首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uracil DNA glycosylase (UDG), a ubiquitous and highly specific enzyme, commences the uracil excision repair pathway. Structural studies have shown that the tyrosine in a highly conserved GQDPY water-activating loop of UDGs blocks the entry of thymine or purines into the active site pocket. To further understand the role of this tyrosine (Y66 in Escherichia coli UDG), we have overproduced and characterized Y66F, Y66H, Y66L and Y66W mutants. The complexes of the wild-type, Y66F, Y66H and Y66L UDGs with uracil DNA glycosylase inhibitor (Ugi) (a proteinaceous substrate mimic) were stable to 8 M urea. However, some dissociation of the complex involving the Y66W UDG occurred at this concentration of urea. The catalytic efficiencies (Vmax / Km) of the Y66L and Y66F mutants were similar to those of the wild-type UDG. However, the Y66W and Y66H mutants were ~7- and ~173-fold compromised, respectively, in their activities. Interestingly, the Y66W mutation has resulted in an enzyme which is resistant to product inhibition. Preferential utilization of a substrate enabling a long range contact between the –5 phosphate (upstream to the scissile uracil) and the enzyme, and the results of modeling studies showing that the uracil-binding cavity of Y66W is wider than those of the wild type and other mutant UDGs, suggest a weaker interaction between uracil and the Y66W mutant. Furthermore, the fluorescence spectroscopy of UDGs and their complexes with Ugi, in the presence of uracil or its analog, 5-bromouracil, suggests compromised binding of uracil in the active site pocket of the Y66W mutant. Lack of inhibition of the Y66W UDG by apyrimidinic DNA (AP-DNA) is discussed to highlight a potential additional role of Y66 in shielding the toxic effects of AP-DNA, by lowering the rate of its release for subsequent recognition by an AP endonuclease.  相似文献   

2.
Shaw RW  Feller JA  Bloom LB 《DNA Repair》2004,3(10):1273-1283
Uracil DNA glycosylase (UDG) excises uracil from DNA to initiate repair of this lesion. This important DNA repair enzyme is conserved in viruses, bacteria, and eukaryotes. One residue that is conserved among all the members of the UDG family is a phenylalanine that stacks with uracil when it is flipped out of the DNA helix into the enzyme active site. To determine what contribution this conserved Phe residue makes to the activity of UDG, Phe-77 in the Escherichia coli enzyme was mutated to three different amino acid residues, alanine (UDG-F77A), asparagine (UDG-F77N), and tyrosine (UDG-F77Y). The effects of these mutations were measured on the steady-state and pre-steady-state kinetics of uracil excision in addition to enzyme.DNA binding kinetics. The overall excision activity of each of the mutants was reduced relative to the wild-type enzyme; however, each mutation gave rise to a different kinetic phenotype with different effects on substrate binding and catalysis. The excision activity of UDG-F77N was the most severely compromised, but this enzyme still bound to uracil-containing DNA at about the same rate as wild-type UDG. In contrast, the decrease in the excision activity of UDG-F77A is likely to reflect a greater reduction in uracil-DNA binding than in the catalytic step. Overall, the effects of the mutations on catalysis are best correlated with the polarity of the substituted residue such that an increase in polarity decreases the efficiency of uracil excision.  相似文献   

3.
Uracil DNA glycosylase inhibitor (Ugi), a protein of 9.4 kDa consists of a five-stranded antiparallel beta sheet flanked on either side by single alpha helices, forms an exclusive complex with uracil DNA glycosylases (UDGs) that is stable in 8M urea. We report on the mutational analysis of various structural elements in Ugi, two of which (hydrophobic pocket and the beta1 edge) establish key interactions with Escherichia coli UDG. The point mutations in helix alpha1 (amino acid residues 3-14) do not affect the stability of the UDG-Ugi complexes in urea. And, while the complex of the deltaN13 mutant with UDG is stable in only approximately 4M urea, its overall structure and thermostability are maintained. The identity of P37, stacked between P26 and W68, was not important for the maintenance of the hydrophobic pocket or for the stability of the complex. However, the M24K mutation at the rim of the hydrophobic pocket lowered the stability of the complex in 6M urea. On the other hand, non-conservative mutations E49G, D61G (cancels the only ionic interaction with UDG) and N76K, in three of the loops connecting the beta strands, conferred no such phenotype. The L23R and S21P mutations (beta1 edge) at the UDG-Ugi interface, and the N35D mutation far from the interface resulted in poor stability of the complex. However, the stability of the complexes was restored in the L23A, S21T and N35A mutations. These analyses and the studies on the exchange of Ugi mutants in preformed complexes with the substrate or the native Ugi have provided insights into the two-step mechanism of UDG-Ugi complex formation. Finally, we discuss the application of the Ugi isolates in overproduction of UDG mutants, toxic to cells.  相似文献   

4.
Single-strand-selective monofunctional uracil DNA glycosylase (SMUG1) belongs to Family 3 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that a bacterial SMUG1 ortholog in Geobacter metallireducens (Gme) and the human SMUG1 enzyme are not only UDGs but also xanthine DNA glycosylases (XDGs). In addition, mutational analysis and molecular dynamics (MD) simulations of Gme SMUG1 identify important structural determinants in conserved motifs 1 and 2 for XDG and UDG activities. Mutations at M57 (M57L) and H210 (H210G, H210M, and H210N), both of which are involved in interactions with the C2 carbonyl oxygen in uracil or xanthine, cause substantial reductions in XDG and UDG activities. Increased selectivity is achieved in the A214R mutant of Gme SMUG1, which corresponds to a position involved in base flipping. This mutation results in an activity profile resembling a human SMUG1-like enzyme as exemplified by the retention of UDG activity on mismatched base pairs and weak XDG activity. MD simulations indicate that M57L increases the flexibility of the motif 2 loop region and specifically A214, which may account for the reduced catalytic activity. G60Y completely abolishes XDG and UDG activity, which is consistent with a modeled structure in which G60Y blocks the entry of either xanthine or uracil to the base binding pocket. Most interestingly, a proline substitution at the G63 position switches the Gme SMUG1 enzyme to an exclusive UDG as demonstrated by the uniform excision of uracil in both double-stranded and single-stranded DNA and the complete loss of XDG activity. MD simulations indicate that a combination of a reduced free volume and altered flexibility in the active-site loops may underlie the dramatic effects of the G63P mutation on the activity profile of SMUG1. This study offers insights on the important role that modulation of conformational flexibility may play in defining specificity and catalytic efficiency.  相似文献   

5.
The DNA repair enzyme uracil DNA glycosylase (UDG) catalyzes the hydrolysis of premutagenic uracil residues from single-stranded or duplex DNA, producing free uracil and abasic DNA. Here we report the high-resolution crystal structures of free UDG from Escherichia coli strain B (1.60 A), its complex with uracil (1.50 A), and a second active-site complex with glycerol (1.43 A). These represent the first high-resolution structures of a prokaryotic UDG to be reported. The overall structure of the E. coli enzyme is more similar to the human UDG than the herpes virus enzyme. Significant differences between the bacterial and viral structures are seen in the side-chain positions of the putative general-acid (His187) and base (Asp64), similar to differences previously observed between the viral and human enzymes. In general, the active-site loop that contains His187 appears preorganized in comparison with the viral and human enzymes, requiring smaller substrate-induced conformational changes to bring active-site groups into catalytic position. These structural differences may be related to the large differences in the mechanism of uracil recognition used by the E. coli and viral enzymes. The pH dependence of k(cat) for wild-type UDG and the D64N and H187Q mutant enzymes is consistent with general-base catalysis by Asp64, but provides no evidence for a general-acid catalyst. The catalytic mechanism of UDG is critically discussed with respect to these results.  相似文献   

6.
We demonstrate that a mutant of uracil DNA glycosylase (N123D:L191A) distinguishes between cytosine and methylcytosine. Uracil DNA glycosylase (UDG) efficiently removes uracil from DNA in a reaction in which the base is flipped into the enzyme’s active site. Uracil is selected over cytosine by a pattern of specific hydrogen bonds, and thymine is excluded by steric clash of its 5-methyl group with Y66. The N123D mutation generates an enzyme that excises cytosine. This N123D:L191A mutant excises C when it is mispaired with A or opposite an abasic site, but not when it is paired with G. In contrast no cleavage is observed with any substrates that contain 5-methylcytosine. This enzyme may offer a new approach for discriminating between cytosine and 5-methylcytosine.  相似文献   

7.
Uracil, a promutagenic base, arises in DNA by spontaneous deamination of cytosine or by the malfunctioning of DNA polymerases. To maintain the genomic integrity, cells possess a highly conserved base excision repair enzyme, uracil-DNA glycosylase (UDG). UDGs have a notably high turnover number and strict specificity for uracil in DNA. UDGs are inhibited by a small proteinaceous inhibitor, Ugi, which acts as a transition state substrate mimic. Crystal structure studies have identified the residues crucial in catalysis, and in their interaction with Ugi. Here, we report on the mutational analyses of D64 (D64H and D64N) and H187 (H187C, H187L and H187R) in the active site pocket of Escherichia coli UDG. The mutants were compromised in uracil excision by approximately 200-25,000 fold when compared to the native protein. In contrast, our analysis of the in vivo formed UDG-Ugi complexes on urea gels shows that D64 and H187 contribute minimally to the interaction of the two proteins. Thus, our findings provide further evidence to the primary function of D64 and H187 in catalysis.  相似文献   

8.
Jiang YL  Stivers JT  Song F 《Biochemistry》2002,41(37):11248-11254
We recently introduced a new substrate rescue tool for investigating enzymatic base flipping by uracil DNA glycosylase (UDG) in which a bulky pyrene nucleotide wedge (Y) was placed opposite a uracil in duplex DNA (i.e., a U/Y pair), thereby preorganizing the target base in an extrahelical conformation [Jiang, Y. L., et al. (2001) J. Biol. Chem. 276, 42347-54]. The pyrene wedge completely rescued the large catalytic defects resulting from removal of the natural Leu191 wedge, presumably mimicking the pushing and plugging function of this group. Here we employ the pyrene rescue method in combination with transient kinetic approaches to assess the functional roles of six conserved enzymatic groups of UDG that have been implicated in the "pinch, push, plug, and pull" base-flipping mechanism (see the preceding paper in this issue). We find that a U/Y base pair increases the apparent second-order rate constant for damaged site recognition by L191G pushing mutation by 45-fold as compared to a U/A pair, thereby fully rescuing the kinetic effects of the mutation. Remarkably, the U/Y pair also allows L191G to proceed through the conformational docking step that is severely comprised with the normal U/A substrate, and allows the active site of UDG to clamp around the extrahelical base. Thus, pyrene also fulfills the plugging role of the Leu191 side chain. Preorganization of uracil in an extrahelical conformation by pyrene allows diffusion-controlled damage recognition by all of these base-flipping mutants, and allows the UDG conformational change to proceed as rapidly as the rate of uracil flipping with the natural U/A base pair. Thus, the pyrene wedge substrate allows UDG to recognize uracil by a lock-and-key mechanism, rather than the natural induced-fit mechanism. Unnatural pyrene base pairs may provide a general strategy to promote site-specific targeting of other enzymes that recognize extrahelical bases.  相似文献   

9.
Uracil DNA glycosylase (UDG), a highly conserved DNA repair enzyme, initiates the uracil excision repair pathway. Ugi, a bacteriophage-encoded peptide, potently inhibits UDGs by serving as a remarkable substrate mimic. Structure determination of UDGs has identified regions important for the exquisite specificity in the detection and removal of uracils from DNA and in their interaction with Ugi. In this study, we carried out mutational analysis of the Escherichia coli UDG at Leu191 within the 187HPSPLS192 motif (DNA intercalation loop). We show that with the decrease in side chain length at position 191, the stability of the UDG-Ugi complexes regresses. Further, while the L191V and L191F mutants were as efficient as the wild type protein, the L191A and L191G mutants retained only 10 and 1% of the enzymatic activity, respectively. Importantly, however, substitution of Leu191 with smaller side chains had no effect on the relative efficiencies of uracil excision from the single-stranded and a corresponding double-stranded substrate. Our results suggest that leucine within the HPSPLS motif is crucial for the uracil excision activity of UDG, and it contributes to the formation of a physiologically irreversible complex with Ugi. We also envisage a role for Leu191 in stabilizing the productive enzyme-substrate complex.  相似文献   

10.
Escherichia coli uracil DNA glycosylase (UDG) catalyzes the hydrolysis of premutagenic uracil bases in DNA by flipping the deoxyuridine from the DNA helix [Stivers, J. T., et al. (1999) Biochemistry 38, 952]. A general acid-base mechanism has been proposed whereby His187 facilitates leaving group departure by protonating the O2 of uracil and Asp64 activates a water molecule for nucleophilic attack at C1' of the deoxyribose. Detailed kinetic studies on the H187Q, H187A, and D64N mutant enzymes indicate that Asp64 and His187 stabilize the chemical transition state by 5.3 and 4.8 kcal/mol, respectively, with little effect on substrate or product binding. The pH dependence of k(cat) for wild-type and H187Q UDG indicates that an unprotonated group in the enzyme-substrate complex (pK(a) = 6.2 +/- 0.2) is required for catalysis. This unprotonated group has a small DeltaH of ionization (-0.4 +/- 1.7 kcal/mol) and is absent in the pH profile for D64N UDG, suggesting that it corresponds to the general base Asp64. The pH dependence of k(cat) for wild-type, H187Q, and D64N UDG shows no evidence for an essential protonated group over the pH range of 5.5-10. Hence, the pK(a) of His187 must be outside this pH range if it serves as an electrophilic catalyst. These results support a mechanism in which Asp64 serves as the general base and His187 acts as a neutral electrophile, stabilizing a developing negative charge on uracil O2 in the transition state. In the following paper of this issue we establish by crystallography and heteronuclear NMR spectroscopy that the imidazole of His187 is neutral during the catalytic cycle of UDG.  相似文献   

11.
Using off-resonance Raman spectroscopy, we have examined each complex along the catalytic pathway of the DNA repair enzyme uracil DNA glycosylase (UDG). The binding of undamaged DNA to UDG results in decreased intensity of the DNA Raman bands, which can be attributed to an increased level of base stacking, with little perturbation in the vibrational modes of the DNA backbone. A specific complex between UDG and duplex DNA containing 2'-beta-fluorodeoxyuridine shows similar increases in the level of DNA base stacking, but also a substrate-directed conformational change in UDG that is not observed with undamaged DNA, consistent with an induced-fit mechanism for damage site recognition. The similar increases in the level of DNA base stacking for the nonspecific and specific complexes suggest a common enzyme-induced distortion in the DNA, potentially DNA bending. The difference spectrum of the extrahelical uracil base in the substrate-analogue complexes reveals only a small electron density reorganization in the uracil ring for the ground state complex, but large 34 cm(-)(1) downshifts in the carbonyl normal modes. Thus, UDG activates the uracil ring in the ground state mainly through H bonds to its C=O groups, without destroying its quasi-aromaticity. This result is at variance with the conclusion from a recent crystal structure, in which the UDG active site significantly distorts the flipped-out pseudouridine analogue such that a change in hybridization at C1 occurs [Parikh, S. S., et al. (2000) Proc. Natl. Acad. Sci. USA 97, 5083]. The Raman vibrational signature of the bound uracil product differs significantly from that of free uracil at neutral pH, and indicates that the uracil is anionic. This is consistent with recent NMR results, which established that the enzyme stabilizes the uracil anion leaving group by 3.4 pK(a) units compared to aqueous solution, contributing significantly to catalysis. These observations are generally not apparent from the high-resolution crystal structures of UDG and its complexes with DNA; thus, Raman spectroscopy can provide unique and valuable insights into the nature of enzyme-DNA interactions.  相似文献   

12.
The reliable repair of pre-mutagenic U/G mismatches that originated from hydrolytic cytosine deamination is crucial for the maintenance of the correct genomic information. In most organisms, any uracil base in DNA is attacked by uracil DNA glycosylases (UDGs), but at least in Methanothermobacter thermautotrophicus ΔH, an alternative strategy has evolved. The exonuclease III homologue Mth212 from the thermophilic archaeon M. thermautotrophicus ΔH exhibits a DNA uridine endonuclease activity in addition to the apyrimidinic/apurinic site endonuclease and 3′ → 5′exonuclease functions. Mth212 alone compensates for the lack of a UDG in a single-step reaction thus substituting the two-step pathway that requires the consecutive action of UDG and apyrimidinic/apurinic site endonuclease.In order to gain deeper insight into the structural basis required for the specific uridine recognition by Mth212, we have characterized the enzyme by means of X-ray crystallography. Structures of Mth212 wild-type or mutant proteins either alone or in complex with DNA substrates and products have been determined to a resolution of up to 1.2 Å, suggesting key residues for the uridine endonuclease activity. The insertion of the side chain of Arg209 into the DNA helical base stack resembles interactions observed in human UDG and seems to be crucial for the uridine recognition. In addition, Ser171, Asn153, and Lys125 in the substrate binding pocket appear to have important functions in the discrimination of aberrant uridine against naturally occurring thymidine and cytosine residues in double-stranded DNA.  相似文献   

13.
Jiang YL  Stivers JT 《Biochemistry》2002,41(37):11236-11247
The DNA repair enzyme uracil DNA glycosylase (UDG) locates unwanted uracil bases in genomic DNA using a remarkable base-flipping mechanism in which the entire deoxyuridine nucleotide is rotated from the DNA base stack into the enzyme active site. Enzymatic base flipping has been described as a three-step process involving phosphodiester backbone pinching, base extrusion through active pushing and plugging by a leucine side chain that inserts in the DNA minor groove, and, finally, pulling by hydrogen-bonding groups that interact with the extrahelical base. Here we employ mutagenesis in combination with transient kinetic approaches to assess the functional roles of six conserved enzymatic groups of UDG that have been implicated in the "pinch, push, plug, and pull" base-flipping mechanism. Our results show that these mutant enzymes are capable of flipping the uracil base from the duplex, but that many of these mutations prevent a subsequent induced fit conformational step in which catalytic groups of UDG dock with the flipped-out base. These studies support our previous model for base flipping in which a conformational gating step closely follows base extrusion from the DNA duplex [Stivers, J. T., et al. (1999) Biochemistry 38, 952-963]. A model that accounts for the temporal and functional roles of these side chain interactions along the reaction pathway for base flipping is presented.  相似文献   

14.
Uracil-DNA glycosylase (UDG) protects the genome by removing mutagenic uracil residues resulting from deamination of cytosine. Uracil binds in a rigid pocket at the base of the DNA-binding groove of human UDG and the specificity for uracil over the structurally related DNA bases thymine and cytosine is conferred by shape complementarity, as well as by main chain and Asn204 side chain hydrogen bonds. Here we show that replacement of Asn204 by Asp or Tyr147 by Ala, Cys or Ser results in enzymes that have cytosine-DNA glycosylase (CDG) activity or thymine-DNA glycosylase (TDG) activity, respectively. CDG and the TDG all retain some UDG activity. CDG and TDG have kcat values in the same range as typical multisubstrate-DNA glycosylases, that is at least three orders of magnitude lower than that of the highly selective and efficient wild-type UDG. Expression of CDG or TDG in Escherichia coli causes 4- to 100-fold increases in the yield of rifampicin-resistant mutants. Thus, single amino acid substitutions in UDG result in less selective DNA glycosylases that release normal pyrimidines and confer a mutator phenotype upon the cell. Three of the four new pyrimidine-DNA glycosylases resulted from single nucleotide substitutions, events that may also happen in vivo.  相似文献   

15.
Seibert E  Ross JB  Osman R 《Biochemistry》2002,41(36):10976-10984
Uracil DNA glycosylase (UDG) is a base excision repair enzyme that specifically recognizes and removes uracil from double- or single-stranded DNA. The efficiency of the enzyme depends on the DNA sequence surrounding the uracil. Crystal structures of UDG in complex with DNA reveal that the DNA is severely bent and distorted in the region of the uracil. This suggests that the sequence-dependent efficiency of the enzyme may be related to the energetic cost of DNA distortion in the process of specific damage recognition. To test this hypothesis, molecular dynamics simulations were performed on two sequences representing extreme cases of UDG efficiency, AUA/TAT (high efficiency) and GUG/CAC (low efficiency). Analysis of the simulations shows that the effective bending force constants are lower for the AUA/TAT sequence, indicating that this sequence is more flexible than the GUG/CAC sequence. Fluorescence lifetimes of the adenine analogue 2-aminopurine (2AP), replacing adenine opposite the uracil, are shorter in the context of the AUA/TAT sequence, indicating more dynamic base-base interaction and greater local flexibility than in the GUG/CAC sequence. Furthermore, the K(M) of Escherichia coli UDG for the AUA/TAT sequence is 10-fold smaller than that for the GUG/CAC sequence, while the k(cat) is only 2-fold smaller. This indicates that differences in UDG efficiency largely arise from differences in binding and not catalysis. These results link directly flexibility near the damaged DNA site with the efficiency of DNA repair.  相似文献   

16.
N Luo  E Mehler  R Osman 《Biochemistry》1999,38(29):9209-9220
The structure of uracil DNA glycosylase (UDG) in complex with a nonamer duplex DNA containing a uracil has been determined only in the product state. The reactant state was constructed by reattaching uracil to the deoxyribose, and both complexes were studied by molecular dynamics simulations. Significant changes in the positions of secondary structural elements in the enzyme are induced by the hydrolysis of the glycosidic bond. The simulations show that the specificity of the uracil pocket in the enzyme is largely retained in both complexes with the exception of Asn-204, which has been identified as a residue that contributes to discrimination between uracil and cytosine. The hydrogen bond between the amide group of Asn-204 and O(4) of uracil is disrupted by fluctuations of the side chain in the reactant state and is replaced by a hydrogen bond to water molecules trapped in the interior of the protein behind the uracil binding pocket. The role of two residues implicated by mutation experiments to be important in catalysis, His-268 and Asp-145, is clarified by the simulations. In the reactant state, His-268 is found 3.45 +/- 0.34 A from the uracil, allowing a water molecule to form a bridge to O(2). The environment in the enzyme raises the pK(a) value of His-268 to 7.1, establishing a protonated residue for assisting in the hydrolysis of the glycosidic bond. In agreement with the crystallographic structure, the DNA backbone retracts after the hydrolysis to allow His-268 to approach the O(2) of uracil with a concomitant release of the bridging water molecule and a reduction in the pK(a) to 5.5, which releases the proton to the product. The side chain of Asp-145 is fully solvated in the reactant state and H-bonded through a water molecule to the 3'-phosphate of uridine. Both the proximity of Asp-145 to the negatively charged phosphate and its pK(a) of 4.4 indicate that it cannot act as a general base catalyst. We propose a mechanism in which the bridging water between Asp-145 and the 3'-phosphate accepts a proton from another water to stabilize the bridge through a hydronium ion as well as to produce the hydroxide anion required for the hydrolytic step. The mechanism is consistent with known experimental data.  相似文献   

17.
Uracil-DNA glycosylase (UDG) is a ubiquitous enzyme found in bacteria and eukaryotes, which removes uracil residues from DNA strands. Methanococcus jannaschii UDG (MjUDG), a novel monofunctional glycosylase, contains a helix-hairpin-helix (HhH) motif and a Gly/Pro rich loop (GPD region), which is important for catalytic activity; it shares these features with other glycosylases, such as endonuclease III. First, to examine the role of two conserved amino acid residues (Asp150 and Tyr152) in the HhH-GPD region of MjUDG, mutant MjUDG proteins were constructed, in which Asp150 was replaced with either Glu or Trp (D150E and D150W), and Tyr152 was replaced with either Glu or Asn (Y152E and Y152N). Mutant D150W completely lacked DNA glycosylase activity, whereas D150E displayed reduced activity of about 70% of the wild type value. However, the mutants Y152E and Y152N retained unchanged levels of UDG activity. We also replaced Glu132 in the HhH motif with a lysine residue equivalent to Lys120 in endonuclease III. This mutation converted the enzyme into a bifunctional glycosylase/AP lyase capable of both removing uracil at a glycosylic bond and cleaving the phosphodiester backbone at an AP site. Mutant E132K catalyzes a β-elimination reaction at the AP site via uracil excision and forms a Schiff base intermediate in the form of a protein-DNA complex. This text was submitted by the authors in English.  相似文献   

18.
The DNA repair enzyme uracil DNA glycosylase (UDG) utilizes base flipping to recognize and remove unwanted uracil bases from the genome but does not react with its structural congener, thymine, which differs by a single methyl group. Two factors that determine whether an enzyme flips a base from the duplex are its shape and hydrogen bonding properties. To probe the role of these factors in uracil recognition by UDG, we have synthesized a DNA duplex that contains a single difluorophenyl (F) nucleotide analogue that is an excellent isostere of uracil but possesses no hydrogen bond donor or acceptor groups. By using binding affinity measurements, solution (19)F NMR, and solid state (31)P[(19)F] rotational-echo double-resonance (REDOR) NMR measurements, we establish that UDG partially unstacks F from the duplex. However, due to the lack of hydrogen bonding groups that are required to support an open-to-closed conformational transition in UDG, F cannot stably dock in the UDG active site. We propose that F attains a metastable unstacked state that mimics a previously detected intermediate on the uracil-flipping pathway and suggest structural models of the metastable state that are consistent with the REDOR NMR measurements.  相似文献   

19.
The nature of the putative general acid His187 in the reaction catalyzed by Escherichia coli uracil DNA glycosylase (UDG) was investigated using X-ray crystallography and NMR spectroscopy. The crystal structures of H187Q UDG, and its complex with uracil, have been solved at 1.40 and 1.60 A resolution, respectively. The structures are essentially identical to those of the wild-type enzyme, except that the side chain of Gln187 is turned away from the uracil base and cannot interact with uracil O2. This result provides a structural basis for the similar kinetic properties of the H187Q and H187A enzymes. The ionization state of His187 was directly addressed with (1)H-(15)N NMR experiments optimized for histidine ring spin systems, which established that His187 is neutral in the catalytically active state of the enzyme (pK(a) <5.5). These NMR experiments also show that His187 is held in the N(epsilon)()2-H tautomeric form, consistent with the crystallographic observation of a 2.9 A hydrogen bond from the backbone nitrogen of Ser189 to the ring N(delta)()1 of His187. The energetic cost of breaking this hydrogen bond may contribute significantly to the low pK(a) of His187. Thus, the traditional view that a cationic His187 donates a proton to uracil O2 is incorrect. Rather, we propose a concerted mechanism involving general base catalysis by Asp64 and electrophilic stabilization of the developing enolate on uracil O2 by a neutral His187.  相似文献   

20.
Uracil, a promutagenic base in DNA can arise by spontaneous deamination of cytosine or incorporation of dUMP by DNA polymerase. Uracil is removed from DNA by uracil DNA glycosylase (UDG), the first enzyme in the uracil excision repair pathway. We recently reported that the Escherichia coli single-stranded DNA binding protein (SSB) facilitated uracil excision from certain structured substrates by E. coli UDG (EcoUDG) and suggested the existence of interaction between SSB and UDG. In this study, we have made use of the chimeric proteins obtained by fusion of N- and C-terminal domains of SSBs from E. coli and Mycobacterium tuberculosis to investigate interactions between SSBs and UDGs. The EcoSSB or a chimera containing its C-terminal domain interacts with EcoUDG in a binary (SSB-UDG) or a ternary (DNA-SSB-UDG) complex. However, the chimera containing the N-terminal domain from EcoSSB showed no interactions with EcoUDG. Thus, the C-terminal domain (48 amino acids) of EcoSSB is necessary and sufficient for interaction with EcoUDG. The data also suggest that the C-terminal domain (34 amino acids) of MtuSSB is a predominant determinant for mediating its interaction with MtuUDG. The mechanism of how the interactions between SSB and UDG could be important in uracil excision repair pathway has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号