首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclin B synthesis is required for sea urchin oocyte maturation   总被引:5,自引:0,他引:5  
Sea urchins are members of a limited group of animals in which meiotic maturation of oocytes is completed prior to fertilization. This is different from oocytes of most animals such as mammals and amphibians in which fertilization reactivates an arrested meiotic cycle. Using a recently developed technique for in vitro maturation of sea urchin oocytes, we analyzed the role of cyclin B, the regulatory component of maturation-promoting factor, in the control of sea urchin oocyte meiotic induction and progression. Oocytes of the sea urchin Lytechinus variegatus accumulate significant amounts of cyclin B mRNA and protein during oogenesis. We analyzed cyclin B synthetic requirements in oocytes and early embryos by inhibiting cyclin B synthesis with DNA and morpholino antisense oligonucleotides. Cyclin B synthesis is not necessary for the entry of G2-arrested oocytes into meiosis; however, it is required for the proper progression through meiotic divisions. Surprisingly, mature sea urchin eggs contain significant cyclin B protein following meiosis that serves as a maternal store for early cleavage divisions. We also find that cyclin A can functionally substitute for cyclin B in early embryos but not in oocytes. These studies provide a foundation for understanding the mechanism of meiotic maturation independent of the zygotic cell cycle.  相似文献   

2.
3.
Sequence and expression of a mouse U7 snRNA type II pseudogene.   总被引:3,自引:0,他引:3  
  相似文献   

4.
3' processing of precursors of the H3 RNA of the sea urchin Psammechinus miliaris in Xenopus oocytes is dependent upon sea urchin U7 snRNA. Sequences necessary for this interaction are highly conserved in all sea urchin histone precursor RNAs (including the Psammechinus H3) which, in contrast, are efficiently processed in the Xenopus oocyte without the addition of the homologous U7 snRNA. We resolve this seeming paradox by demonstrating here that the inability of the sea urchin Psammechinus miliaris H3 histone RNA to be processed in the Xenopus oocyte is associated with nucleotides immediately 3' to the conserved downstream sea urchin histone sequence element. Thus, a sequence-specific element (or lack of it) is responsible for the poor recognition of the Psammechinus H3 precursor RNA by the Xenopus processing machinery.  相似文献   

5.
Translational activation of dormant cyclin B1 mRNA stored in oocytes is a prerequisite for the initiation or promotion of oocyte maturation in many vertebrates. Using a monoclonal antibody against the domain highly homologous to that of Drosophila Pumilio, we have shown for the first time in any vertebrate that a homolog of Pumilio is expressed in Xenopus oocytes. This 137-kDa protein binds to the region including the sequence UGUA at nucleotides 1335-1338 in the 3'-untranslated region of cyclin B1 mRNA, which is close to but does not overlap the cytoplasmic polyadenylation elements (CPEs). Physical in vitro association of Xenopus Pumilio with a Xenopus homolog of Nanos (Xcat-2) was demonstrated by a protein pull-down assay. The results of immunoprecipitation experiments showed in vivo interaction between Xenopus Pumilio and CPE-binding protein (CPEB), a key regulator of translational repression and activation of mRNAs stored in oocytes. This evidence provides a new insight into the mechanism of translational regulation through the 3'-end of mRNA during oocyte maturation. These results also suggest the generality of the function of Pumilio as a translational regulator of dormant mRNAs in both invertebrates and vertebrates.  相似文献   

6.
Summary— We have isolated and characterized a cDNA which contains the entire coding sequence of Xenopus laevis cyclin D2 protein. Cyclin D2 mRNA is identified as a member of the class of maternal RNAs. It is rare and stable during embryonic development at least until tadepole. In addition, a second cDNA coding for a truneated version of cyclin D2 was also isolated. Mieroinjection of cyclin D2 into oocytes undergoing meiotic maturation and parthenogenetic activation reveals that the protein is stable for several hours, independently of the ubiquitin-mediated degradation of cyclin B2 that takes place periodically during this process. Microinjected cyclin D2 localizes both in the cytoplasm and in the nucleus of oocyte. In somatic cells, it is well established that cyclin D2 is almost exclusively nuclear and very labile. The unusual behaviour of cyclin D2 upon injection into oocytes may provide indications about a possible role for this protein during meiosis and early development.  相似文献   

7.
Microinjection of a bacterially expressed stable delta 90 sea urchin cyclin B into Xenopus prophase oocytes, in absence or presence of cycloheximide, provokes the activation of histone H1 kinase and the tyrosine dephosphorylation of p34cdc2. Unexpectedly, when prophase oocytes are submitted to a treatment known to elevate the intracellular cAMP level (3-isobutyl-1-methylxanthine and cholera toxin), delta 90 cyclin has no effect and the oocytes remain blocked in prophase. This inhibition is reverted by the microinjection of the inhibitor of cAMP-dependent protein kinase. When delta 90 cyclin is microinjected into oocytes depleted of endogenous cyclins (cycloheximide-treated metaphase I) and in the presence of a high intracellular concentration of cAMP, p34cdc2 kinase is tyrosine rephosphorylated. Altogether, our results indicate that in Xenopus oocyte, cAMP-dependent protein kinase (A-kinase) controls the formation of the cyclin B/p34cdc2 complex which remains inactive and tyrosine phosphorylated.  相似文献   

8.
The pattern of protein synthesis in oocytes of starfish Marthasterias glacialis changes during 1-methyladenine-induced meiotic maturation. One of the newly synthesized proteins, a major 54-kDa polypeptide, was synthesized continuously after activation but was destroyed abruptly just before appearance of the polar bodies at each meiotic division. This protein thus resembles the cyclin proteins identified in cleaving sea urchin and clam embryos. RNA extracted from oocytes before and after maturation encoded virtually identical polypeptides when translated in the reticulocyte lysate. However, there was poor correspondence between the in vitro translation products and the labelling pattern of intact cells. There was no exact in vitro counterpart to the in vivo-labelled cyclin. Instead, a major polypeptide of 52 kDa was seen which appears to be a precursor of the 54-kDa form of cyclin. The 52-kDa polypeptide was identified as cyclin by hybrid arrest of translation. Cyclin mRNA is ot translated to a significant extent before oocyte activation and is present in oocytes as nonadenylated form. It becomes polyadenylated when the oocytes mature. This behavior is also seen in the case of the mRNA for the small subunit of ribonucleotide reductase, another abundant maternal mRNA whose translation is activated at maturation.  相似文献   

9.
Meiotic maturation of Xenopus and sea star oocytes involves the activation of a number of protein-serine/threonine kinase activities, including a myelin basic protein (MBP) kinase. A 44-kDa MBP kinase (p44mpk) purified from mature sea star oocytes is shown here to be phosphorylated at tyrosine. Antiserum to purified sea star p44mpk was used to identify antigenically related proteins in Xenopus oocytes. Two tyrosine-phosphorylated 42-kDa proteins (p42) were detected with this antiserum in Xenopus eggs. Xenopus p42 chromatographs with MBP kinase activity on a Mono Q ion-exchange column. Tyrosine phosphorylation of Xenopus p42 approximately parallels MBP kinase activity during meiotic maturation. These results suggest that related MBP kinases are activated during meiotic maturation of Xenopus and sea star oocytes. Previous studies have suggested that Xenopus p42 is related to the mitogen-activated protein (MAP) kinases of culture mammalian cells. We have cloned a MAP kinase relative from a Xenopus ovary cDNA library and demonstrate that this clone encodes the Xenopus p42 that is tyrosine phosphorylated during oocyte maturation. Comparison of the sequences of Xenopus p42 and a rat MAP kinase (ERK1) and peptide sequences from sea star p44mpk indicates that these proteins are close relatives. The family members appear to be tyrosine phosphorylated, and activated, in different contexts, with the murine MAP kinase active during the transition from quiescence to the G1 stage of the mitotic cell cycle and the sea star and Xenopus kinases being active during M phase of the meiotic cell cycle.  相似文献   

10.
Precise control of the timing of translational activation of dormant mRNAs stored in oocytes is required for normal progression of oocyte maturation. We previously showed that Pumilio1 (Pum1) is specifically involved in the translational control of cyclin B1 mRNA during Xenopus oocyte maturation, in cooperation with cytoplasmic polyadenylation element-binding protein (CPEB). It was reported that another Pumilio, Pumilio2 (Pum2), exists in Xenopus oocytes and that this protein regulates the translation of RINGO mRNA, together with Deleted in Azoospermia-like protein (DAZL). In this study, we characterized Pum1 and Pum2 biochemically by using newly produced antibodies that discriminate between them. Pum1 and Pum2 are bound to several key proteins involved in translational control of dormant mRNAs, including CPEB and DAZL, in immature oocytes. However, Pum1 and Pum2 themselves have no physical interaction. Injection of anti-Pum1 or anti-Pum2 antibody accelerated CPEB phosphorylation, cyclin B1 translation, and oocyte maturation. Pum1 phosphorylation coincides with the dissociation of CPEB from Pum1 and the translational activation of cyclin B1 mRNA, a target of Pum1, whereas Pum2 phosphorylation occurred at timing earlier than that for Pum1. Some, but not all, of cyclin B1 mRNAs release the deadenylase PARN during oocyte maturation, whereas Pum1 remains associated with the mRNA. On the basis of these findings, we discuss the functions of Pum1 and Pum2 in translational control of mRNAs during oocyte maturation.  相似文献   

11.
RINGO, a protein with no homology to cyclin B, has been reported to be involved in activation of CDC2 and regulation of meiotic maturation in Xenopus oocytes. Although the presence of homologues of RINGO families, which are known as SPDY families, has been reported in mammals, their roles in meiotic maturation of mammalian oocytes have never been examined. In the present study, the effects of SPDY on meiotic maturation of porcine oocytes were examined. At first, Xenopus RINGO (xRINGO) mRNA was injected into immature porcine oocytes and found to significantly accelerate CDC2 activation and meiotic resumption. The CCNB (also known as cyclin B) synthesis was prematurely started at 12 h of culture, whereas it started at 18 h in normal oocytes. We next cloned RINGO A2 homologue in pig (pigSPDYA2) from total RNA of immature porcine oocytes by RT-PCR and obtained full-length cDNA that was more than 85% and 40% homologous with mammalian SPDYA2 and xRINGO, respectively. Acceleration effects similar to those by xRINGO were observed in CDC2 activation, meiotic resumption, and the start of CCNB synthesis in pigSPDYA2 mRNA-injected porcine oocytes. In clear contrast with the effects of xRINGO, which was accumulated abnormally in porcine oocytes and arrested them in the first meiotic metaphase (M1), pigSPDYA2 accelerated the meiotic progression, with about half of pigSPDYA2 mRNA-injected oocytes completing meiotic maturation within 30 h. These results suggest that pigSPDYA2 has important roles on meiotic maturation of porcine oocytes and that the rapid degradation of SPDY was necessary for the normal maturation of oocytes.  相似文献   

12.
The cell cycle is driven by the activity of cyclin/cdk complexes. In somatic cells, cyclin E/cdk2 oscillates throughout the cell cycle and has been shown to promote S-phase entry and initiation of DNA replication. In contrast, cyclin E/cdk2 activity remains constant throughout the early embryonic development of the sea urchin and localizes to the sperm nucleus following fertilization. We now show that cyclin E localization to the sperm nucleus following fertilization is not unique to the sea urchin, but also occurs in the surf clam, and inhibition of cyclin E/cdk2 activity by roscovitine inhibits the morphological changes indicative of male pronuclear maturation in sea urchin zygotes. Finally, we show that inhibition of cyclin E/cdk2 activity does not block DNA replication in the early cleavage cycles of the sea urchin. We conclude that cyclin E/cdk2 activity is required for male pronuclear maturation, but not for initiation of DNA replication in early sea urchin development.  相似文献   

13.
Mitotic arrest caused by the amino terminus of Xenopus cyclin B2.   总被引:10,自引:0,他引:10       下载免费PDF全文
Progression through mitosis requires the inactivation of the protein kinase activity of the p34cdc2-cyclin complex by a mechanism involving the degradation of cyclin. We have examined the stability in Xenopus egg extracts of radiolabeled Xenopus or sea urchin B-type cyclins synthesized in reticulocyte lysates. Xenopus cyclin B2 and sea urchin cyclin B were stable in metaphase extracts from unfertilized eggs but were specifically degraded following addition of Ca2+ to the extracts. The degradation of either cyclin was inhibited by the addition of an excess of unlabeled Xenopus cyclin B2 but not by the addition of a number of control proteins. A truncated protein containing only the amino terminus of Xenopus cyclin B2, including sequences known to be essential for cyclin degradation in other species, also inhibited cyclin degradation, even though the truncated protein was stable in extracts following Ca2+ addition. The addition of the truncated protein did not stimulate histone H1 kinase activity in extracts but prevented the loss of H1 kinase activity that normally follows Ca2+ addition to metaphase extracts. When the amino-terminal fragment was added to extracts capable of several cell cycles in vitro, progression through the first mitosis was inhibited and elevated histone H1 kinase activity was maintained. These results indicate that although the amino terminus of cyclin does not contain all of the information necessary for cyclin destruction, it is capable of interacting with components of the cyclin destruction pathway and thereby preventing the degradation of full-length cyclins.  相似文献   

14.
15.
Maturation-promoting factor (MPF), a final trigger for initiating oocyte maturation, is activated in the oocyte cytoplasm, in response to maturation-inducing hormone (MIH) secreted from follicle cells surrounding the oocyte. MPF consists of cdc2 and cyclin B. We investigated the state of cdc2 and cyclin B in immature and mature oocytes of fishes (carp, catfish and lamprey) and amphibians ( Xenopus, frog [ Rana ] and toad [ Bufo ]) using monoclonal antibodies raised against mouse cdc2, which also recognize fish and amphibian cdc2, and monoclonal antibodies against goldfish cyclin B1 and polyclonal antibodies against Xenopus cyclins B1 and B2. Anti-cdc2 and anti-cyclin B immunoblotting of oocyte extracts fractionated by gel filtration chromatography showed that immature oocytes from all of these species with the exception of Xenopus contained only monomeric cdc2. Cyclin B-bound inactive cdc2 (pre-MPF) was present only in immature Xenopus oocytes. Cdc2-cyclin B complex was, however, found in mature oocytes from all the species examined. After the oocyte is induced to mature by MIH, cdc2 should therefore bind to cyclin B in all of these species, except Xenopus. These results suggest that the complex formation of cdc2 and cyclin B in response to MIH stimulation at the oocyte surface is a critical step for initiating oocyte maturation in fishes and amphibians, with the exception of Xenopus , in which pre-MPF already exists in immature oocytes and only its chemical modification is required for MPF activation.  相似文献   

16.
While most cyclin‐dependent kinases (CDKs) are involved in cell cycle control, CDK5 is mostly known for crucial functions in neurogenesis. However, we cloned sea urchin CDK5 from a two‐cell stage cDNA library and found that the protein is present in eggs and embryos, up to the pluteus stage, but without associated kinase activity. To investigate the potential for nonneuronal roles, we screened a starfish cDNA library with the yeast two‐hybrid system, for possible CDK5 partners. Interactions with clones expressing part of cyclin B3 and cyclin E proteins were found and the full‐length cyclins were cloned. These interactions were verified in vitro but not in extracts of starfish oocytes and embryos, at any stages, despite the presence of detectable amounts of CDK5, cyclin B3, and cyclin E. We then looked for p35, the CDK5‐specific activator, and cloned the sea urchin ortholog. A sea urchin‐specific anomaly in the amino acid sequence is the absence of N‐terminal myristoylation signal, but nucleotide environment analysis suggests a much higher probability of translation initiation on the second methionine(Met44), that is associated with a conserved myristoylation signal. p35 was found to associate with CDK5 and, when bacterially produced, to confer protein kinase activity to CDK5 immunoprecipitated from sea urchin eggs and embryos. However, p35 mRNA expression was found to begin only at the end of the blastula stage, and the protein was undetectable at any embryonic stage, suggesting a neuronal role beginning in late larval stages. Mol. Reprod. Dev. 77: 449–461, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
19.
We have partially purified a specific cyclin B2 kinase (cyk) from prophase oocytes ofXenopus laevisafter an ATP-γ-S activation step. Phosphopeptide analysis identified Ser53 as the majorin vitrophosphorylation site for cyk in cyclin B2. Using a synthetic peptide derived from cyclin B2 encompassing Ser53 (cyktide) as a substrate, cyk was shown to be activated during progesterone-induced maturation, with a peak of activity between 40 and 50% maturation. A sustained high cyk activity was observed in oscillating egg extracts. Microinjection of cyk-phosphorylated cyclin B2 into prophase oocytes accelerated progesterone-induced maturation by about 2 h, indicating that cyclin B2 is a relevant substrate for cyk and that the function of cyk is situated upstream of cdc2-cyclin B activation. Microinjection of cyk-phosphorylated cyktide or a combination of cyk and cyclin B1 into G2fibroblasts induced significant changes in cell morphology, reminiscent of a premature prophase-like phenotype. Similarly, addition of cyk-phosphorylated cyktide in cyclin B1-dependent interphase extracts resulted in histone H1 kinase activation.  相似文献   

20.
Xkid chromokinesin is required for chromosome alignment on the metaphase plate of spindles formed in Xenopus laevis egg extracts. We have investigated the role of Xkid in Xenopus oocyte meiotic maturation, a progesterone-triggered process that reinitiates the meiotic cell cycle in oocytes arrested at the G2/M border of meiosis I. Here we show that Xkid starts to accumulate at the time of germinal vesicle breakdown and reaches its largest quantities at metaphase II in oocytes treated with progesterone. Both germinal vesicle breakdown and spindle assembly at meiosis I can occur normally in the absence of Xkid. But Xkid-depleted oocytes cannot reactivate Cdc2/cyclin B after meiosis I and, instead of proceeding to meiosis II, they enter an interphase-like state and undergo DNA replication. Expression of a Xkid mutant that lacks the DNA-binding domain allows Xkid-depleted oocytes to complete meiotic maturation. Our results show that Xkid has a role in the meiotic cell cycle that is independent from its role in metaphase chromosome alignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号