首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the underlying mechanism by which direct cell–cell contact enhances the efficiency of cell-to-cell transmission of retroviruses. Applying 4D imaging to a model retrovirus, the murine leukemia virus, we directly monitor and quantify sequential assembly, release, and transmission events for individual viral particles as they happen in living cells. We demonstrate that de novo assembly is highly polarized towards zones of cell–cell contact. Viruses assembled approximately 10-fold more frequently at zones of cell contact with no change in assembly kinetics. Gag proteins were drawn to adhesive zones formed by viral Env glycoprotein and its cognate receptor to promote virus assembly at cell–cell contact. This process was dependent on the cytoplasmic tail of viral Env. Env lacking the cytoplasmic tail while still allowing for contact formation, failed to direct virus assembly towards contact sites. Our data describe a novel role for the viral Env glycoprotein in establishing cell–cell adhesion and polarization of assembly prior to becoming a fusion protein to allow virus entry into cells.  相似文献   

2.
Jin J  Li F  Mothes W 《Journal of virology》2011,85(15):7672-7682
Retrovirus transmission via direct cell-cell contact is more efficient than diffusion through the extracellular milieu. This is believed to be due to the ability of viruses to efficiently coordinate several steps of the retroviral life cycle at cell-cell contact sites (D. C. Johnson et al., J. Virol. 76:1-8, 2002; D. M. Phillips, AIDS 8:719-731, 1994; Q. Sattenau, Nat. Rev. Microbiol. 6:815-826, 2008). Using the murine leukemia virus (MLV) as a model retrovirus, we have previously shown that interaction between viral envelope (Env) and receptor directs viral assembly to cell-cell contact sites to promote efficient viral spreading (J. Jin et al., PLoS Biol. 7:e1000163, 2009). In addressing the underlying mechanism, we observed that Env cytoplasmic tail directs this contact-induced polarized assembly. We present here the viral determinants in the Env cytoplasmic tail and Gag that are important in this process. A tyrosine residue within the cytoplasmic tail of Env was identified, which directs polarized assembly. MLV matrix-mediated membrane targeting is required for Gag recruitment to sites of cell-cell contact. Our results suggest that MLV polarized assembly is mediated by a direct or indirect interaction between both domains, thereby coupling Gag recruitment and virus assembly to Env accumulation at the cell-cell interface. In contrast, HIV Gag that assembles outside of cell-cell interfaces can subsequently be drawn into contact zones mediated by MLV Env and receptor, a finding that is consistent with the previously observed lateral movement of HIV into the virological synapse (W. Hubner et al., Science 323:1743-1747, 2009; D. Rudnicka et al., J. Virol. 83:6234-6246, 2009). As such, we observed two distinct modes of virus cell-to-cell transmission that involve either polarized or nonpolarized assembly, but both result in virus transmission.  相似文献   

3.
Membrane fusion plays a key role in many biological processes including vesicle trafficking, synaptic transmission, fertilization or cell entry of enveloped viruses. As a common feature the fusion process is mediated by distinct membrane proteins. We describe here ‘Fusoselect’, a universal procedure allowing the identification and engineering of molecular determinants for cell–cell fusion-activity by directed evolution. The system couples cell–cell fusion with the release of retroviral particles, but can principally be applied to membrane proteins of non-viral origin as well. As a model system, we chose a γ-retroviral envelope protein, which naturally becomes fusion-active through proteolytic processing by the viral protease. The selection process evolved variants that, in contrast to the parental protein, mediated cell–cell fusion in absence of the viral protease. Detailed analysis of the variants revealed molecular determinants for fusion competence in the cytoplasmic tail (CT) of retroviral Env proteins and demonstrated the power of Fusoselect.  相似文献   

4.
The matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) forms the outer protein shell directly underneath the lipid envelope of the virion. The MA protein has a key role in different aspects of virus assembly, including the incorporation of the HIV-1 Env protein complex, which contains a transmembrane glycoprotein with an unusually long cytoplasmic tail. In this study, we compared the abilities of HIV-1 MA mutants to incorporate Env protein complexes with long and short cytoplasmic tails. While the mutant particles failed to incorporate the authentic HIV-1 Env protein complex, they retained the ability to efficiently and functionally incorporate the amphotropic murine leukemia virus Env protein complex, which has a short cytoplasmic tail. Moreover, incorporation of the autologous Env protein complex could be restored by a second-site mutation that resulted in the truncation of the cytoplasmic tail of the HIV-1 transmembrane glycoprotein. Remarkably, the second-site mutation also restored the ability of MA mutants to replicate in MT-4 cells. These results imply that the long cytoplasmic tail of the transmembrane glycoprotein is responsible for the exclusion of the HIV-1 Env protein complex from MA mutant particles.  相似文献   

5.
Epithelial integrity is vitally important, and its deregulation causes early stage cancer. De novo formation of an adherens junction (AJ) between single epithelial cells requires coordinated, spatial actin dynamics, but the mechanisms steering nascent actin polymerization for cell–cell adhesion initiation are not well understood. Here we investigated real-time actin assembly during daughter cell–cell adhesion formation in human breast epithelial cells in 3D environments. We identify formin-like 2 (FMNL2) as being specifically required for actin assembly and turnover at newly formed cell–cell contacts as well as for human epithelial lumen formation. FMNL2 associates with components of the AJ complex involving Rac1 activity and the FMNL2 C terminus. Optogenetic control of Rac1 in living cells rapidly drove FMNL2 to epithelial cell–cell contact zones. Furthermore, Rac1-induced actin assembly and subsequent AJ formation critically depends on FMNL2. These data uncover FMNL2 as a driver for human epithelial AJ formation downstream of Rac1.  相似文献   

6.
HIV-1 Env mediates virus attachment to and fusion with target cell membranes, and yet, while Env is still situated at the plasma membrane of the producer cell and before its incorporation into newly formed particles, Env already interacts with the viral receptor CD4 on target cells, thus enabling the formation of transient cell contacts that facilitate the transmission of viral particles. During this first encounter with the receptor, Env must not induce membrane fusion, as this would prevent the producer cell and the target cell from separating upon virus transmission, but how Env''s fusion activity is controlled remains unclear. To gain a better understanding of the Env regulation that precedes viral transmission, we examined the nanoscale organization of Env at the surface of producer cells. Utilizing superresolution microscopy (stochastic optical reconstruction microscopy [STORM]) and fluorescence recovery after photobleaching (FRAP), we quantitatively assessed the clustering and dynamics of Env upon its arrival at the plasma membrane. We found that Gag assembly induced the aggregation of small Env clusters into larger domains and that these domains were completely immobile. Truncation of the cytoplasmic tail (CT) of Env abrogated Gag''s ability to induce Env clustering and restored Env mobility at assembly sites, both of which correlated with increased Env-induced fusion of infected and uninfected cells. Hence, while Env trapping by Gag secures Env incorporation into viral particles, Env clustering and its sequestration at assembly sites likely also leads to the repression of its fusion function, and thus, by preventing the formation of syncytia, Gag helps to secure efficient transfer of viral particles to target cells.  相似文献   

7.
The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.  相似文献   

8.
Murine leukemia virus (MLV) can efficiently spread in tissue cultures by polarizing assembly to virological synapses. The viral envelope glycoprotein (Env) establishes cell-cell contacts and subsequently recruits Gag by a process that depends on its cytoplasmic tail. MLV Gag is recruited to virological synapses through the matrix domain (MA) (J. Jin, F. Li, and W. Mothes, J. Virol. 85:7672–7682, 2011). However, how MA targets Gag to sites of cell-cell contact remains unknown. Here we report that basic residues within MA are critical for directing MLV Gag to virological synapses. Alternative membrane targeting domains (MTDs) containing multiple basic residues can efficiently substitute MA to direct polarized assembly. Similarly, mutations in the polybasic cluster of MA that disrupt Gag polarization can be rescued by N-terminal addition of MTDs containing basic residues. MTDs containing basic residues alone fail to be targeted to the virological synapse. Systematic deletion experiments reveal that domains within Gag known to mediate Gag multimerization are also required. Thus, our data predict the existence of a specific “acidic” interface at virological synapses that mediates the recruitment of MLV Gag via the basic cluster of MA and Gag multimerization.  相似文献   

9.
Cadherins mediate the formation of cell–cell adherens junctions (AJ) by homophilic interactions through their extracellular domains as well as by interacting with the actin cytoskeleton via their cytoplasmic portions. Cadherin clustering initiates cytoplasmic signaling that results in the assembly of structural components into cell–cell AJ. To elucidate the function of the cytoplasmic tail of cadherins in initiating the assembly signal, we generated and characterized a chimeric cadherin tail fused to an inert transmembrane anchor. The chimera enabled us to cluster the cadherin cytoplasmic tail in the absence of extracellular portions of the molecule. The transfected cadherin tail chimera localized to cell–cell AJ of epithelial cells, indicating that the submembrane junctional plaque has the capacity to recruit additional cadherins, with no involvement of their extracellular domains. Expression of the chimera in cells of mesenchymal origin resulted in dominant negative effects on the formation of cell–cell AJ. Surface clustering of cadherin cytoplasmic tails induced the recruitment of components and structural assembly of cell–cell AJ, thereby reversing the initial dominant–negative effects. We conclude that the cadherin cytoplasmic tail contains information required to direct the molecule to cell–cell AJ. Its function as modulator of cell–cell AJ depends on cell type and on whether the tail is clustered.  相似文献   

10.
We and others have presented evidence for a direct interaction between the matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein and the cytoplasmic tail of the transmembrane envelope (Env) glycoprotein gp41. In addition, it has been postulated that the MA domain of Gag undergoes a conformational change following Gag processing, and the cytoplasmic tail of gp41 has been shown to modulate Env-mediated membrane fusion activity. Together, these results raise the possibility that the interaction between the gp41 cytoplasmic tail and MA is regulated by protease (PR)-mediated Gag processing, perhaps affecting Env function. To examine whether Gag processing affects Env-mediated fusion, we compared the ability of wild-type (WT) HIV-1 Env and a mutant lacking the gp41 cytoplasmic tail to induce fusion in the context of an active (PR(+)) or inactive (PR(-)) viral PR. We observed that PR(-) virions bearing WT Env displayed defects in cell-cell fusion. Impaired fusion did not appear to be due to differences in the levels of virion-associated Env, in CD4-dependent binding to target cells, or in the formation of the CD4-induced gp41 six-helix bundle. Interestingly, truncation of the gp41 cytoplasmic tail reversed the fusion defect. These results suggest that interactions between unprocessed Gag and the gp41 cytoplasmic tail suppress fusion.  相似文献   

11.
Direct cell-to-cell transmission of human immunodeficiency virus (HIV) is a more potent and efficient means of virus propagation than infection by cell-free virus particles. The aim of this study was to determine whether cell-to-cell transmission requires the assembly of enveloped virus particles or whether nucleic acids with replication potential could translocate directly from donor to target cells through envelope glycoprotein (Env)-induced fusion pores. To this end, we characterized the transmission properties of viruses carrying mutations in the matrix protein (MA) that affect the incorporation of Env into virus particles but do not interfere with Env-mediated cell-cell fusion. By use of cell-free virus, the infectivity of MA mutant viruses was below the detection threshold both in single-cycle and in multiple-cycle assays. Truncation of the cytoplasmic tail (CT) of Env restored the incorporation of Env into MA mutant viruses and rescued their cell-free infectivity to different extents. In cell-to-cell transmission assays, MA mutations prevented HIV transmission from donor to target cells, despite efficient Env-dependent membrane fusion. HIV transmission was blocked at the level of virus core translocation into the cytosol of target cells. As in cell-free assays, rescue of Env incorporation by truncation of the Env CT restored the virus core translocation and cell-to-cell infectivity of MA mutant viruses. These data show that HIV cell-to-cell transmission requires the assembly of enveloped virus particles. The increased efficiency of this infection route may thus be attributed to the high local concentrations of virus particles at sites of cellular contacts rather than to a qualitatively different transmission process.  相似文献   

12.
FMNL3 is a vertebrate-specific formin protein previously shown to play a role in angiogenesis and cell migration. Here we define the cellular localization of endogenous FMNL3, the dynamics of GFP-tagged FMNL3 during cell migration, and the effects of FMNL3 suppression in mammalian culture cells. The majority of FMNL3 localizes in a punctate pattern, with >95% of these puncta being indistinguishable from the plasma membrane by fluorescence microscopy. A small number of dynamic cytoplasmic FMNL3 patches also exist, which enrich near cell–cell contact sites and fuse with the plasma membrane at these sites. These cytoplasmic puncta appear to be part of larger membranes of endocytic origin. On the plasma membrane, FMNL3 enriches particularly in filopodia and membrane ruffles and at nascent cell–cell adhesions. FMNL3-containing filopodia occur both at the cell–substratum interface and at cell–cell contacts, with the latter being 10-fold more stable. FMNL3 suppression by siRNA has two major effects: decrease in filopodia and compromised cell–cell adhesion in cells migrating as a sheet. Overall our results suggest that FMNL3 functions in assembly of actin-based protrusions that are specialized for cell–cell adhesion.  相似文献   

13.
HIV-1 envelope (Env) glycoprotein is a trimer of heterodimer of gp120 and gp41, and derives from a trimeric glycoprotein precursor, gp160. Gp120 contains five conserved regions that are interspersed with 5 variable loop regions (V1–V5). Env variations in variable loop length and amino acid composition may associate with virus pathogenesis, virus sensitivity to neutralizing antibodies (nAbs) and disease progression. To investigate the role of each variable loop in Env function, we generated a panel of JRFL gp160 loop deletion mutants and examined the effects of each loop deletion on Env expression, Env cell surface display and Env-mediated virus entry into permissive cells. We found that deletion of V1 and V2 (ΔV1V2), or loop D (ΔlpD) abolished virus entry, the same effect as deletion of V3 (ΔV3), while deletion of V3 crown (ΔV3C) significantly enhanced virus assembly and entry. We further found that deletion of V4 (ΔV4) or V5 (ΔV5), or replacement of V4 or V5 with flexible linkers of the same lengths knocked out the receptor and coreceptor binding sites in gp120, but significantly enhanced the exposure of the N-trimer structure and the membrane proximal external region (MPER) in gp41. Although deletion of V4 or V5 did not affect Env expression, they negatively affected Env cell surface display, leading to the failure in virus assembly and subsequent entry. Taken together, we found that Env variable loops were indispensable for Env structural integrity and virus entry. Our findings may have implications for development of HIV-1 vaccine immunogens and therapeutics.  相似文献   

14.
The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell–cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2–infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell–cell fusion remain limited. A furin cleavage site at the border between the S1 and S2 subunits (S1/S2) has been identified, along with putative cathepsin L and transmembrane serine protease 2 cleavage sites within S2. We demonstrate that S must be processed at the S1/S2 border in order to mediate cell–cell fusion and that mutations at potential cleavage sites within the S2 subunit alter S processing at the S1/S2 border, thus preventing cell–cell fusion. We also identify residues within the internal fusion peptide and the cytoplasmic tail that modulate S-mediated cell–cell fusion. In addition, we examined S stability and protein cleavage kinetics in a variety of mammalian cell lines, including a bat cell line related to the likely reservoir species for SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the S trimer. This work therefore offers insight into S stability, proteolytic processing, and factors that mediate S cell–cell fusion, all of which help give a more comprehensive understanding of this high-profile therapeutic target.  相似文献   

15.
The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) has been shown to redirect the site of virus assembly in polarized epithelial cells. To test whether localization of the glycoprotein exclusively to the endoplasmic reticulum (ER) could redirect virus assembly to that organelle in nonpolarized cells, an ER -retrieval signal was engineered into an epitope-tagged variant of Env. The epitope tag, attached to the C terminus of Env, did not affect the normal maturation and transport of the glycoprotein or the incorporation of Env into virions. The epitope-tagged Env was also capable of mediating syncytium formation and virus entry with a similar efficiency to that of wild-type Env. When the epitope was modified to contain a consensus K(X)KXX ER retrieval signal, however, the glycoprotein was no longer proteolytically processed into its surface and transmembrane subunits and Env could not be detected at the cell surface by biotinylation. Endoglycosidase H analysis revealed that the modified Env was not transported to the Golgi apparatus. Immunofluorescent staining patterns were also consistent with the exclusion of Env from the Golgi. As expected, cells expressing the modified Env failed to form syncytia with CD4+ permissive cells. Despite this tight localization of Env to the ER, when the modified Env was expressed in the context of virus, virions continued to be produced efficiently from the plasma membrane of transfected cells. However, these virions contained no detectable glycoprotein and were noninfectious. Electron microscopy revealed virus budding from the plasma membrane of these cells, but no virus was seen assembling at the ER membrane and no assembled virions were found within the cell. These results suggest that the accumulation of Env in an intracellular compartment is not sufficient to redirect the assembly of HIV Gag in nonpolarized cells.  相似文献   

16.
The envelope glycoprotein (Env) of the Human Immunodeficiency Virus Type-1 (HIV-1) is a critical determinant of viral infectivity, tropism and is the main target for humoral immunity; however, little is known about the cellular machinery that directs Env trafficking and its incorporation into nascent virions. Here we identify the mammalian retromer complex as a novel and important cellular factor regulating Env trafficking. Retromer mediates endosomal sorting and is most closely associated with endosome-to-Golgi transport. Consistent with this function, inactivating retromer using RNAi targeting the cargo selective trimer complex inhibited retrograde trafficking of endocytosed Env to the Golgi. Notably, in HIV-1 infected cells, inactivating retromer modulated plasma membrane expression of Env, along with Env incorporation into virions and particle infectivity. Mutagenesis studies coupled with coimmunoprecipitations revealed that retromer-mediated trafficking requires the Env cytoplasmic tail that we show binds directly to retromer components Vps35 and Vps26. Taken together these results provide novel insight into regulation of HIV-1 Env trafficking and infectious HIV-1 morphogenesis and show for the first time a role for retromer in the late-steps of viral replication and assembly of a virus.  相似文献   

17.
Glycoproteins derived from most retroviruses and from several families of enveloped viruses can form infectious pseudotypes with murine leukemia virus (MLV) and lentiviral core particles, like the MLV envelope glycoproteins (Env) that are incorporated on either virus type. However, coexpression of a given glycoprotein with heterologous core proteins does not always give rise to highly infectious viral particles, and restrictions on pseudotype formation have been reported. To understand the mechanisms that control the recruitment of viral surface glycoproteins on lentiviral and retroviral cores, we exploited the fact that the feline endogenous retrovirus RD114 glycoprotein does not efficiently pseudotype lentiviral cores derived from simian immunodeficiency virus, whereas it is readily incorporated onto MLV particles. Our results indicate that recruitment of glycoproteins by the MLV and lentiviral core proteins occurs in intracellular compartments and not at the cell surface. We found that Env and core protein colocalization in intracytoplasmic vesicles is required for pseudotype formation. By investigating MLV/RD114 Env chimeras, we show that signals in the cytoplasmic tail of either glycoprotein differentially influenced their intracellular localization; that of MLV allows endosomal localization and hence recruitment by both lentiviral and MLV cores. Furthermore, we found that upon membrane binding, MLV core proteins could relocalize Env glycoproteins in late endosomes and allow their incorporation on viral particles. Thus, intracellular colocalization, as well as interactions between Env and core proteins, may influence the recruitment of the glycoprotein onto viral particles and generate infectious pseudotyped viruses.  相似文献   

18.
Chan WE  Lin HH  Chen SS 《Journal of virology》2005,79(13):8374-8387
Palmitoylation of the cytoplasmic domain of the human immunodeficiency type virus type 1 (HIV-1) envelope (Env) transmembrane protein, gp41, has been implicated in Env targeting to detergent-resistant lipid rafts, Env incorporation into the virus, and viral infectivity. In contrast, we provide evidence here to show that HIV-1 infectivity, Env targeting to lipid rafts, and Env incorporation into the virus are independent of cytoplasmic tail palmitoylation. The T-cell (T)-tropic HXB2-based virus, which utilizes CXCR4 as the entry coreceptor, carrying a Cys-to-Ser mutation at residue 764 or 837 or at both replicated with wild-type (WT) virus replication kinetics in CD4+ T cells. The properties of Env expression, precursor processing, cell surface expression, and Env incorporation of these three mutant viruses were normal compared to those of the WT virus. These three mutant Env proteins all effectively mediated one-cycle virus infection. When the Cys residues were replaced by Ala residues, all single and double mutants still retained the phenotypes of infectivity, Env incorporation, and lipid raft localization of the WT Env. When Cys-to-Ala substitutions were introduced into the macrophage (M)-tropic ConB virus, which utilizes CCR5 as the coreceptor, these mutations did not affect the replication potential, Env phenotypes, lipid raft targeting, or Env assembly into the virus of the WT Env. These T- and M-tropic mutants also productively replicated in human primary CD4+ T cells. Moreover, mutations at both Cys residues significantly reduced the level of palmitoylation of the Env. Our results together support the notion that palmitoylation of the cytoplasmic tail of the HIV-1 Env is not essential for the HIV-1 virus life cycle.  相似文献   

19.
Retroviral core proteins, Gag and envelope (Env) glycoproteins are expressed from distinct cellular areas and therefore need to encounter to assemble infectious particles. The intrinsic cell localisation properties of either viral component or their capacity to mutually interact determines the assembly of infectious particles. Here, we address how Env determinants and cellular sorting proteins allow the Env derived from gamma retroviruses, murine leukemia virus (MLV) and RD114, to travel to or from late endosomes (LE), which may represent the Env assembly site of retroviruses in some cells. The individual expression of MLV Env resulted in its accumulation in LE in contrast to RD114 Env that required the presence of gamma retroviral Gag proteins. To discriminate between intrinsic intracellular Env localisation and gamma retroviral Gag/Env interactions in influencing Env viral incorporation, we studied Env assembly on heterologous lentiviral particles on which they are passively recruited. We found that an acidic cluster present at the C-terminus of the RD114 Env cytoplasmic tail determines its sub-cellular localisation and retrograde transport. Mutation of this motif induced late endosomal concentration of the RD114 Env, correlating with increased viral incorporation and infectivity. Reciprocally, the reinforcement of a poorly functional acidic motif in the MLV Env resulted in a marked decrease of its late endosomal localisation, leading to weakly infectious lentiviral particles with low Env densities. Finally, through upregulation versus downregulation of its cellular expression, we show that phosphofurin acidic-cluster-sorting protein 1 (PACS-1) controls the function of the RD114 Env acidic cluster, assigning to this cellular effector a crucial role in modulation of Env assembly of some retroviruses.  相似文献   

20.
The dynamic rearrangement of cell–cell junctions such as tight junctions and adherens junctions is a critical step in various cellular processes, including establishment of epithelial cell polarity and developmental patterning. Tight junctions are mediated by molecules such as occludin and its associated ZO-1 and ZO-2, and adherens junctions are mediated by adhesion molecules such as cadherin and its associated catenins. The transformation of epithelial cells by activated Ras results in the perturbation of cell–cell contacts. We previously identified the ALL-1 fusion partner from chromosome 6 (AF-6) as a Ras target. AF-6 has the PDZ domain, which is thought to localize AF-6 at the specialized sites of plasma membranes such as cell–cell contact sites. We investigated roles of Ras and AF-6 in the regulation of cell–cell contacts and found that AF-6 accumulated at the cell–cell contact sites of polarized MDCKII epithelial cells and had a distribution similar to that of ZO-1 but somewhat different from those of catenins. Immunoelectron microscopy revealed a close association between AF-6 and ZO-1 at the tight junctions of MDCKII cells. Native and recombinant AF-6 interacted with ZO-1 in vitro. ZO-1 interacted with the Ras-binding domain of AF-6, and this interaction was inhibited by activated Ras. AF-6 accumulated with ZO-1 at the cell–cell contact sites in cells lacking tight junctions such as Rat1 fibroblasts and PC12 rat pheochromocytoma cells. The overexpression of activated Ras in Rat1 cells resulted in the perturbation of cell–cell contacts, followed by a decrease of the accumulation of AF-6 and ZO-1 at the cell surface. These results indicate that AF-6 serves as one of the peripheral components of tight junctions in epithelial cells and cell–cell adhesions in nonepithelial cells, and that AF-6 may participate in the regulation of cell–cell contacts, including tight junctions, via direct interaction with ZO-1 downstream of Ras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号