共查询到20条相似文献,搜索用时 15 毫秒
1.
Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells 总被引:8,自引:0,他引:8
We have recently reported the chondrogenic effect of bone morphogenetic protein-2 (BMP-2) in high density cultures of the mouse multipotent mesenchymal C3H10T1/2 cell line and have shown the functional requirement of the cell-cell adhesion molecule N-cadherin in BMP-2-induced chondrogenesis in vitro (Denker, A. E., Nicoll, S. B., and Tuan, R. S. (1995) Differentiation 59, 25-34; Haas, A. R., and Tuan, R. S. (1999) Differentiation 64, 77-89). Furthermore, BMP-2 treatment also results in an increased protein level of beta-catenin, a known N-cadherin-associated Wnt signal transducer (Fischer, L., Haas, A., and Tuan, R. S. (2001) Signal Transduction 2, 66-78), suggesting functional cross-talk between the BMP-2 and Wnt signaling pathways. We have observed previously that BMP-2 treatment up-regulates expression of Wnt-3A in high density cultures of C3H10T1/2 cells. To assess the contribution of Wnt-3A to BMP-2-mediated chondrogenesis, we have generated C3H10T1/2 cell lines overexpressing Wnt-3A and various forms of glycogen synthase kinase-3beta (GSK-3beta), an immediate cytosolic component of the Wnt signaling pathway, and examined their response to BMP-2. We show that overexpression of either Wnt-3A or kinase-dead GSK-3beta enhances BMP-2-mediated chondrogenesis. Furthermore, Wnt-3A overexpression results in decreases in both N-cadherin and GSK-3beta protein levels, whereas Wnt-3A as well as kinase-dead GSK-3beta overexpression increase total and nuclear levels of both beta-catenin and LEF-1. Direct cross-talk between Wnts and BMP-2 was also indicated by the up-regulated interaction between beta-catenin and SMAD-4 in response to BMP-2. These results suggest that Wnt-3A acts in a manner opposite to that of other Wnts, such as Wnt-7A, which were previously identified as inhibitory to chondrogenesis, and is the first BMP-2-regulated, chondrogenesis-enhancing member of the Wnt family. 相似文献
2.
Matrix GLA protein modulates differentiation induced by bone morphogenetic protein-2 in C3H10T1/2 cells 总被引:11,自引:0,他引:11
Boström K Tsao D Shen S Wang Y Demer LL 《The Journal of biological chemistry》2001,276(17):14044-14052
Matrix GLA protein (MGP) is ubiquitously expressed with high accumulation in bone and cartilage, where it was found to associate with bone morphogenetic proteins (BMP) during protein purification. To test whether MGP affects BMP-induced differentiation, three sets of experiments were performed. First, pluripotent C3H10T1/2 cells transfected with human MPG (hMGP) or antisense to hMGP (AS-hMGP) were treated with BMP-2. In cells overexpressing hMGP, osteogenic and chondrogenic differentiation was inhibited indicating decreased BMP-2 activity. Conversely, in cells overexpressing AS-hMGP, BMP-2 activity was enhanced. Second, cells were prepared from homozygous and heterozygous MPG-deficient mice aortas. When treated with BMP-2, these cells underwent chondrogenic and osteogenic differentiation, respectively, whereas controls did not. Third, FLAG-tagged hMGP with the same biological effect as native hMGP inhibited BMP-induced differentiation, when exogenously added to culture media. Together, these results suggest that MGP modulates BMP activity. To test whether hMGP fragments would retain the effect of full-length hMGP, three subdomains were overexpressed in C3H10T1/2 cells. In cells expressing the mid-region, alone (amino acids (aa) 35-54) or in combination with the N terminus (aa 1-54) but not the C terminus (aa 35-84), osteogenic differentiation was enhanced and occurred even without added BMP-2. Thus, two subdomains had the opposite effect of full-length hMGP, possibly due to different expression levels or domain characteristics. 相似文献
3.
4.
BACKGROUND: The molecular mechanisms underlying the biologic effects or differentiation of mesenchymal stromal cells (MSC) have not been clarified. Screening for genes differentially expressed at different stages is an important step in determining these molecular mechanisms. METHODS: In this study, we analyzed the gene expression profiles of C3H10T1/2 (10T1/2) cells and two sublines, A54 (pre-adipocyte) and M1601 (myoblast), as a model of MSC and downstream committed progenitors. RESULTS: We found up-regulated expression of delta-like-1 (Dlk), Wnt-5a and IL-1 receptor-like-1 (ST2) in 10T1/2 cells; stem cell factor (SCF) and stromal derived factor-1 (SDF-1) in A54 cells; and cardiac muscle-specific gene in M1601 cells. Overexpression of Dlk in A54 cells did not induce any effects on their differentiation into adipocytes. After differentiation into adipocytes, A54 cells reduced the expression of SCF, SDF-1 and Ang-1 as well as the ability to support the formation of a cobblestone appearance. DISCUSSION: The results suggest that these three lines hae different gene profiles and are a useful system for analyzing the differentiation and function of MSC and progenitor cells. 相似文献
5.
Denker AE Haas AR Nicoll SB Tuan RS 《Differentiation; research in biological diversity》1999,64(2):67-76
Chondrogenic differentiation of mesenchymal cells is generally thought to be initiated by the inductive action of specific growth factors and depends on intimate cell-cell interactions. In this study, we have used multipotential murine C3H10T1/2 cells to analyze the effect and mechanism of action of bone morphogenetic protein 2 (BMP-2) on chondrogenesis. C3H10T1/2 cells have been previously shown to undergo multiple differentiation pathways. While chondrogenesis, osteogenesis, myogenesis and adipogenesis have been observed, chondrocytes appear significantly less frequently than the other cell types, and the appearance of chondrocytes exclusive of the other cell types has not been observed. We report here that the appearance of chondrocytes in C3H10T1/2 cells is markedly enhanced as a result of culture under conditions favorable for chondrogenesis, i.e. plating as high-density micromass and treatment with BMP-2. Such cultures contain chondrocyte-like cells, elaborate an Alcian blue stained cartilage-like matrix, express link protein and type II collagen, both cartilage matrix markers, and show increased [35S]sulfate incorporation. The appearance of Alcian blue positive material and increased sulfate incorporation are dependent on the dose of BMP-2, culture time, and cell plating density of the micromass cultures. Differentiation of cells within the micromass was specific to the chondrogenic lineage, as alkaline phosphatase staining revealed only faint staining in the micromass at the highest BMP-2 concentration. The importance of enhanced cell-cell interaction in the chondroinductive effects of BMP-2 on high-density C3H10T1/2 cultures was further implicated by the additional promotion of chondrogenesis in the presence of the polycationic compound, poly-L-lysine, which has been previously reported to enhance cellular interactions and chondrogenesis in embryonic limb mesenchymal cells. Taken together, these findings suggest that chondrogenesis in C3H10T1/2 cells is inducible by BMP-2 and requires cell-cell interaction. 相似文献
6.
The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. 总被引:20,自引:0,他引:20
T Katagiri A Yamaguchi T Ikeda S Yoshiki J M Wozney V Rosen E A Wang H Tanaka S Omura T Suda 《Biochemical and biophysical research communications》1990,172(1):295-299
The possibility that the non-osteogenic mouse pluripotent cell line, C3H10T1/2 (10T1/2), could be induced to differentiate into osteogenic cells by various hormones and cytokines was examined in vitro. Of a number of agents tested, recombinant human bone morphogenetic protein-2 (rhBMP-2) and retinoic acid induced alkaline phosphatase (ALP) activity in 10T1/2 cells. rhBMP-2 also induced mRNA expression of ALP in the cells. Dexamethasone, 1 alpha, 25-dihydroxyvitamin D3, transforming growth factor-beta 1 and insulin-like growth factor-I did not stimulate ALP activity. Treatment with rhBMP-2 greatly induced cAMP production in response to parathyroid hormone in 10T1/2 cells. No ALP activity was induced in NIH3T3 fibroblasts treated with rhBMP-2 or retinoic acid. These results indicate that 10T1/2 cells have a potential to differentiate into osteogenic cells under the control of BMP-2. 相似文献
7.
Bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta (TGF-beta) superfamily, is characterized by its ability to induce cartilage and bone formation. We have recently demonstrated that the multipotential, murine embryonic mesenchymal cell line, C3H10T1/2, when cultured at high density, is induced by BMP-2 or TGF-beta 1 to undergo chondrogenic differentiation. The high-cell-density requirement suggests that specific cell-cell interactions, such as those mediated by cell adhesion molecules, are important in the chondrogenic response. In view of our recent finding that N-cadherin, a Ca(2+)-dependent cell adhesion molecule, is functionally required in normal embryonic limb mesenchyme cellular condensation and chondrogenesis, we examine here whether N-cadherin is also involved in BMP-2 induction of chondrogenesis in C3H10T1/2 cells. BMP-2 stimulation of chondrogenesis in high-density micromass cultures of C3H10T1/2 cells was evidenced by Alcian blue staining, elevated [35S]sulfate incorporation, and expression of the cartilage matrix markers, collagen type II and cartilage proteoglycan link protein. With BMP-2 treatment, N-cadherin mRNA expression was stimulated 4-fold within 24 h, and by day 5, protein levels were stimulated 8-fold. An N-cadherin peptidomimic containing the His-Ala-Val sequence to abrogate homotypic N-cadherin interactions inhibited chondrogenesis in a concentration-dependent manner. To analyze the functional role of N-cadherin further, C3H10T1/2 cells were stably transfected with expression constructs of either full-length N-cadherin or a dominant negative, N-terminal deletion mutant of N-cadherin. Moderate (2-fold) overexpression of full-length N-cadherin augmented, whereas higher (4-fold) overexpression inhibited the BMP-2-chondrogenic effect. On the other hand, expression of the dominant negative N-cadherin mutant dramatically inhibited BMP-2 stimulated chondrogenesis. These data strongly suggest that upregulation of N-cadherin expression, at defined critical levels, is a candidate mechanistic component of BMP-2 stimulation of mesenchymal chondrogenesis. 相似文献
8.
9.
10.
11.
Gomes RR Joshi SS Farach-Carson MC Carson DD 《Differentiation; research in biological diversity》2006,74(1):53-63
Perlecan (Pln) is an abundant heparan sulfate (HS) proteoglycan in the pericellular matrix of developing cartilage, and its absence dramatically disrupts endochondral bone formation. This study examined two previously unexamined aspects of the function of Pln in mesenchymal chondrogenesis in vitro. Using the well-established high-density micromass model of chondrogenic differentiation, we first examined the requirement for endogenous Pln synthesis and secretion through the use of Pln-targeted ribozymes in murine C3H10T1/2 embryonic fibroblasts. Second, we examined the ability of the unique N-terminal, HS-bearing Pln domain I (PlnDI) to synergize with exogenous bone morphogenetic protein-2 (BMP-2) to support later stage chondrogenic maturation of cellular condensations. The results provide clear evidence that the function of Pln in late stage chondrogenesis requires Pln biosynthesis and secretion, because 60%-70% reductions in Pln greatly diminish chondrogenic marker expression in micromass culture. Additionally, these data support the idea that while early chondrocyte differentiation can be supported by exogenous HS-decorated PlnDI, efficient late stage PlnDI-supported chondrogenesis requires both BMP-2 and Pln biosynthesis. 相似文献
12.
Ryo Ito Hiroki Shimada Kengo Yazawa Ikuko Sato Yuuki Imai Akira Sugawara Atsushi Yokoyama 《Biochemistry and Biophysics Reports》2016
DNA methylation is closely involved in the regulation of cellular differentiation, including chondrogenic differentiation of mesenchymal stem cells. Recent studies showed that Ten–eleven translocation (TET) family proteins converted 5-methylcytosine (5mC) to 5-hydroxymethylcytosine, 5-formylcytosine and 5carboxylcytosine by oxidation. These reactions constitute potential mechanisms for active demethylation of methylated DNA. However, the relationship between the DNA methylation patterns and the effects of TET family proteins in chondrocyte differentiation is still unclear. In this study, we showed that DNA hydroxylation of 5mC was increased during chondrocytic differentiation of C3H10T1/2 cells and that the expression of Tet1 was particularly enhanced. Moreover, knockdown experiments revealed that the downregulation of Tet1 expression caused decreases in chondrogenesis markers such as type 2 and type 10 collagens. Furthermore, we found that TET proteins had a site preference for hydroxylation of 5mC on the Insulin-like growth factor 1 (Igf1) promoter in chondrocytes. Taken together, we showed that the expression of Tet1 was specifically facilitated in chondrocyte differentiation and Tet1 can regulate chondrocyte marker gene expression presumably through its hydroxylation activity for DNA. 相似文献
13.
Chandra A Itakura T Yang Z Tamakoshi T Xue X Wang B Ueki T Sato K Uezato T Miura N 《Biochemical and biophysical research communications》2006,344(3):786-791
Bone morphogenetic protein (BMP) antagonists regulate the pleiotropic actions of BMPs by binding to BMPs. We previously isolated the Neurogenesin-1 (Ng1) gene and found that Ng1 protein induces neuronal differentiation in the brain. In this study, we found that Ng1 was expressed in the primordial cells of the skeleton and investigated whether Ng1 protein inhibited the BMP action to induce osteoblastic differentiation in C2C12 myoblasts. Interestingly, Ng1 protein inhibited the BMP7-induced alkaline phosphatase activity while it did not inhibit the BMP2-induced activity. All data suggest that Ng1 protein plays an important role in the embryonic bone formation by differentially regulating BMPs. 相似文献
14.
Involvement of ERK in BMP-2 induced osteoblastic differentiation of mesenchymal progenitor cell line C3H10T1/2 总被引:10,自引:0,他引:10
The signaling mechanisms responsible for bone morphogenetic protein (BMP) induced osteoblast differentiation remains poorly understood. Previous research demonstrated that Smad proteins are the substrates and the mediators of BMP bound serine/threonine receptor kinase. In the present study, we examined the possible involvement of extracellular signal-regulated kinase (Erk) in the BMP induced osteoblast differentiation of mesenchymal progenitor cell C3H10T1/2. Our results indicate that BMP-2 inducement increased MAP kinase activity in mesenchymal progenitor cell line C3H10T1/2. Contrary to previous reports, this increased MAP kinase activity showed a latent but sustained pattern. Elevation of Erk1 and Erk2 protein levels was observed simultaneously. RT-PCR results demonstrated that the elevation of Erk protein level in BMP-2 induced cells was from the upregulation of mRNA expression. Furthermore, upregulated Erk proteins present enhanced phosphorylation. By using a dominant-negative Erk2 cell line, we demonstrated that nonfunctional Erk2 partially eliminated BMP-2 induced cell proliferation and ALP activity in the C3H10T1/2 cell. These results indicate that Erk is involved in BMP-2 induced osteoblast differentiation. The results also demonstrate that a latent and sustained signaling pattern exists in BMP induced signaling cascade. 相似文献
15.
X-ray induced transformation of C3H10T1/2 cells was suppressed in a concentration-dependent manner by administration of ascorbic acid after irradiation (0.1-20 micrograms/ml for the first week) in the culture medium. The dose-response curve was shifted about 60% downward and was slightly steeper in the presence of ascorbic acid (5 micrograms/ml for the first week) than in its absence. The 1-week treatment procedure revealed that cells initiated by radiation remained susceptible to ascorbic acid until the time of morphological phenotype expression. The neoplastically transformed phenotype expressed after incubation for 8 weeks could no longer be suppressed by ascorbic acid even after culture transfer. Similarly, the neoplastically transformed phenotype suppressed for 8 weeks by ascorbic acid treatment was not subsequently expressed in the absence of ascorbic acid. On the basis of the oxygen-detoxifying nature of ascorbic acid, we postulated that expression of the neoplastically transformed phenotype is promoted by reactive oxygen species and peroxy radicals generated in cells during the whole assay period. The data may be useful as a guide for chemopreventive efforts against radiation carcinogenesis. 相似文献
16.
17.
18.
Morphological transformation in cells treated with varied concentrations of benzo (α) pyrene (BP) was measured following subculture at low cell densities. Subconfluent cultures exposed to BP were allowed to grow to confluence, trypsinized, and reseeded at cell densities ranging from 5 to 2,300 surviving cells/cm2. These secondary cultures were incubated for 8 to 9 weeks, stained, and examined for evidence of morphological transformation. BP-treated cells reseeded in virtual isolation in microwells (approx. 5 surviving cells/cm2) transformed at frequencies up to 14.5%. At these low initial cell densities, transformation frequency did not demonstrate a significant dependence on BP concentration. However, BP-treated cells reseeded at higher densities (11 to 2,300 surviving cells/cm2) showed both density-dependent transformation frequencies and BP-concentration dependence of transformation. As reported previously (Haber et al., Cancer Res. 37 1644, 1977), the subculturing of treated cells did not affect the BP-concentration dependence of focus formation in the transformation assay. Cell density-dependent suppression of morphological transformation has now been observed over a wide range of BP concentration. We suggest that this phenomenon is associated with colony interactions and consider various possible mechanisms of BP involvement. 相似文献
19.
Mingke Wang Yongping Su Huiqin Sun Tao Wang Guohe Yan Xinze Ran Fengchao Wang Tianming Cheng Zhongmin Zou 《Differentiation; research in biological diversity》2010
A murine embryonic mesenchymal cell line C3H/10T1/2 possesses the potential to differentiate into multiple cell phenotypes and has been recognized as multipotent mesenchymal stem cells, but no in vitro model of its endothelial differentiation has been established and the effect of angiogenic factors on the differentiation is unknown. The aim of the present study was to evaluate the role of angiogenic factors in inducing endothelial differentiation of C3H/10T1/2 cells in vitro. C3H/10T1/2 cells were treated with angiogenic factors, VEGF (10 ng/mL) and bFGF (5 ng/mL). At specified time points, cells were subjected to morphological study, immunofluorescence staining, RT-PCR, LDL-uptake tests and 3-D culture for the examination of the structural and functional characteristics of endothelial cells. Classic cobblestone-like growth pattern appeared at 6 day of the induced differentiation. Immunofluorescence staining and RT-PCR analyses revealed that the induced cells exhibited endothelial cell-specific markers such as CD31, von Willebrand factor, Flk1, Flt1, VE-cadherin, Tie2, EphrinB2 and Vezf1 at 9 day. The induced C3H/10T1/2 cells exhibited functional characteristics of the mature endothelial phenotype, such as uptake of acetylated low-density lipoproteins (Ac-LDL) and formation of capillary-like structures in three-dimensional culture. At 9 day, Weibel–Palade bodies were observed under a transmission electron microscope. This study demonstrates, for the first time, endothelial differentiation of C3H/10T1/2 cells induced by angiogenic factors, VEGF and bFGF, and confirms the multipotential differentiation ability. This in vitro model is useful for investigating the molecular events in endothelial differentiation of mesenchymal stem cells. 相似文献
20.
The signaling pathways of bone morphogenic protein 2 (BMP-2) and Sonic hedgehog (Shh) are related during embryogenesis. Both proteins have been implicated as important components during osteogenic differentiation; e.g., considering their in vitro effects in the pluripotent C3H10T/1/2 cell system. Also, BMP-2 has been frequently reported to stimulate adipogenesis as well as osteogenesis in these cells. We investigated the relative potencies of Shh and BMP-2 with regard to adipogenesis. We performed differentiation experiments by stimulating C3H10T1/2 cells with BMP-2, Shh, or a combination. We monitored adipocyte-like differentiation via gene expression analysis and cytologic staining. An adipocytic phenotype was observed in BMP-2-treated cells, as shown by upregulation of two adipocytic marker mRNAs, PPAR-gamma and aP2, and by staining of lipid-filled cell vesicles with Oil Red O. In contrast, no adipocyte-like differentiation could be detected either after treatment with Shh or after exposure to a combination of Shh and BMP-2. Our results demonstrate for the first time that Shh and BMP-2 have contrary effects on adipocyte-like differentiation. Whereas BMP-2 promotes the adipocytic lineage, Shh suppresses the expression of the BMP-2-induced fat-cell phenotype. 相似文献