the role of His-187 in the catalytic mechanism of glycosylic bond cleavage. A novel mechanism is proposed wherein the developing negative charge on the uracil ring and concomitant polarization of the N1-C1' bond is sustained by resonance effects and hydrogen bonding involving the imidazole side chain of His-187.  相似文献   

9.
The active site of aspartate transcarbamoylase from Escherichia coli was probed by studying the inhibitory effects of substrate analogues on the catalytic subunit of the enzyme. The inhibitors were chosen to satisfy the structural requirements for binding to either the phosphate or the dicarboxylate region. In addition, they also contained a side chain that would extend into the normal position occupied by the carbamoyl group. All the compounds tested showed competitive inhibition against carbamoyl phosphate. The ionic character of the side chain was found to be highly important in determining the affinity of the inhibitor. On the other hand, very little effect on binding was produced by changing the geometry of the functional group from trigonal to tetrahedral. Our findings suggest that the electrostatic stabilization of the negative charge that develops in the transition state may be a major factor in promoting catalysis. From the available X-ray diffraction data, we propose His-134 as the residue most likely to participate in this interaction. These results have significant implications on the design of reversible and irreversible inhibitors to this enzyme.  相似文献   

10.
Mismatch uracil DNA glycosylase (Mug) from Escherichia coli is an initiating enzyme in the base-excision repair pathway. As with other DNA glycosylases, the abasic product is potentially more harmful than the initial lesion. Since Mug is known to bind its product tightly, inhibiting enzyme turnover, understanding how Mug binds DNA is of significance when considering how Mug interacts with downstream enzymes in the base-excision repair pathway. We have demonstrated differential binding modes of Mug between its substrate and abasic DNA product using both band shift and fluorescence anisotropy assays. Mug binds its product cooperatively, and a stoichiometric analysis of DNA binding, catalytic activity and salt-dependence indicates that dimer formation is of functional significance in both catalytic activity and product binding. This is the first report of cooperativity in the uracil DNA glycosylase superfamily of enzymes, and forms the basis of product inhibition in Mug. It therefore provides a new perspective on abasic site protection and the findings are discussed in the context of downstream lesion processing and enzyme communication in the base excision repair pathway.  相似文献   

11.
Shaw RW  Feller JA  Bloom LB 《DNA Repair》2004,3(10):1273-1283
Uracil DNA glycosylase (UDG) excises uracil from DNA to initiate repair of this lesion. This important DNA repair enzyme is conserved in viruses, bacteria, and eukaryotes. One residue that is conserved among all the members of the UDG family is a phenylalanine that stacks with uracil when it is flipped out of the DNA helix into the enzyme active site. To determine what contribution this conserved Phe residue makes to the activity of UDG, Phe-77 in the Escherichia coli enzyme was mutated to three different amino acid residues, alanine (UDG-F77A), asparagine (UDG-F77N), and tyrosine (UDG-F77Y). The effects of these mutations were measured on the steady-state and pre-steady-state kinetics of uracil excision in addition to enzyme.DNA binding kinetics. The overall excision activity of each of the mutants was reduced relative to the wild-type enzyme; however, each mutation gave rise to a different kinetic phenotype with different effects on substrate binding and catalysis. The excision activity of UDG-F77N was the most severely compromised, but this enzyme still bound to uracil-containing DNA at about the same rate as wild-type UDG. In contrast, the decrease in the excision activity of UDG-F77A is likely to reflect a greater reduction in uracil-DNA binding than in the catalytic step. Overall, the effects of the mutations on catalysis are best correlated with the polarity of the substituted residue such that an increase in polarity decreases the efficiency of uracil excision.  相似文献   

12.
Uracil, a promutagenic base, arises in DNA by spontaneous deamination of cytosine or by the malfunctioning of DNA polymerases. To maintain the genomic integrity, cells possess a highly conserved base excision repair enzyme, uracil-DNA glycosylase (UDG). UDGs have a notably high turnover number and strict specificity for uracil in DNA. UDGs are inhibited by a small proteinaceous inhibitor, Ugi, which acts as a transition state substrate mimic. Crystal structure studies have identified the residues crucial in catalysis, and in their interaction with Ugi. Here, we report on the mutational analyses of D64 (D64H and D64N) and H187 (H187C, H187L and H187R) in the active site pocket of Escherichia coli UDG. The mutants were compromised in uracil excision by approximately 200-25,000 fold when compared to the native protein. In contrast, our analysis of the in vivo formed UDG-Ugi complexes on urea gels shows that D64 and H187 contribute minimally to the interaction of the two proteins. Thus, our findings provide further evidence to the primary function of D64 and H187 in catalysis.  相似文献   

13.
Drohat AC  Stivers JT 《Biochemistry》2000,39(39):11865-11875
Uracil DNA glycosylase (UDG) cleaves the glycosidic bond of deoxyuridine in DNA using a hydrolytic mechanism, with an overall catalytic rate enhancement of 10(12)-fold over the solution reaction. The nature of the enzyme-substrate interactions that lead to this large rate enhancement are key to understanding enzymatic DNA repair. Using (1)H and heteronuclear NMR spectroscopy, we have characterized one such interaction in the ternary product complex of Escherichia coli UDG, the short (2.7 A) H bond between His187 N(epsilon)(2) and uracil O2. The H bond proton is highly deshielded at 15.6 ppm, indicating a short N-O distance and exhibits a solvent exchange rate that is 400- and 10(5)-fold slower than free imidazole at pH 7.5 and pH 10, respectively. Heteronuclear NMR experiments at neutral pH show that this H bond involves the neutral imidazole form of His187 and the N1-O2 imidate form of uracil. The excellent correspondence of the pK(a) for the disappearance of the H bond (pK(a) = 6.3 +/- 0.1) with the previously determined pK(a) = 6.4 for the N1 proton of enzyme-bound uracil indicates that the H bond requires negative charge on uracil O2 [Drohat, A. C., and Stivers, J. T. (2000) J. Am. Chem. Soc. 122, 1840-1841]. Although the above characteristics suggest a short strong H bond, the D/H fractionation factor of phi = 1.0 is more typical of a normal H bond. This unexpected observation may reflect a large donor-acceptor pK(a) mismatch or the net result of two opposing effects on vibrational frequencies: decreased N-H bond stretching frequencies (phi < 1) and increased bending frequencies (phi > 1) relative to the O-H bonds of water. The role of this H bond in catalysis by UDG and several approaches to quantify the H bond energy are discussed.  相似文献   

14.
Escherichia coli uracil DNA glycosylase (UDG) catalyzes the hydrolysis of premutagenic uracil bases in DNA by flipping the deoxyuridine from the DNA helix [Stivers, J. T., et al. (1999) Biochemistry 38, 952]. A general acid-base mechanism has been proposed whereby His187 facilitates leaving group departure by protonating the O2 of uracil and Asp64 activates a water molecule for nucleophilic attack at C1' of the deoxyribose. Detailed kinetic studies on the H187Q, H187A, and D64N mutant enzymes indicate that Asp64 and His187 stabilize the chemical transition state by 5.3 and 4.8 kcal/mol, respectively, with little effect on substrate or product binding. The pH dependence of k(cat) for wild-type and H187Q UDG indicates that an unprotonated group in the enzyme-substrate complex (pK(a) = 6.2 +/- 0.2) is required for catalysis. This unprotonated group has a small DeltaH of ionization (-0.4 +/- 1.7 kcal/mol) and is absent in the pH profile for D64N UDG, suggesting that it corresponds to the general base Asp64. The pH dependence of k(cat) for wild-type, H187Q, and D64N UDG shows no evidence for an essential protonated group over the pH range of 5.5-10. Hence, the pK(a) of His187 must be outside this pH range if it serves as an electrophilic catalyst. These results support a mechanism in which Asp64 serves as the general base and His187 acts as a neutral electrophile, stabilizing a developing negative charge on uracil O2 in the transition state. In the following paper of this issue we establish by crystallography and heteronuclear NMR spectroscopy that the imidazole of His187 is neutral during the catalytic cycle of UDG.  相似文献   

15.
The structure of native and modified uracil DNA glycosylase from E. coli in solution was studied by synchrotron small-angle X-ray scattering. The modified enzyme (6His-uracyl DNA glycosylase) differs from the native one by the presence of an additional N-terminal 11-meric sequence amino acid residues including a block of six His residues. It was found that the conformations of these enzymes in solution at moderate ionic strength (60 mM NaCI) substantially differ in spite of minimal differences in the amino acid sequences and functional activity. The structure of native uracil DNA glycosylase in solution is close to that in crystal, showing a tendency for association. The interaction of this enzyme with nonhydrolyzable analogues of DNA ligands causes a partial dissociation of associates and a compactization of protein structure. At the same time, 6His-uracyl DNA glycosylase has a compact structure essentially different from the crystal one. A decrease in the ionic strength of solution results in a partial disruption of compact structure of the modified protein, without changes in its functional activity.  相似文献   

16.
Asparagine synthetase catalyzes the ATP-dependent formation of L-asparagine from L-aspartate and L-glutamine, via a beta-aspartyl-AMP intermediate. Since interfering with this enzyme activity might be useful for treating leukemia and solid tumors, we have sought small-molecule inhibitors of Escherichia coli asparagine synthetase B (AS-B) as a model system for the human enzyme. Prior work showed that L-cysteine sulfinic acid competitively inhibits this enzyme by interfering with L-aspartate binding. Here, we demonstrate that cysteine sulfinic acid is also a partial substrate for E. coli asparagine synthetase, acting as a nucleophile to form the sulfur analogue of beta-aspartyl-AMP, which is subsequently hydrolyzed back to cysteine sulfinic acid and AMP in a futile cycle. While cysteine sulfinic acid did not itself constitute a clinically useful inhibitor of asparagine synthetase B, these results suggested that replacing this linkage by a more stable analogue might lead to a more potent inhibitor. A sulfoximine reported recently by Koizumi et al. as a competitive inhibitor of the ammonia-dependent E. coli asparagine synthetase A (AS-A) [Koizumi, M., Hiratake, J., Nakatsu, T., Kato, H., and Oda, J. (1999) J. Am. Chem. Soc. 121, 5799-5800] can be regarded as such a species. We found that this sulfoximine also inhibited AS-B, effectively irreversibly. Unlike either the cysteine sulfinic acid interaction with AS-B or the sulfoximine interaction with AS-A, only AS-B productively engaged in asparagine synthesis could be inactivated by the sulfoximine; free enzyme was unaffected even after extended incubation with the sulfoximine. Taken together, these results support the notion that sulfur-containing analogues of aspartate can serve as platforms for developing useful inhibitors of AS-B.  相似文献   

17.
The current model of DNA replication in Escherichia coli postulates continuous synthesis of the leading strand, based on in vitro experiments with purified enzymes. In contrast, in vivo experiments in E. coli and its bacteriophages, in which maturation of replication intermediates was blocked, report discontinuous DNA synthesis of both the lagging and the leading strands. To address this discrepancy, we analyzed nascent DNA species from ThyA+ E. coli cells replicating their DNA in ligase-deficient conditions to block maturation of replication intermediates. We report here that the bulk of the newly synthesized DNA isolated from ligase-deficient cells have a length between 0.3 and 3 kb, with a minor fraction being longer that 11 kb but shorter than the chromosome. The low molecular weight of the replication intermediates is unchanged by blocking linear DNA processing with a recBCD mutation or by blocking uracil excision with an ung mutation. These results are consistent with the previously proposed discontinuous replication of the leading strand in E. coli.  相似文献   

18.
Excision of uracil from tetraloop hairpins and single stranded ('unstructured') oligodeoxyribonucleotides by Escherichia coli uracil DNA glycosylase has been investigated. We show that, compared with a single stranded reference substrate, uracil from the first, second, third and the fourth positions of the loops is excised with highly variable efficiencies of 3.21, 0.37, 5.9 and 66.8%, respectively. More importantly, inclusion of E.coli single stranded DNA binding protein (SSB) in the reactions resulted in approximately 7-140-fold increase in the efficiency of uracil excision from the first, second or the third position in the loop but showed no significant effect on its excision from the fourth position. In contrast, the presence of SSB decreased uracil excision from the single stranded ('unstructured') substrates approximately 2-3-fold. The kinetic studies show that the increased efficiency of uracil release from the first, second and the third positions of the tetraloops is due to a combination of both the improved substrate binding and a large increase in the catalytic rates. On the other hand, the decreased efficiency of uracil release from the single stranded substrates ('unstructured') is mostly due to the lowering of the catalytic rates. Chemical probing with KMnO4showed that the presence of SSB resulted in the reduction of cleavage of the nucleotides in the vicinity of dUMP residue in single stranded substrates but their increased susceptibility in the hairpin substrates. We discuss these results to propose that excision of uracil from DNA-SSB complexes by uracil DNA glycosylase involves base flipping. The use of SSB in the various applications of uracil DNA glycosylase is also discussed.  相似文献   

19.
R M Lynn  J C Wang 《Proteins》1989,6(3):231-239
Tyrosine 319 of E. coli topoisomerase I is shown to be the active site tyrosine that becomes covalently attached to a DNA 5' phosphoryl group during the transient breakage of a DNA internucleotide bond by the enzyme. The tyrosine was mapped by trapping the covalent complex between the DNA and DNA topoisomerase I, digesting the complex exhaustively with trypsin, and sequencing the DNA-linked tryptic peptide. Site-directed mutagenesis converting Tyr-319 to a serine or phenylalanine completely inactivates the enzyme. The structure of the enzyme and its catalysis of DNA strand breakage, passage, and rejoining are discussed in terms of the available information.  相似文献   

20.
The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号