首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The anaerobic biodegradability of meat industry wastes was investigated in mesophilic batch reactors and combined with a mathematical model for describing their biodegradable fractions. The characteristics and methane yield achieved when digesting waste sludge, suggested the use of this as co-substrate for enhancing the biodegradability of the other wastes. The co-digestion experiments showed that it would be feasible to co-digest cow manure or ruminal waste with waste sludge, but biodegradability of pig/cow slurries was not improved, being strongly influenced by the ammonium concentration of co-digestion mixture. By applying the mathematical model, it was observed that when increasing the amount of waste sludge in the co-digestion mixtures, the amount of inert and slowly biodegradable fractions decreased leading to an increase in readily biodegradable fractions, volatile solid removal efficiencies and methane yields. These results suggest that using readily biodegradable wastes as co-substrate, the anaerobic biodegradability of complex organic wastes can be improved.  相似文献   

2.
Manipueira is a carbohydrate-rich agro-industrial waste from cassava processing. It is considered well suitable for biotechnological processes, such as hydrogen and carboxylic acids production, due to the high content of easily degradable organic matter. However, the proper methanogenesis inhibition method, inoculum type, and organic loads are factors still limiting the processes. The objective in this work was to evaluate the effects of such factors on byproducts production in anaerobic reactors. Batch experiments were conducted with 2.3-L flasks during two operational phases. In the first phase (P1), inhibition of methanogens in the sludge was evaluated using acetylene (1% v/v of headspace) and heat treatment (120 °C, 1 atm for 30 min). In the second phase (P2), three inoculum types obtained from common anaerobic sludges (bovine rumen and sludges from municipal and textile industrial wastewater treatment plants) were individually assayed. P2 aimed to identify the best inoculum, based on hydrogen production ability, which was tested for three initial concentrations of manipueira in terms of chemical oxygen demand (COD) (10, 20 and 40 g O2/L). Results of P1 indicated that either acetylene or heat treatment efficiently inhibited methanogenesis, with no methane production. However, the maximum H2 production potential by applying heat treatment (~ 563 mL) was more than twice compared with that by acetylene treatment (~ 257 mL); and butyrate was the main carboxylic acid by-product (~ 3 g/L). In P2 experiments after sludge heat treatment, the highest hydrogen yield (1.66 ± 0.07 mol H2/mol glucose) and caproic acid production (~ 2 g/L) were observed at 20 g O2/L of manipueira COD, when bovine rumen was the inoculum. The primary metabolic degradation products in all P2 experiments were ethanol, acetic, butyric, propionic and caproic acids. The finding of caproic acid detection indicated that the applied conditions in manipueira anaerobic degradation favored carbon chain elongation over methanogenesis.  相似文献   

3.
A better understanding of the microbial ecology of anaerobic processes during transitional states is important to achieve a long-term efficient reactor operation. Five wastes (pig manure, biodiesel residues, ethanol stillage, molasses residues, and fish canning waste) were treated in five anaerobic reactors under the same operational conditions. The influence of the type of substrate and the effect of modifying feeding composition on the microbial community structure was evaluated. The highest biomethanation efficiency was observed in reactors fed with fish canning waste, which also presented the highest active archaeal population and the most diverse microbial communities. Only two Bacteria populations could be directly related to a particular substrate: Ilyobacter with biodiesel residues and Trichococcus with molasses residues. Results showed that the time to achieve steady-state performance after these transitional states was not dependent on the substrate treated. But reactors needed more time to handle the stress conditions derived from the start-up compared to the adaptation to a new feeding. Cluster analyses showed that the type of substrate had a clear influence on the microbiology of the reactors, and that segregation was related to the reactors performance. Finally, we conclude that the previous inoculum history treating solid waste and higher values of active Archaea population are important factors to face a successful change in substrate not entailing stability failure.  相似文献   

4.
Summary Anaerobic fermentation of wheat bran, a model solid substrate, was conducted under non-axenic conditions, in two reactors operated under different modes, all other conditions being strictly identical. The first reactor was a completely-mixed batch reactor. The second reactor was a percolator into which the liquid phase was recirculated in closed loop through the solid substrate acting as a stationary bed. The final yield of fermentation was obtained after 27 days in the completely-mixed batch reactor, and after 14 days only in the percolator. Scanning electron microscopy revealed that numerous micro-organisms adhered to the solid substrate acting as a carrier in the percolator, whereas only very few micro-organisms adhered to the solid substrate in the completely-mixed batch reactor. The results show that obtaining a durable direct contact between micro-organisms and their solid substrate improves the rate of solids degradation.  相似文献   

5.
The article concerns converting waste from vegetable processing facilities into methane in anaerobic reactors with a small amount of inoculum (8.4%). Anaerobic digestion of vegetable waste with a high content of organic acids and carbohydrates makes it possible to achieve a methanogenesis productivity of 273–436 L CH4/kg of volatile solidis, which is comparable to or higher than the productivity of such reactors in the world (according to the literature). The contents of ammonia nitrogen and soluble phosphorus in the form of on undiluted substrate basis in the digested vegetable wastes ranged from 3.39 to 5.06 and from 0.78 to 1.03 g/L respectively. Thus, mineralized vegetable waste can be used as an organic fertilizer with a high nutrient content. The results show the feasibility of the technology of conversion of organic waste from vegetable processing facilities into methane and organic fertilizer in anaerobic fermenters (digesters).  相似文献   

6.
The influence of total solid contents during anaerobic mesophilic treatment of the organic fraction of municipal solid waste (MSW) has been studied in this work. The work was performed in batch reactors of 1.7L capacity, during a period of 85-95 days. Two different organic substrate concentrations were studied: 931.1 mgDOC/L (20% TS) and 1423.4 mgDOC/L (30% TS). Experimental results showed that the reactor with 20% total solids content had significantly higher performance. Thus, the startup phase ended at 14 days and the total DOC removal was 67.53%. The startup in reactor R30 ended at 28 days obtaining 49.18% DOC removal. Also, the initial substrate concentration contributed substantially to the amount of methane in the biogas. Hence, the total methane production in the methanogenic phase was 7.01 L and 5.53 L at the end of the experiments for R20 and R30, respectively.  相似文献   

7.
In this paper, Fourier Transform infrared spectroscopy (FTIR) along with thermogravimetric analysis together with mass spectrometry (TG–MS analysis) were employed to study the organic matter transformation attained under anaerobic digestion of slaughterhouse waste and to establish the stability of the digestates obtained when compared with fresh wastes. Digestate samples studied were obtained from successful digestion and failed systems treating slaughterhouse waste and the organic fraction of municipal solid wastes. The FTIR spectra and TG profiles from well stabilized products (from successful digestion systems) showed an increase in the aromaticity degree and the reduction of volatile content and aliphatic structures as stabilization proceeded. On the other hand, the FTIR spectra of non-stable reactors showed a high aliphaticity degree and fat content. When comparing differential thermogravimetry (DTG) profiles of the feed and digestate samples obtained from all successful anaerobic systems, a reduction in the intensity of the low-temperature range (≈300°C) peak was observed, while the weight loss experienced at high-temperature (450–550°C) was variable for the different systems. Compared to the original waste, the intensity of the weight loss peak in the high-temperature range decreased in the reactors with higher hydraulic retention time (HRT) whereas its intensity increased and the peak was displaced to higher temperatures for the digesters with lower HRT.  相似文献   

8.
Zhu B  Gikas P  Zhang R  Lord J  Jenkins B  Li X 《Bioresource technology》2009,100(3):1122-1129
This study was conducted to determine the characteristics and biogas production potential of organic materials separated from municipal solid wastes using a rotary drum reactor (RDR) process. Four different types of wastes were first pretreated with a commercial RDR system at different retention times (1, 2 and 3 d) and the organic fractions were tested with batch anaerobic digesters with 2.6 g VS L(-1) initial loading. The four types of waste were: municipal solid waste (MSW), a mixture of MSW and paper waste, a mixture of MSW and biosolids, and a mixture of paper and biosolids. After 20 d of thermophilic digestion (50+/-1 degrees C), it was found that the biogas yields of the above materials were in the range of 457-557 mL g VS(-1) and the biogas contained 57.3-60.6% methane. The total solid and volatile solid reductions ranged from 50.2% to 65.0% and 51.8% to 66.8%, respectively. For each material, the change of retention time in the RDR from 1 to 3d did not show significant (alpha=0.05) influence on the biogas yields of the recovered organic materials. Further studies are needed to determine the minimum retention time requirements in the RDR system to achieve effective separation of organic from inorganic materials and produce suitable feedstock for anaerobic digesters.  相似文献   

9.
Biogas has unique properties for improving the biodegradability of biomass solids during anaerobic digestion (AD). This report presents batch test results of the first investigation into utilizing biogas plasticization to "condition" organic polymers during active digestion of waste activated sludge (WAS). Preliminary design calculations based on polymer diffusion rate limitation are presented. Analysis of the 20 degrees C batch test data determined the first order (k(1)) COD conversion coefficient to be 0.167 day(-1) with a maximum COD utilization rate of 11.25 g L(-1) day(-1). Comparison of these batch test results to typical conventional AD performance parameters showed orders of magnitude improvement. These results show that biogas plasticization during active AD could greatly improve renewable energy yields from biomass waste materials such as MSW RDF, STP sludges, food wastes, animal manure, green wastes, and agricultural crop residuals.  相似文献   

10.
The aim of this paper was to analyze the biomethanization process of food waste (FW) from a university campus restaurant in six reactors with three different total solid percentages (20%, 25% and 30% TS) and two different inoculum percentages (20-30% of mesophilic sludge). The experimental procedure was programmed to select the initial performance parameters (total solid and inoculum contents) in a lab-reactor with V: 1100mL and, later, to validate the optimal parameters in a lab-scale batch reactor with V: 5000mL. The best performance for food waste biodegradation and methane generation was the reactor with 20% of total solid and 30% of inoculum: give rise to an acclimation stage with acidogenic/acetogenic activity between 20 and 60 days and methane yield of 0.49L CH4/g VS. Also, lab-scale batch reactor (V: 5000mL) exhibit the classical waste decomposition pattern and the process was completed with high values of methane yield (0.22L CH4/g VS). Finally, a protocol was proposed to enhance the start-up phase for dry thermophilic anaerobic digestion of food waste.  相似文献   

11.
Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost was reported for the first time. Batch tests were carried out to analyze influences of several environmental factors on biohydrogen production from wheat straw wastes. The performance of biohydrogen production using the raw wheat straw and HCl pretreated wheat straw was then compared in batch fermentation tests. The maximum cumulative hydrogen yield of 68.1 ml H2/g TVS was observed at 126.5 h, the value is about 136-fold as compared with that of raw wheat straw wastes. The maximum hydrogen production rate of 10.14 ml H2/g TVS h was obtained by a modified Gompertz equation. The hydrogen content in the biogas was 52.0% and there was no significant methane observed in this study. In addition, biodegradation characteristics of the substrate were also discussed. The experimental results showed that the pretreatment of the substrate plays a key role in the conversion of the wheat straw wastes into biohydrogen by the composts generating hydrogen.  相似文献   

12.
Waste water, derived from the reprocessing of used emulsions or suspensions, contains high concentrations of emulsified mineral oil and stabilizers, as well as different additives that are needed during the treatment process. Two stirred-tank reactors and two fixed-bed reactors were used to study the biodegradation of these waste-water compounds during two-stage biological treatment. The waste water was first proceesed in an activated sludge reactor to remove easily biodegradable substances. The effluent from the first stage was treated in three parallel operating reactors: an activated sludge tank containing different amounts of powdered activated carbon (PAC, between 0 and 2%), an upflow anaerobic fixed-bed reactor and an aerobic fixed-bed reactor (trickling filter). The results from the continuous treatment were compared with laboratory batch experiments. About 60% of the influent TOC was reduced by the first activated sludge treatment. The removal efficiency increased to about 70% by using a second activated sludge stage. This degradation was comparable to the maximum degree of degradation measured in laboratory batch experiments. PAC addition to the second activated sludge tank resulted in increased degradation rates. The removal efficiency increased to about 76% when 0.1% PAC was added and to 96% with 1% PAC. The removal efficiency decreased to 84% when the proportion of PAC was further increased to 2%. Variations in the amount of PAC addition per unit influent volume in the range of 50 and 200 mg/l had no significant effect on the TOC removal. Degradation models based on the MONOD-type equation were found to be in close correlation with the results obtained from batch experiments. However, the biological removal rates measured in batch experiments did not reflect the removal capacity determined in continuous operating treatment systems.  相似文献   

13.
Volatile Fatty Acids (VFA) production by anaerobic fermentation of organic solid wastes was studied at laboratory scale. The influence of initial substrate concentration was evaluated on VFA production. Completely mixed reactors (0.9?l) were used at mesophilic temperature (35?°C). Food wastes had 43.8% Total Solids content. Three dilutions of substrate (1/25, 1/10 and 1/5) corresponding to 1.75%, 4.38% and 8.76% of Total Solids and five values of Organic Loading Rates: 2, 5, 10, 12.5 and 25?kg COD/m3?d were studied. It was found that substrate 1/10 led to 14?g VFA/l at a loading rate of 12.5?kg COD/m3?d and an hydraulic retention time of 3.7 d. The main VFA produced were especially acetate and butyrate. Substrate diluted 1/5 led to 26.1?g VFA/l at a loading of 5?kg COD/m3?d and an hydraulic retention time of 15.1 d, but biomass production was not optimal. In a second study, a cascade of three reactors was used. An effluent with 42?g VFA/l was obtained at steady-state conditions at a loading of 12.5?kg of COD/m3?d and an hydraulic retention time of 12.5?d. The distribution of VFA was the following: 36% of propionate, 34% of acetate and 22.5% of butyrate.  相似文献   

14.
Over millions of years, living organisms have explored and optimized the digestion of a wide variety of substrates. Engineers who develop anaerobic digestion processes for waste treatment and energy production can learn much from this accumulated ‘experience’. The aim of this work is a survey based on the comparison of 190 digestive tracts (vertebrate and insect) considered as ‘reactors’ and their anaerobic processes. Within a digestive tract, each organ is modeled as a type of reactor (continuous stirred-tank, such reactors in series, plug-flow or batch) associated with chemical aspects such as pH or enzymes. Based on this analysis, each complete digestion process has been rebuilt and classified in accordance with basic structures which take into account the relative size of the different reactors. The results show that all animal digestive structures can be grouped within four basic types. Size and/or position in the structure of the different reactors (pre/post treatment and anaerobic microbial digestion) are closely correlated to the degradability of the feed (substrate). Major common features are: (i) grinding, (ii) an extreme pH compartment, and (iii) correlation between the size of the microbial compartment and the degradability of the feed. Thus, shared answers found by animals during their evolution can be a source of inspiration for engineers in designing optimal anaerobic processes.  相似文献   

15.
Two continuous stirred tanks reactors (CSTR) and four anaerobic fluidized bed reactors (AFBR) were used to study the treatment of a synthetic meat waste during single-and two-stage anaerobic treatment. Four configurations were investigated; a single-stage CSTR and AFBR and the two-stage systems CSTR-AFBR and AFBR-AFBR. Startup of the anaerobic reactors was achieved within 50 days by use of a regime that included stepped increases in influent COD, methanol substitution of the substrate, and addition of essential trace metals such as cobalt and nickel. Two-stage reactors removed up to 85% of influent COD concentrations of 5000 mg/L, whereas the single-stage AFBR and CSTR removed 76 and 9%, respectively. The proportion of methane in the effluent gases increased as the influent COD concentration was increased. Volumetric production of methane was greatest for the first stage of the AFBR-AFBR system. Solids retention times calculated for the AFBRs ranged from 7 to 12 days, sufficient to support methanogenesis. The AFBRs and two-stage systems were more resistant to an influent pH shock from the operating value of pH 6.8 down to pH 3 than the CSTRs and single-stage reactors. It was concluded that high-rate anaerobic treatment systems were applicable to meat industry wastewaters and that two-stage digestion produced a better quality effluent.  相似文献   

16.
Aims: To investigate the synergetic effect of pH and biochemical components on bacterial community structure during mesophilic anaerobic degradation of solid wastes with different origins, and under acidic or neutral conditions. Methods and Results: The bacterial community in 16 samples of solid wastes with different biochemical compositions and origins was evaluated during mesophilic anaerobic degradation at acidic and neutral pH. Denaturing gradient gel electrophoresis (DGGE) and single‐strand conformation polymorphism (SSCP) were used to compare the communities. Multivariate analysis of the DGGE and SSCP results revealed that most of the dominant microbes were dependent on the content of easily degradable carbohydrates in the samples. Furthermore, the dominant microbes were divided into two types, those that preferred an acid environment and those that preferred a neutral environment. A shift in pH was found to change their preference for medium substrates. Although most of the substrates with similar origin and biochemical composition had similar microbial diversity during fermentation, some microbes were found only in substrates with specific origins. For example, two microbes were only found in substrate that contained lignocellulose and animal protein without starch. These microbes were related to micro‐organisms that are found in swine manure, as well as in other intestinal or oral niches. In addition, the distribution of fermentation products was less sensitive to the changes in pH and biochemical components than the microbial community. Conclusions: Bacterial diversity during anaerobic degradation of organic wastes was affected by both pH and biochemical components; however, pH exerted a greater effect. Significance and Impact of the Study: The results of this study reveal that control of pH may be an effective method to produce a stable bacterial community and relatively similar product distribution during anaerobic digestion of waste, regardless of variation in the waste feedstocks.  相似文献   

17.
Solid state anaerobic digestion, as a safe and environment-friendly technology to dispose municipal solid wastes, can produce methane and reduce the volume of wastes. In order to raise the digestion efficiency, this study investigated the pretreatment of yard waste by thermal or chemical method to break down the complex lignocellulosic structure. The composition and structure of pretreated yard waste were analyzed and characterized. The results showed that the pretreatment decreased the content of cellulose and hemicelluloses in yard waste and in turn improved the hydrolysis and methanogenic processes. The thermal pretreatment sample (P1) had the highest methane yield, by increasing 88 % in comparison with digesting the raw material. The maximum biogas production reached 253 mL/g volatile solids (VS). The largest substrate mass reduction was obtained by the alkaline pretreatment (P5). The VS of the alkaline-treated sample decreased about 60 % in comparison with the raw material.  相似文献   

18.
Attached media reactors are used for enhancement of wastewater treatment processes including anaerobic condition. Selection of a suitable biofilm carrier is a compelling method to improve anaerobic digestion systems. This study investigates the performance of four fibrous biofilms installed in batch biogas reactors for treatment of cow manure. BioCords HS1, HS2, LS1, and LS2 are manufactured by Bishop Water Technologies, ON, Canada. Effluents and attached growth media were analyzed after batch experiment; methane production, methane yield, transfer efficiencies, organic and solid removal efficiencies, pH, and attached volatile suspended solid (VSS) were measured; VSS attached to biofilms mainly correlated with the specific surface area of each biofilm. Additionally, SEM (scanning electron microscopy) was used for further understanding of biofilm formation process for BioCords and the dissimilarity in their performance. The results indicated that BioCord LS2 had positive impact on achieving higher methane production and removal efficiencies compared to other support media utilized in batch reactors. It was also demonstrated from the experiment that BioCord LS2 potentially could generate higher methane production than conventional batch bioreactor.  相似文献   

19.
The purpose of this study was to investigate hydrolysis of animal fleshing (ANFL), a predominant tannery solid waste and to characterize the acetogenic fermentation products of anaerobic digestion. The acidogenic digestibility of the tannery solid wastes were evaluated up to 120 h using batch anaerobic digestion tests performed under mesophilic condition at 37 degrees C. The degradation of ANFL starts with non-fibrillar proteins and proceeds with fibrillar proteins. The release of aliphatic amino acid in the early stages of hydrolysis (24 h) and followed by aromatic amino acids (24-72 h) were evidenced by HPLC analysis. The maximum production of propionic and valeric acid were observed in 72 h followed by rapid increase in acetic acid in 96 h using GC-MS. Breakdown of ANFL and formations of other metabolites were evidenced by FT-IR and (1)H-NMR spectroscopy.  相似文献   

20.
The use of a hydrogen-sensitive palladium-metal oxide semiconductor (Pd-MOS) sensor in combination with a membrane for liquid-to-gas transfer for the detection of dissolved hydrogen was investigated. The system was evaluated with known concentrations of dissolved hydrogen in water. The lowest concentration detected with this set-up was 160 nM. The method was applied to monitoring of a laboratory-scale anaerobic digestion process employing mixed sludge containing mainly food/industrial waste. Pulse loads of glucose were added to the system at different levels of microbial activity, and the microbial status of the culture was reflected in the dissolved hydrogen response. Simultaneous headspace hydrogen measurements were performed, and at the lower levels of dissolved hydrogen no corresponding headspace hydrogen could be detected. When glucose was added to a resting culture the dissolved hydrogen response was rapid and the first response could be detected 9 min after addition of glucose, whereas headspace hydrogen concentrations increased only after 80 to 110 min. This indicates limitations in the liquid-to-gas hydrogen transfer and illustrates the importance of hydrogen monitoring in the liquid. The sensor system developed is flexible, the membrane is easily replaceable, and the probe for liquid-to-gas hydrogen transfer can be adjusted easily to large-scale applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号