首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charcot-Marie-Tooth disease (CMT) with deafness is clinically distinct among the genetically heterogeneous group of CMT disorders. Molecular studies in a large family with autosomal dominant CMT and deafness have not been reported. The present molecular study involves a family with progressive features of CMT and deafness, originally reported by Kousseff et al. Genetic analysis of 70 individuals (31 affected, 28 unaffected, and 11 spouses) revealed linkage to markers on chromosome 17p11.2-p12, with a maximum LOD score of 9.01 for marker D17S1357 at a recombination fraction of .03. Haplotype analysis placed the CMT-deafness locus between markers D17S839 and D17S122, a approximately 0.6-Mb interval. This critical region lies within the CMT type 1A duplication region and excludes MYO15, a gene coding an unconventional myosin that causes a form of autosomal recessive deafness called DFNB3. Affected individuals from this family do not have the common 1.5-Mb duplication of CMT type 1A. Direct sequencing of the candidate peripheral myelin protein 22 (PMP22) gene detected a unique G-->C transversion in the heterozygous state in all affected individuals, at position 248 in coding exon 3, predicted to result in an Ala67Pro substitution in the second transmembrane domain of PMP22.  相似文献   

2.
Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. Sporadic cases of CMT have been described since the earliest reports of the disease. The most frequent form of the disorder, CMT1A, is associated with a 1.5-Mb DNA duplication on chromosome 17p11.2, which segregates with the disease. In order to investigate the prevalence of de novo CMT1A duplications, this study examined 118 duplication-positive CMT1A families. In 10 of these families it was demonstrated that the disease had arisen as the result of a de novo mutation. By taking into account the ascertainment of families, it can be estimated that > or = 10% of autosomal dominant CMT1 families are due to de novo duplications. The CMT1A duplication is thought to be the product of unequal crossing over between parental chromosome 17 homologues during meiosis. Polymorphic markers from within the duplicated region were used to determine the parental origin of these de novo duplications in eight informative families. Seven were of paternal and one of maternal origin. This study represents the first report of a de novo duplication with a maternal origin and indicates that it is not a phenomenon associated solely with male meioses. Recombination fractions for the region duplicated in CMT1A are larger in females than in males. That suggests that oogenesis may be afforded greater protection from misalignment during synapsis, and/or that there may be lower activity of those factors or mechanisms that lead to unequal crossing over at the CMT1A locus.  相似文献   

3.
Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. One form of CMT, CMT type 1A, is characterized by uniformly decreased nerve conduction velocities, usually shows autosomal dominant inheritance, and is associated with a large submicroscopic duplication of the p11.2-p12 region of chromosome 17. A cohort of 75 unrelated patients diagnosed clinically with CMT and evaluated by electrophysiological methods were analyzed molecularly for the presence of the CMT1A DNA duplication. Three methodologies were used to assess the duplication: measurement of dosage differences between RFLP alleles, analysis of polymorphic (GT)n repeats, and detection of a junction fragment by pulsed-field gel electrophoresis. The CMT1A duplication was found in 68% of the 63 unrelated CMT patients with electrophysiological studies consistent with CMT type 1 (CMT1). The CMT1A duplication was detected as a de novo event in two CMT1 families. Twelve CMT patients who did not have decreased nerve conduction velocities consistent with a diagnosis of CMT type 2 (CMT2) were found not to have the CMT1A duplication. The most informative molecular method was the detection of the CMT1A duplication-specific junction fragment. Given the high frequency of the CMT1A duplication in CMT patients and the high frequency of new mutations, we conclude that a molecular test for the CMT1A DNA duplication is very useful in the differential diagnosis of patients with peripheral neuropathies.  相似文献   

4.
We report here the second case of Charcot-Marie-Tooth disease 1A (CMT1A) with a cytogenetically visible de novo direct duplication of 17p11.117p12. A male child who was initially referred for developmental delay and dysmorphism was subsequently shown to have significantly reduced motor nerve conduction velocities characteristic of CMT1A. This patient was not informative for the DNA markers mapping to the CMT1A region; however, with DNA markers pA10–41 and EW503 that map proximally and distally with respect to the disease locus, a dosage difference was observed between the two alleles. Comparison with parental genotypes indicated a de novo maternal duplication. Pulsed field gel analysis using probe VAW409R3a indicated that a 500-kb SacII junction fragment usually associated with CMT1A was absent in this patient. These findings confirm that the disease phenotype is probably caused by a gene dosage effect.  相似文献   

5.
Detection of tandem duplications and implications for linkage analysis.   总被引:1,自引:1,他引:0  
The first demonstration of an autosomal dominant human disease caused by segmental trisomy came in 1991 for Charcot-Marie-Tooth disease type 1A (CMT1A). For this disorder, the segmental trisomy is due to a large tandem duplication of 1.5 Mb of DNA located on chromosome 17p11.2-p12. The search for the CMT1A disease gene was misdirected and impeded because some chromosome 17 genetic markers that are linked to CMT1A lie within this duplication. To better understand how such a duplication might affect genetic analyses in the context of disease gene mapping, we studied the effects of marker duplication on transmission probabilities of marker alleles, on linkage analysis of an autosomal dominant disease, and on tests of linkage homogeneity. We demonstrate that the undetected presence of a duplication distorts transmission ratios, hampers fine localization of the disease gene, and increases false evidence of linkage heterogeneity. In addition, we devised a likelihood-based method for detecting the presence of a tandemly duplicated marker when one is suspected. We tested our methods through computer simulations and on CMT1A pedigrees genotyped at several chromosome 17 markers. On the simulated data, our method detected 96% of duplicated markers (with a false-positive rate of 5%). On the CMT1A data our method successfully identified two of three loci that are duplicated (with no false positives). This method could be used to identify duplicated markers in other regions of the genome and could be used to delineate the extent of duplications similar to that involved in CMT1A.  相似文献   

6.
The presence of 17p11.2 duplication in CMT 1 Italian families was studied. Fourteen families were tested with pVAW409R3a probe which detects the duplication at D17S122 locus. The duplication was found in all affected individuals, but not in the unaffected relatives and in the unrelated spouses. Also two sporadic cases were investigated: the duplication was present in both patients confirming this mutation as cause of the disease.  相似文献   

7.
Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder characterized by recurrent mononeuropathies. A 1.5-Mb deletion in chromosome 17p11.2-p12 has been associated with HNPP. Duplication of the same 1.5-Mb region is known to be associated with Charcot-Marie-Tooth disease type 1 (CMT1A), a more severe peripheral neuropathy characterized by symmetrically slowed nerve conduction velocity (NCV). The CMT1A duplication and HNPP deletion appear to be the reciprocal products of a recombination event involving a repeat element (CMT1A-REP) that flanks the 1.5-Mb region involved in the duplication/deletion. Patients from nine unrelated Italian families who were diagnosed with HNPP on the basis of clinical, electrophysiological, and histological evaluations were analyzed by molecular methods for DNA deletion on chromosome 17p. In all nine families, Southern analysis using a CMT1A-REP probe detected a reduced hybridization signal of a 6.0-kb EcoRI fragment mapping within the distal CMT1A-REP, indicating deletion of one copy of CMT1A-REP in these HNPP patients. Families were also typed with a polymorphic (CA)n repeat and with RFLPs corresponding to loci D17S122, D17S125, and D17S61, which all map within the deleted region. Lack of allelic transmission from affected parent to affected offspring was observed in four informative families, providing an independent indication for deletion. Furthermore, pulsed-field gel electrophoresis analysis of SacII-digested genomic DNA detected junction fragments specific to the 1.5-Mb HNPP deletion in seven of nine Italian families included in this study. These findings suggest that a 1.5-Mb deletion on 17p11.2-p12 is the most common mutation associated with HNPP.  相似文献   

8.
We report the isolation of a new marker (S6.1) from band p11.2 of human chromosome 17 by differential Alu-polymerase chain reaction (Alu-PCR) of both a monochromosomal hybrid retaining a single human chromosome 17 and a hybrid retaining a del(17)(p11.2p11.2) in addition to other human chromosomes. The method is based on the preferential PCR amplification of human DNA in rodent/human hybrids when primers specific to the human Alu repeat element are used. MspI and SstI RFLPs associated with S6.1 were identified and used in linkage analysis of both a previously reported and a newly identified French-Acadian kindred segregating autosomal dominant Charcot-Marie-Tooth disease (CMT). A cumulative peak lod score of 3.41 at a peak recombination fraction of .12 indicates that this marker is linked to the CMT 1A locus but is at a distance from the disease gene. Thus, the marker S6.1 will be useful in further delineating the candidate region for the CMT gene when its location with respect to pA10-41 and 1516, two other markers from 17p11.2 which have previously demonstrated close linkage to the CMT locus, has been determined.  相似文献   

9.
Within the last decade, numerous methods have been applied to detect the most common mutation in patients affected with Charcot-Marie-Tooth (CMT) disease, i.e. submicroscopic duplication in the 17p11.2–p12 region. In 1993, another neuropathy — known as hereditary neuropathy with liability to pressure palsies (HNPP) — has been shown to be caused by a 17p11.2–p12 deletion. Historically, Southern blot analysis was the first approach to identify CMT1A duplication or HNPP deletion. This time- and labor-consuming method requires prior selection of DNA samples. In fact, only CMT patients affected with the demyelinating form of CMT1 have been screened for CMT1A duplication. After the 17p11.2–p12 duplication was identified in the CMT1 families, subsequent studies revealed additional axonal features in the patients harboring the 17p11.2–p12 duplication. Thus it seems reasonable to test all patients affected with CMT for the presence of the 17p11.2–p12 duplication. To evaluate the utility of real-time polymerase chain reaction (Q-PCR) and restriction fragment length polymorphism PCR (RFLP-PCR), we screened a large group of 179 families with the diagnosis of CMT/HNPP for the presence of the 17p11.2–p12 duplication/deletion. Due to a high frequency of CMT1A duplication in familial cases of CMT, we propose (in contrast to the previous studies) to perform Q-PCR analysis in all patients diagnosed with CMT.  相似文献   

10.
Charcot-Marie-Tooth neuropathy (CMT) is one of the most common hereditary disorders, affecting 1:2500 individuals. CMT is a heterogeneous group of disorders characterized by chronic peripheral motor and sensory neuropathy. We have performed the detection of 1.5 Mb CMT1A tandem duplication in 17p11.2-12 chromosome region for autosome-dominant CMT1 patients and their relatives using the analysis of two (CA)n polymorphic microsatellite loci: 17S921 and 17S1358 localised in the duplication region. CMT1A duplication was found in three of five autosome-dominant CMT1 families. It has been shown that CMT1A duplication analysis is important for early differential diagnosis of CMT including prenatal diagnosis and genetic consulting in high risk families.  相似文献   

11.
A female patient with clinical signs and symptoms of a demyelinating neuropathy was shown to have a duplication of the 1.5-Mb region on chromosome 17p11.2, typical of the great majority of cases of Charcot-Marie-Tooth disease type 1A (CMT1A). However, analysis of DNA extracted from peripheral blood revealed a 2:2.4 instead of the usual 2:3 ratio between the 7.8- and 6.0-kb EcoRI fragments in the proximal and distal repetitive extragenic palindromic (REP) elements of CMT1A. Detection of a 3.2-kb EcoRI/SacI kb junction fragment with probe pLR7.8 confirmed the CMT1A duplication. The dosage of this junction fragment, compared with a 2.8-kb EcoRI/SacI fragment of the proximal REP elements of CMT1A, was 2:0.58 instead of the expected 2:1 dosage for heterozygous CMT1A duplications. We hypothesized that the lower dosages of these restriction fragments specific for the CMT1A duplication were due to mosaicism; this was confirmed by fluorescence in situ hybridization analysis with the D17S122-specific probe pVAW409R1. In peripheral blood lymphocytes the percentage of interphase nuclei with a duplication in 17p11.2 was 49%. In interphase nuclei extracted from buccal mucosa, hair-root cells or paraffin-embedded nervous tissue the duplication was detectable in 51%, 66% and 74%, respectively. This is the first report of mosaicism in a patient with a CMT1A duplication identified by three different and independent techniques. Received: 14 November 1995 / Revised: 13 February 1996  相似文献   

12.
Summary Recently, it has been shown that Charcot-Marie-Tooth disease type 1a (CMT1a) is linked with a duplication of a DNA segment that is detected by probe VAW409R3, and that is located on chromosome 17p11.2. Here, we show that this duplication also contains VAW412R3a, but not A10-41 and EW503. Accounting for the duplication in recombination analysis, we found recombinants between CMT1a and EW301 and EW502, but not with A10-41, VAW409R3, and VAW412R3. Using pulsed-field gel electrophoresis analysis, we estimated the minimal size of the duplicated region in CMT1a patients to be 1100 kb.  相似文献   

13.
Autosomal recessive Charcot-Marie-Tooth disease (CMT) type 4 (CMT4) is a complex group of demyelinating hereditary motor and sensory neuropathies presenting genetic heterogeneity. Five different subtypes that correspond to six different chromosomal locations have been described. We hereby report a large inbred Lebanese family affected with autosomal recessive CMT4, in whom we have excluded linkage to the already-known loci. The results of a genomewide search demonstrated linkage to a locus on chromosome 19q13.1-13.3, over an 8.5-cM interval between markers D19S220 and D19S412. A maximum pairwise LOD score of 5.37 for marker D19S420, at recombination fraction [theta].00, and a multipoint LOD score of 10.3 for marker D19S881, at straight theta = .00, strongly supported linkage to this locus. Clinical features and the results of histopathologic studies confirm that the disease affecting this family constitutes a previously unknown demyelinating autosomal recessive CMT subtype known as "CMT4F." The myelin-associated glycoprotein (MAG) gene, located on 19q13.1 and specifically expressed in the CNS and the peripheral nervous system, was ruled out as being the gene responsible for this form of CMT.  相似文献   

14.
Somatic cell hybrids retaining the deleted chromosome 17 from 15 unrelated Smith-Magenis syndrome (SMS) [del(17)(p11.2p11.2)] patients were obtained by fusion of patient lymphoblasts with thymidine kinase-deficient rodent cell lines. Seventeen sequence-tagged sites (STSs) were developed from anonymous markers and cloned genes mapping to the short arm of chromosome 17. The STSs were used to determine the deletion status of these loci in these and four previously described human chromosome 17-retaining hybrids. Ten STSs were used to identify 28 yeast artificial chromosomes (YACs) from the St. Louis human genomic YAC library. Four of the 17 STSs identified simple repeat polymorphisms. The order and location of deletion breakpoints were confirmed and refined, and the regional assignment of several probes and cloned genes were determined. The cytogenetic band locations and relative order of six markers on 17p were established by fluorescence in situ hybridization mapping to metaphase chromosomes. The latter data confirmed and supplemented the somatic cell hybrid results. Most of the hybrids derived from [del(17)(p11.2p11.2)] patients demonstrated a similar pattern of deletion for the marker loci and were deleted for D17S446, D17S258, D17S29, D17S71, and D17S445. However, one of them demonstrated a unique pattern of deletion. This patient is deleted for several markers known to recognize a large DNA duplication associated with Charcot-Marie-Tooth (CMT) disease type 1A. These data suggest that the proximal junction of the CMT1A duplication is close to the distal breakpoint in [del(17)(p-11.2p11.2)] patients.  相似文献   

15.
Charcot-Marie-Tooth (CMT) disease and hereditary neuropathy with liability to pressure palsies (HNPP) are frequent forms of genetically heterogeneous peripheral neuropathies. Reciprocal unequal crossover between flanking CMT1A-REPs on chromosome 17p11.2-p12 is a major cause of CMT type 1A (CMT1A) and HNPP. The importance of a sensitive and rapid method for identifying the CMT1A duplication and HNPP deletion is being emphasized. In the present study, we established a molecular diagnostic method for the CMT1A duplication and HNPP deletion based on hexaplex PCR of 6 microsatellite markers (D17S921, D17S9B, D17S9A, D17S918, D17S4A and D17S2230). The method is highly time-, cost- and sample-saving because the six markers are amplified by a single PCR reaction and resolved with a single capillary in 3 h. Several statistical and forensic estimates indicated that most of these markers are likely to be useful for diagnosing the peripheral neuropathies. Reproducibility, as determined by concordance between independent tests, was estimated to be 100%. The likelihood that genotypes of all six markers are homozygous in randomly selected individuals was calculated to be 1.6 x 10(-4) which indicates that the statistical error rate for this diagnosis of HNPP deletion is only 0.016%.  相似文献   

16.
The segregation patterns of DNA markers from the pericentromeric regions of chromosomes 1 and 17 were studied in seven pedigrees segregating an autosomal dominant gene for Charcot-Marie-Tooth neuropathy type I (CMT I; hereditary motor and sensory neuropathy I). A multilocus analysis with four markers (pMCR-3, pMUC10, FY, and pMLAJ1) spanning the pericentromeric region of chromosome 1 excluded the CMT I gene from this region in six pedigrees but gave some evidence for linkage to the region of Duffy in one pedigree. Linkage of the CMT I gene to markers in the pericentromeric region of chromosome 17 (markers pA10-41, pEW301, p3.6, and pTH17.19) was established; however, in these seven pedigrees homogeneity analysis with chromosome 17 markers detected significant genetic heterogeneity. This analysis suggested that three of the seven pedigrees are not linked to this same region. Overall, two of the seven CMT I pedigrees were not linked to markers tested from chromosomes 1 or 17. These results confirm genetic heterogeneity in CMT I and implicate the existence of a third autosomal locus, in addition to a locus on chromosome 17, and a probable locus on chromosome 1. This evidence of etiological heterogeneity, supported by statistical tests, will have to be taken into consideration when fine-structure genetic maps of the regions around CMT I are constructed.  相似文献   

17.
Charcot-Marie-Tooth disease (CMT) is the most common inherited motor and sensory neuropathy. The neuronal form of this disorder is referred to as Charcot-Marie-Tooth type II disease (CMT2). CMT2 is usually inherited as an autosomal dominant trait with a variable age at onset of symptoms associated with progressive axonal neuropathy. In some families, the locus that predisposes to CMT2 has been demonstrated to map to the distal portion of the short arm of chromosome 1. Other families with CMT2 do not show linkage with 1p markers, suggesting genetic heterogeneity in CMT2. We investigated linkage in a single large kindred with autosomal dominant CMT2. The gene responsible for CMT2 in this kindred (CMT2B) was mapped to the interval between the microsatellite markers D3S1769 and D3S1744 in the 3q13-22 region. Study of additional CMT2 kindreds should serve to further refine the disease gene region and may ultimately lead to the identification of a gene defect that underlies the CMT2 phenotype.  相似文献   

18.
Charcot-Marie-Tooth type (CMT1) disease or hereditary motor and sensory neuropathy type I (HMSNI) is an autosomal dominant peripheral neuropathy. In most CMT1 families, the disease cosegregates with a 1.5-Mb duplication on chromosome 17p11.2 (CMT1A). A few patients have been found with mutations in the peripheral myelin protein 22 (PMP-22) gene located in the CMT1A region. In other families mutations have been identified in the major peripheral myelin protein po gene localized on chromosome Iq21-q23 (CMT1B). We performed a rapid mutation screening of the PMP-22 and P0 genes in non-duplicated CMT1 patients by single-strand conformation polymorphism analysis followed by direct polymerase chain reaction sequencing of genomic DNA. Six new single base changes in the P0 gene were observed: two missense mutations in, respectively, exons 2 and 3, two nonsense mutations in exon 4, and two silent mutations or polymorphisms in, respectively, exons 3 and 6.  相似文献   

19.
Disorders known to be caused by molecular and cytogenetic abnormalities of the proximal short arm of chromosome 17 include Charcot-Marie-Tooth disease type 1A (CMT1A), hereditary neuropathy with liability to pressure palsies (HNPP), Smith-Magenis syndrome (SMS), and mental retardation and congenital anomalies associated with partial duplication of 17p. We identified a patient with multifocal mononeuropathies and mild distal neuropathy, growth hormone deficiency, and mild mental retardation who was found to have a duplication of the SMS region of 17p11.2 and a deletion of the peripheral myelin protein 22 (PMP22) gene within 17p12 on the homologous chromosome. Further molecular analyses reveal that the dup(17)(p11.2p11.2) is a de novo event but that the PMP22 deletion is familial. The family members with deletions of PMP22 have abnormalities indicative of carpal tunnel syndrome, documented by electrophysiological studies prior to molecular analysis. The chromosomal duplication was shown by interphase FISH analysis to be a tandem duplication. These data indicate that familial entrapment neuropathies, such as carpal tunnel syndrome and focal ulnar neuropathy syndrome, can occur because of deletions of the PMP22 gene. The co-occurrence of the 17p11.2 duplication and the PMP22 deletion in this patient likely reflects the relatively high frequency at which these abnormalities arise and the underlying molecular characteristics of the genome in this region.  相似文献   

20.
The HNPP (hereditary neuropathy with liability to pressure palsies) deletion and CMT1A (Charcot-Marie-Tooth disease type 1A) duplication are the reciprocal products of homologous recombination events between misaligned flanking CMT1A-REP repeats on chromosome 17p11. 2-p12. A 1.7-kb hotspot for homologous recombination was previously identified wherein the relative risk of an exchange event is 50 times higher than in the surrounding 98.7% identical sequence shared by the CMT1A-REPs. To refine the region of exchange further, we designed a PCR strategy to amplify the recombinant CMT1A-REP from HNPP patients as well as the proximal and distal CMT1A-REPs from control individuals. By comparing the sequences across recombinant CMT1A-REPs to that of the proximal and distal CMT1A-REPs, the exchange was mapped to a 557-bp region within the previously identified 1.7-kb hotspot in 21 of 23 unrelated HNPP deletion patients. Two patients had recombined sequences suggesting an exchange event closer to the mariner-like element previously identified near the hotspot. Five individuals also had interspersed patches of proximal or distal repeat specific DNA sequence indicating potential gene conversion during the exchange of genetic material. Our studies provide a direct observation of human meiotic recombination products. These results are consistent with the hypothesis that minimum efficient processing segments, which have been characterized in Escherichia coli, yeast, and cultured mammalian cells, may be required for efficient homologous meiotic recombination in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号