首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of masticatory function is the basis of clinical work in almost all fields of dentistry. Bite forces are the expression and measure of masticatory function. Physical training has an effect on the development of functional ability, motoric ability of the organism and the formation of desired physical proportions. The purpose of this study was to examine the association between physical fitness and bite force values. Because of strictly defined regulations in the army with regard to training and nutrition, Croatian Army recruits were ideal examinees for this examination. The examinees were 135 recruits. Bite forces were measured on three places (area of the central incisors, left and right in the area of the first molars) before and after three-months of training. Of all the examinees, 108 had increased their body weight, 12 had decreased it and 15 had not changed their body weight. The median of measured forces in the recruits prior to training was 291 N in the right (lateral quadrant), 285.5 N in the left lateral quadrant and 205 N in the anterior area. After training the median of measured forces in the right quadrant was 312 N, in the left 313 N and in the anterior area 216 N Greater bite forces after training on all measured places were statistically proved. Increased activity of masticatory muscles can have the same effect on the values of bite forces as bite training. There are few data on the correlation between physical muscles and values of bite forces. The results of those studies are doubtful. In this study, after three months of conditional training, the body mass of the recruits had increased and they expressed greater values of bite forces. However, correlation between body mass and bite forces cannot be proved with certainty.  相似文献   

2.
The aim of this study was to obtain insight into the coactivation behaviour of the jaw muscles under various a priori defined static loading conditions of the mandible. As the masticatory system is mechanically redundant, an infinite number of recruitment patterns is theoretically possible to produce a certain bite force. Using a three-component force transducer and a feedback method, subjects could be instructed to produce a bite force of specific direction and magnitude under simultaneous registration of the EMG activity of anterior and posterior temporal, masseter and digastric muscles on each side. Forces were measured at the second premolars. Vertical, anterior, posterior, lateral and medial force directions were examined; in each direction force levels between 50 N and maximal voluntary force were produced. The results show that for all muscles the bite force-EMG relationship obeys a straight-line fit for forces exceeding 50 N. The relationship varies with bite force direction, except in the case of the digastric muscles. Variation is small for the anterior temporal and large for the posterior temporal and masseter muscles. The relative activation of muscles for a particular force in a particular direction in unique, despite the redundancy.  相似文献   

3.
A new model for calculating muscle forces from electromyograms   总被引:3,自引:0,他引:3  
A muscle model is described that uses electromyogram (EMG), muscle length and speed of contraction to predict muscle force. Physiological parameters are the Hill constants and the shape of the twitch response to a single stimulus. The model was incorporated in a jaw model of the rabbit and tested by predicting the bite force produced by the jaw muscles during mastication. The time course of the calculated force appeared to match the bite force, measured in vivo by a strain gauge, applied to the bone below the teeth. The variation in peak strain amplitude from cycle to cycle correlated with the variation predicted by the model. The peak amplitude of the integrated EMGs of individual jaw muscles showed an average correlation with peak strain of 0.41. Use of the sum of the available peak amplitudes, weighted according to their effect upon the bite force increased the correlation to 0.46; the model predicted bite forces showed a correlation of 0.57 with the strain. The increase in correlation was statistically significant. The muscle forces were calculated using a minimum number of easily obtainable constants.  相似文献   

4.
咬合力作为衡量动物生存能力的重要指标,可以在一定程度上反映动物捕食、反捕食和争夺配偶的能力。对于蜥蜴类动物而言,头部形态和咬合力大小之间常呈现显著线性关系。通过测量2018年7月采集于新疆霍城县图开沙漠的24号草原蜥(Trapelussanguinolenta)(雌13,雄11)的头部形态指标,并使用薄膜压力测试仪测定咬合力,采用单因素方差分析(ANOVA)、主成分分析、模型拟合及逐步回归4种方法探究草原蜥咬合力的两性差异及其与头部形态指标的关系。结果表明,草原蜥头体长、头长、头宽、头高、口宽和下颌长在两性个体间均无显著差异,草原蜥两性个体之间咬合力也没有显著差异。主成分分析及赤池信息模型拟合结果均显示,头长、头宽和下颌长是影响草原蜥咬合力的重要因素,逐步回归分析揭示草原蜥的咬合力主要受头宽影响。上述研究结果表明,草原蜥的咬合力受头部形态大小的影响,但两性个体之间咬合力却不存在显著差异,这与头部形态特征未表现出两性差异一致,这可能是草原蜥对灌丛生活的适应,具体而言,是头部大小与运动权衡的结果。  相似文献   

5.
The relationship between human craniofacial morphology and the biomechanical efficiency of bite force generation in widely varying muscular and skeletal types is unknown. To address this problem, we selected 22 subjects with different facial morphologies and used magnetic resonance imaging, cephalometric radiography, and data from dental casts to reconstruct their craniofacial tissues in three dimensions. Conventional cephalometric analyses were carried out, and the cross-sectional sizes of the masseter and medial pterygoid muscles were measured from reconstituted sections. The potential abilities of the muscles to generate bite forces at the molar teeth and mandibular condyles were calculated according to static equilibrium theory using muscle, first molar, and condylar moment arms. On average, the masseter muscle was about 66% larger in cross section than the medial pterygoid and was inclined more anteriorly relative to the functional occlusal plane. There was a significant positive correlation (P less than 0.01) between the cross-sectional areas of the masseter and medial pterygoid muscles (r = 0.75) and between the bizygomatic arch width and masseter cross-sectional area (r = 0.56) and medial pterygoid cross-sectional area (r = 0.69). The masseter muscle was always a more efficient producer of vertically oriented bite force than the medial pterygoid. Putative bite force from the medial pterygoid muscle alone correlated positively with mandibular length and inversely with upper face height. When muscle and tooth moment arms were considered together, a system efficient at producing force on the first molar was statistically associated with a face having a large intergonial width, small intercondylar width, narrow dental arch, forward maxilla, and forward mandible. There was no significant correlation between muscle cross-sectional areas and their respective putative bite forces. This suggests that there is no simple relationship between the tension-generating capacity of the muscles and their mechanical efficiency as described by their spatial arrangement. The study shows that in a modern human population so many combinations of biomechanically relevant variables are possible that subjects cannot easily be placed into ideal or nonideal categories for producing molar force. Our findings also confirm the impression that similar bite-force efficiencies can be found in subjects with disparate facial features.  相似文献   

6.
The control of bite force during varying submaximal loads was examined in patients suffering from bruxism compared to healthy humans not showing these symptoms. The subjects raised a bar (preload) with their incisor teeth and held it between their upper and lower incisors using the minimal bite force required to keep the bar in a horizontal position. Further loading was added during the preload phase. A sham load was also used. Depending on the session, the teeth were loaded by the experimenter or the subject and in one session the subject did not see the load (no visual feedback). The bite force was measured continuously using a calibrated force transducer. In all the subjects, the bite force increased with increasing load. Following the addition of the load, the level of the tonic bite force was reached rapidly with no marked overshoot. The patients with bruxism used significantly higher bite forces to hold the submaximal loads compared to the control subjects. In the control subjects, the holding forces for each submaximal load were identical in the men and the women and were independent of subject maximal bite force. Sham loading evoked no marked responses in biting force. Whether the subject or the experimenter added the load or whether the subject had visual feedback or not were not significant factors in determining the level of bite force. The results indicated that the patients with bruxism used excessively large biting forces for each given submaximal load. This study showed no evidence that the inappropriate control of bite force by patients with bruxism was due to an abnormality in the higher cortical circuits that regulates the function of trigeminal motoneurons in the brainstem. This was shown by a lack of abnormality in coordination of voluntary hand movement with biting force, a lack of abnormal anticipation response to a sham load and a lack of any effect of visual feedback. The results were in line with the hypothesis that afferent input from oral (periodontal or masticatory muscle) tissues does not provide an appropriate control of motor command in bruxism.  相似文献   

7.
In biomechanical investigations, geometrically accurate computer models of anatomical structures can be created readily using computed-tomography scan images. However, representation of soft tissue structures is more challenging, relying on approximations to predict the muscle loading conditions that are essential in detailed functional analyses. Here, using a sophisticated multi-body computer model of a reptile skull (the rhynchocephalian Sphenodon), we assess the accuracy of muscle force predictions by comparing predicted bite forces against in vivo data. The model predicts a bite force almost three times lower than that measured experimentally. Peak muscle force estimates are highly sensitive to fibre length, muscle stress, and pennation where the angle is large, and variation in these parameters can generate substantial differences in predicted bite forces. A review of theoretical bite predictions amongst lizards reveals that bite forces are consistently underestimated, possibly because of high levels of muscle pennation in these animals. To generate realistic bites during theoretical analyses in Sphenodon, lizards, and related groups we suggest that standard muscle force calculations should be multiplied by a factor of up to three. We show that bite forces increase and joint forces decrease as the bite point shifts posteriorly within the jaw, with the most posterior bite location generating a bite force almost double that of the most anterior bite. Unilateral and bilateral bites produced similar total bite forces; however, the pressure exerted by the teeth is double during unilateral biting as the tooth contact area is reduced by half.  相似文献   

8.
Objective: The aim of the present study was to analyse the relationship between masticatory ability (self‐assessed masticatory ability and bite force) and intake of energy, nutrients and food items in a population sample of elderly subjects. Design and Subjects: From a population sample of 80‐year‐old people, 160 individuals (74 men and 86 women) took part in an odontological study. Main Outcome Measures: A dental examination including bite force recording, a questionnaire focusing on self‐assessed masticatory ability, and a dietary interview. Setting: Department of Geriatric Medicine, Göteborg University, Sweden. Results: The dental status among the participants varied much (from edentulous in both jaws ‐ 22% ‐ to more than 20 natural teeth ‐ 30%). The mean maximum bite force was higher in men (165 N) than in women (105 N). Bite force was significantly correlated to the Eichner index and to the number of teeth. One third of the subjects reported no masticatory problem, whereas 18% identified 3 such problems. The intake of energy and nutrients varied much but the means were well above recommended values. The correlations between dental status and bite force on one side and dietary intake on the other side were in general weak and most often statistically non‐significant. Impaired general health and reduced dentition were both associated with more masticatory problems. Conclusion: The examined sample of 80‐year‐old subjects had a great variation in dental status, bite force and self‐assessed masticatory ability, but these factors had only a minor influence on dietary selection and intake, which on average were well above recommended values.  相似文献   

9.
Bite marks suggest that the late Eocence archaeocete whale Basilosaurus isis (Birket Qarun Formation, Egypt) fed upon juveniles of the contemporary basilosaurid Dorudon atrox. Finite element analysis (FEA) of a nearly complete adult cranium of B. isis enables estimates of its bite force and tests the animal’s capabilities for crushing bone. Two loadcases reflect different biting scenarios: 1) an intitial closing phase, with all adductors active and a full condylar reaction force; and 2) a shearing phase, with the posterior temporalis active and minimized condylar force. The latter is considered probable when the jaws were nearly closed because the preserved jaws do not articulate as the molariform teeth come into occulusion. Reaction forces with all muscles active indicate that B. isis maintained relatively greater bite force anteriorly than seen in large crocodilians, and exerted a maximum bite force of at least 16,400 N at its upper P3. Under the shearing scenario with minimized condylar forces, tooth reaction forces could exceed 20,000 N despite lower magnitudes of muscle force. These bite forces at the teeth are consistent with bone indentations on Dorudon crania, reatract-and-shear hypotheses of Basilosaurus bite function, and seizure of prey by anterior teeth as proposed for other archaeocetes. The whale’s bite forces match those estimated for pliosaurus when skull lengths are equalized, suggesting similar tradeoffs of bite function and hydrodynamics. Reaction forces in B. isis were lower than maxima estimated for large crocodylians and carnivorous dinosaurs. However, comparison of force estimates from FEA and regression data indicate that B. isis exerted the largest bite forces yet estimated for any mammal, and greater force than expected from its skull width. Cephalic feeding biomechanics of Basilosaurus isis are thus consistent with habitual predation.  相似文献   

10.
The brain weight of 100 fresh cadavers of Italian subjects (60 males and 40 females), aged between 17 and 84 years, was obtained and the corrected circumference of the following blood vessels was measured: basilar artery, internal carotid arteries, anterior and posterior cerebral arteries, and anterior and posterior communicating arteries. The cerebral 'potential flow' was expressed in each case by adding the circumference of the basilar artery to that of the internal carotid arteries. Moreover, the sides and the perimeter of the circle of Willis as well as the length of the basilar artery were calculated. The statistical analysis of the obtained data yielded the following main results: (1) the brain weight decreases with aging, is lower in females than in males and and is statistically correlated neither with the circumferences of the considered arteries and the 'potential flow' nor with the perimeter of the arterial polygon (circle of Willis); (2) the arteries of the left side appear to be larger than those of the right one; (3) no significant difference exists in the circumference and length of the arteries between males and females; (4) the increase of the perimeter of the arterial polygon is achieved by means of a harmonious increase of all its sides; (5) the anterior and posterior communicating arteries have an anarchic pattern, because of the relatively frequent anomalies and the lack of a correlation between their circumference and that of the vessel of origin or of outlet.  相似文献   

11.
Although bite force is a frequently studied performance measure of feeding ecology, changes in bite force over ontogeny have rarely been investigated. Biting by the blacktip shark Carcharhinus limbatus was theoretically modeled over ontogeny to investigate the scaling of bite force, the morphological basis of the observed scaling relationship, the ecological consequences of ontogenetic changes in performance, and whether cranial morphometrics can be used as an accurate proxy for bite force. Theoretical bite force, which was positively allometric with respect to total length (TL), ranged from 32 N (61 cm TL) to 423 N (152 cm TL) at the anterior tips of the jaws and from 107 (61 cm TL) to 1083 N (152 cm TL) at the posterior teeth. This observation is attributed to positive allometry in the mechanical advantage of the jaw-adducting mechanism and the cross-sectional area of all four jaw-adducting muscles. Theoretical bite force was accurately predicted by cranial morphometrics including prebranchial length and head width as well. Although positive allometry of bite force in C. limbatus would seem to indicate an ecological necessity for this phenomenon, dietary analyses do not necessarily indicate any ontogenetic shift in prey types requiring larger bite forces. The positively allometric increase in theoretical bite force may be associated with numerous other selective pressures including maintenance of an apical position within the ecosystem.  相似文献   

12.
Synopsis The mating behavior and dentition ofUrolophus halleri, the round stingray was examined. Males frequently bite females during the mating period but most male biting does not result in copulation. In bites that do not lead to copulation, males bite the posterior (or occasionally the medial) portion of the females' disc but females often free themselves from these bites. In bites that precede copulation, males bite the anterior portion of the females' disc and females do not struggle to free themselves. Thus, females may exert some form of choice when they are bitten. Mature males have sexually dimorphic dentition that may aid in holding females. A principal component analysis (PCA) showed that in juvenile males, the relative size of the teeth decrease while the relative thickness of the disc increases as body size enlarges; adult males displayed no clear pattern. In adult females, there is a relative decrease in tooth size and increase in relative disc thickness as body size enlarges. The relative increase in females disc thickness in areas where they are bitten may function to minimize the amount of damage due to non-copulatory biting. There is no indication that biting functions to induce female receptivity but it may allow females and males to acquire information about potential mates. Thus, copulatory biting functions to maintain contact during copulation while the function of non-copulatory biting is less clear.  相似文献   

13.
The effects of the cross-sectional area of food samples on bite force with molar teeth were investigated using raw carrots and surimi gels. We evaluated human bite force for food samples with different sizes between the upper and lower molars using a multiple-point sheet sensor and electromyography (EMG). The bite force curve and EMG clearly showed textural characteristics of the carrot and gel. In particular, the first peak in the bite curves corresponded to breaking point in the compression test. With increasing cross-sectional area of both foodstuffs, the bite force and contact area increased and the average stress to which the specimen was subjected (mean stress) tended to decrease, while the stress produced between the teeth and the specimen (active stress) did not change. Chewing rhythm and EMG activities were not greatly influenced by sample size. These findings suggest that higher bite force might cause difficulty in biting food with a larger cross-sectional area.  相似文献   

14.
As a negative regulator of muscle size, myostatin (Mstn) impacts the force-production capabilities of skeletal muscles. In the masticatory system, measures of temporalis-stimulated bite forces in constitutive myostatin KOs suggest an absolute, but not relative, increase in jaw-muscle force. Here, we assess the phenotypic and physiologic impact of postnatal myostatin inhibition on bite mechanics using an inducible conditional KO mouse in which myostatin is inhibited with doxycycline (DOX). Given the increased control over the timing of gene inactivation in this model, it may be more clinically-relevant for developing interventions for age-associated changes in the musculoskeletal system. DOX was administered for 12 weeks starting at age 4 months, during which time food intake was monitored. Sex, age and strain-matched controls were given the same food without DOX. Bite forces were recorded just prior to euthanasia after which muscle and skeletal data were collected. Food intake did not differ between control or DOX animals within each sex. DOX males were significantly larger and had significantly larger masseters than controls, but DOX and control females did not differ. Although there was a tendency towards higher absolute bite forces in DOX animals, this was not significant, and bite forces normalized to masseter mass did not differ. Mechanical advantage for incisor biting increased in the DOX group due to longer masseter moment arms, likely due to a more anteriorly-placed masseter insertion. Despite only a moderate increase in bite force in DOX males and none in DOX females, the increase in masseter mass in males indicates a potentially positive impact on jaw muscles. Our data suggest a sexual dimorphism in the role of mstn, and as such investigations into the sex-specific outcomes is warranted.  相似文献   

15.
Sexual dimorphisms in body size and head size are common among lizards and are often related to sexual selection on male fighting capacity (organismal performance) and territory defence. However, whether this is generally true or restricted to lizards remains untested. Here we provide data on body and head size, bite performance and indicators of mating success in the tuatara (Sphenodon punctatus), the closest living relative to squamates, to explore the generality of these patterns. First, we test whether male and female tuatara are dimorphic in head dimensions and bite force, independent of body size. Next, we explore which traits best predict bite force capacity in males and females. Finally, we test whether male bite force is correlated with male mating success in a free‐ranging population of tuatara (Sphenodon punctatus). Our data confirm that tuatara are indeed dimorphic in head shape, with males having bigger heads and higher bite forces than females. Across all individuals, head length and the jaw closing in‐lever are the best predictors of bite force. In addition, our data show that males that are mated have higher absolute but not relative bite forces. Bite force was also significantly correlated to condition in males but not females. Whereas these data suggest that bite force may be under sexual selection in tuatara, they also indicate that body size may be the key trait under selection in contrast to what is observed in squamates that defend territories or resources by biting. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 287–292.  相似文献   

16.
In many species of lizards, males attain greater body size and have larger heads than female lizards of the same size. Often, the dimorphism in head size is paralleled by a dimorphism in bite force. However, the underlying functional morphological basis for the dimorphism in bite force remains unclear. Here, we test whether males are larger, and have larger heads and bite forces than females for a given body size in a large sample of Anolis carolinensis . Next, we test if overall head shape differs between the sexes, or if instead specific aspects of skull shape can explain differences in bite force. Our results show that A. carolinensis is indeed dimorphic in body and head size and that males bite harder than females. Geometric morphometric analyses show distinct differences in skull shape between males and females, principally reflecting an enlargement of the jaw adductor muscle chamber. Jaw adductor muscle mass data confirm this result and show that males have larger jaw adductors (but not jaw openers) for a given body and head size. Thus, the observed dimorphism in bite force in A. carolinensis is not merely the result of an increase in head size, but involves distinct morphological changes in skull structure and the associated jaw adductor musculature.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 111–119.  相似文献   

17.
The pattern of human tooth wear—the way it varies between teeth in the mouth—is crucial to our understanding of important questions in archeology and paleoanthropology, such as the contrasts in diet and behavior between Neanderthals and early modern humans in Europe and Asia, or with the adoption of agriculture in the Americas. Little is known, however, about the way in which wear patterns develop with increasing age or the way in which they differ between males and females. One explanation is that few living people show the high rates of tooth wear seen worldwide throughout the preindustrial archaeological record. The study described here investigates the macroscopic pattern of tooth wear in a unique group of known age and sex dental casts from living Canadian Inuit from Igloolik. The results show that the Igloolik people possessed a pattern of extremely heavy anterior tooth wear, relative to the first molar and the other posterior teeth, which is attributed to the use of the anterior teeth in cultural practices as well as the extreme and marginal environments in which they lived. Heavy anterior tooth wear was established at an early age and maintained throughout life; statistically significant differences were found between the wear patterns of males and females and are explained in terms of sexual division of labor within the community. This study highlights the need to understand both intra‐ and interpopulation variation in tooth wear patterns when interpreting patterns in past human groups. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Different studies have indicated, in open bite patients, that masticatory muscles tend to generate a small maximum bite force and to show a reduced cross-sectional area with a lower EMG activity. The aim of this study was to evaluate the kinematics parameters of the chewing cycles and the activation of masseters and anterior temporalis muscles of patients with anterior dental open bite malocclusion. There have been no previous reports evaluating both kinematic values and EMG activity of patients with anterior open bite during chewing. Fifty-two young patients (23 boys and 29 girls; mean age±SD 11.5±1.2 and 10.2±1.6years, respectively) with anterior open bite malocclusion and 21 subjects with normal occlusion were selected for the study. Kinematics parameters and surface electromyography (EMG) were simultaneously recorded during chewing a hard bolus with a kinesiograph K7-I Myotronics-Usa. The results showed a statistically significant difference between the open bite patients and the control group for a narrower chewing pattern, a shorter total and closing duration of the chewing pattern, a lower peak of both the anterior temporalis and the masseter of the bolus side. In this study, it has been observed that open bite patients, lacking the inputs from the anterior guidance, that are considered important information for establishing the motor scheme of the chewing pattern, show narrower chewing pattern, shorter lasting chewing cycles and lower muscular activation with respect to the control group.  相似文献   

19.
Mating interactions are rife with conflict because the evolutionary interests of males and females seldom coincide. Intersexual conflict affects sexual selection, yet the proximate factors underlying male coercive ability and female resistance are poorly understood. Male combat outcomes are often influenced by bite force, with superior biters being more likely to achieve victory over poorer biters in a range of species, including crickets. If good performers also achieve mating success through sexual coercion, then bite force might play a role in intersexual conflict as well. We tested the capacity of bite force to influence mating interactions in house crickets both directly by measuring bite forces of males and females and by altering male bite capacity through neuropharmacological manipulation. In addition, the invertebrate neurotransmitter octopamine both mediates aggression and underlies motivation to bite in male house crickets. By blocking octopamine receptors through the application of an antagonist, epinastine, we tested the effects of reduced bite force on male mating success. Our results show that male bite capacity, in combination with body size, influences both the likelihood and the outcomes of mating interactions, whereas treatment of males with epinastine eliminates motivation to mate. Our results suggest a functional role for bite force in affecting both sexual conflict and sexual selection and expand our knowledge of the influence of biogenic amines on reproductive behaviour.  相似文献   

20.
To examine morphological interrelationships between canine size and mandibular corpus shape, inter-sex comparisons were made in the hamadryas baboon and the Japanese monkey, known to display extreme and moderate canine dimorphism, respectively. Results of adult comparisons showed that all mandibular dimensions were significantly larger in the males than in the females in both species. In the hamadryas baboon, the males also exhibited a higher ratio of anterior to posterior corpus height than the females. This sex difference in corpus shape was not significant in the Japanese monkey, indicating lack of involvement of canine dimorphism. Analysis of mandibular growth patterns in the hamadryas baboon demonstrated that significant sexual size difference did not occur before incisor eruption, and that the anteriorly high corpus of the adult male mandible was associated with a rapidly increasing symphyseal height after incisor eruption. It was also shown that the female canine started to erupt shortly after incisor eruption, while the forming male canine continued to stay near the mandibular base and developed further in size until eruption. The relative positions of the incisors kept shifting upwards even after eruption in the males, while they hardly changed in the females. It is therefore suggested that the prolonged development and size increase of the male canine is accompanied by further enlargement of the symphysis, resulting in the higher anterior corpus of the adult males compared to the adult females. The results thus indicate the importance of understanding the spatial relationships of the developing teeth in interpreting mandibular morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号