首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitotic spindle is resilient to perturbation due to the concerted, and sometimes redundant, action of motors and microtubule-associated proteins. Here, we utilize an inducible ectopic microtubule nucleation site in the nucleus of Saccharomyces cerevisiae to study three necessary steps in the formation of a bipolar array: the recruitment of the γ-tubulin complex, nucleation and elongation of microtubules (MTs), and the organization of MTs relative to each other. This novel tool, an Spc110 chimera, reveals previously unreported roles of the microtubule-associated proteins Stu2, Bim1, and Bik1, and the motors Vik1 and Kip3. We report that Stu2 and Bim1 are required for nucleation and that Bik1 and Kip3 promote nucleation at the ectopic site. Stu2, Bim1, and Kip3 join their homologs XMAP215, EB1 and kinesin-8 as promoters of microtubule nucleation, while Bik1 promotes MT nucleation indirectly via its role in SPB positioning. Furthermore, we find that the nucleation activity of Stu2 in vivo correlates with its polymerase activity in vitro. Finally, we provide the first evidence that Vik1, a subunit of Kar3/Vik1 kinesin-14, promotes microtubule minus end focusing at the ectopic site.  相似文献   

2.
During mitosis, sister chromatids congress on both sides of the spindle equator to facilitate the correct partitioning of the genomic material. Chromosome congression requires a finely tuned control of microtubule dynamics by the kinesin motor proteins. In Saccharomyces cerevisiae, the kinesin proteins Cin8, Kip1, and Kip3 have a pivotal role in chromosome congression. It has been hypothesized that additional proteins that modulate microtubule dynamics are involved. Here, we show that the microtubule plus-end tracking protein Bik1—the budding yeast ortholog of CLIP-170—is essential for chromosome congression. We find that nuclear Bik1 localizes to the kinetochores in a cell cycle–dependent manner. Disrupting the nuclear pool of Bik1 with a nuclear export signal (Bik1-NES) leads to slower cell-cycle progression characterized by a delayed metaphase–anaphase transition. Bik1-NES cells have mispositioned kinetochores along the spindle in metaphase. Furthermore, using proximity-dependent methods, we identify Cin8 as an interaction partner of Bik1. Deleting CIN8 reduces the amount of Bik1 at the spindle. In contrast, Cin8 retains its typical bilobed distribution in the Bik1-NES mutant and does not localize to the unclustered kinetochores. We propose that Bik1 functions with Cin8 to regulate kinetochore–microtubule dynamics for correct kinetochore positioning and chromosome congression.  相似文献   

3.
Proteins in the cytoplasmic dynein pathway accumulate at the microtubule plus end, giving the appearance of comets when observed in live cells. The targeting mechanism for NUDF (LIS1/Pac1) of Aspergillus nidulans, a key component of the dynein pathway, has not been clear. Previous studies have demonstrated physical interactions of NUDF/LIS1/Pac1 with both NUDE/NUDEL/Ndl1 and CLIP-170/Bik1. Here, we have identified the A. nidulans CLIP-170 homologue, CLIPA. The clipA deletion did not cause an obvious nuclear distribution phenotype but affected cytoplasmic microtubules in an unexpected manner. Although more microtubules failed to undergo long-range growth toward the hyphal tip at 32 degrees C, those that reached the hyphal tip were less likely to undergo catastrophe. Thus, in addition to acting as a growth-promoting factor, CLIPA also promotes microtubule dynamics. In the absence of CLIPA, green fluorescent protein-labeled cytoplasmic dynein heavy chain, p150(Glued) dynactin, and NUDF were all seen as plus-end comets at 32 degrees C. However, under the same conditions, deletion of both clipA and nudE almost completely abolished NUDF comets, although nudE deletion itself did not cause a dramatic change in NUDF localization. Based on these results, we suggest that CLIPA and NUDE both recruit NUDF to the microtubule plus end. The plus-end localization of CLIPA itself seems to be regulated by different mechanisms under different physiological conditions. Although the KipA kinesin (Kip2/Tea2 homologue) did not affect plus-end localization of CLIPA at 32 degrees C, it was required for enhancing plus-end accumulation of CLIPA at an elevated temperature (42 degrees C).  相似文献   

4.
The budding yeast shmoo tip is a model system for analyzing mechanisms coupling force production to microtubule plus-end polymerization/depolymerization. Dynamic plus ends of astral microtubules interact with the shmoo tip in mating yeast cells, positioning nuclei for karyogamy. We have used live-cell imaging of GFP fusions to identify proteins that couple dynamic microtubule plus ends to the shmoo tip. We find that Kar3p, a minus end-directed kinesin motor protein, is required, whereas the other cytoplasmic motors, dynein and the kinesins Kip2p and Kip3p, are not. In the absence of Kar3p, attached microtubule plus ends released from the shmoo tip when they switched to depolymerization. Furthermore, microtubules in cells expressing kar3-1, a mutant that results in rigor binding to microtubules [2], were stabilized specifically at shmoo tips. Imaging of Kar3p-GFP during mating revealed that fluorescence at the shmoo tip increased during periods of microtubule depolymerization. These data are the first to localize the activity of a minus end-directed kinesin at the plus ends of microtubules. We propose a model in which Kar3p couples depolymerizing microtubule plus ends to the cell cortex and the Bim1p-Kar9p protein complex maintains attachment during microtubule polymerization. In support of this model, analysis of Bim1p-GFP at the shmoo tip results in a localization pattern complementary to that of Kar3p-GFP.  相似文献   

5.
CLIP-170 family proteins regulate microtubule plus end dynamics. Two reports published in this issue of Developmental Cell show that Bik1 and tip1p, the CLIP-170-like proteins of budding and fission yeast, are carried to microtubule plus ends by kinesin motor proteins. These findings indicate a complex interplay between microtubule-associated proteins and suggest a novel mechanism by which kinesin proteins stabilize microtubules.  相似文献   

6.
《Biophysical journal》2020,118(8):1958-1967
Microtubules are highly dynamic filaments with dramatic structural rearrangements and length changes during the cell cycle. An accurate control of the microtubule length is essential for many cellular processes, in particular during cell division. Motor proteins from the kinesin-8 family depolymerize microtubules by interacting with their ends in a collective and length-dependent manner. However, it is still unclear how kinesin-8 depolymerizes microtubules. Here, we tracked the microtubule end-binding activity of yeast kinesin-8, Kip3, under varying loads and nucleotide conditions using high-precision optical tweezers. We found that single Kip3 motors spent up to 200 s at the microtubule end and were not stationary there but took several 8-nm forward and backward steps that were suppressed by loads. Interestingly, increased loads, similar to increased motor concentrations, also exponentially decreased the motors’ residence time at the microtubule end. On the microtubule lattice, loads also exponentially decreased the run length and time. However, for the same load, lattice run times were significantly longer compared to end residence times, suggesting the presence of a distinct force-dependent detachment mechanism at the microtubule end. The force dependence of the end residence time enabled us to estimate what force must act on a single motor to achieve the microtubule depolymerization speed of a motor ensemble. This force is higher than the stall force of a single Kip3 motor, supporting a collective force-dependent depolymerization mechanism that unifies the so-called “bump-off” and “switching” models. Understanding the mechanics of kinesin-8’s microtubule end activity will provide important insights into cell division with implications for cancer research.  相似文献   

7.
The 2 μ plasmid of budding yeast shows high mitotic stability similar to that of chromosomes by using its self‐encoded systems, namely partitioning and amplification. The partitioning system consists of the plasmid‐borne proteins Rep1, Rep2 and a cis‐acting locus STB that, along with several host factors, ensures efficient segregation of the plasmid. The plasmids show high stability as they presumably co‐segregate with chromosomes through utilization of various host factors. To acquire these host factors, the plasmids are thought to localize to a certain sub‐nuclear locale probably assisted by the motor protein, Kip1 and microtubules. Here, we show that the microtubule‐associated proteins Bik1 and Bim1 are also important host factors in this process, perhaps by acting as an adapter between the plasmid and the motor and thus helping to anchor the plasmid to microtubules. Abrogation of Kip1 recruitment at STB in the absence of Bik1 argues for its function at STB upstream of Kip1. Consistent with this, both Bik1 and Bim1 associate with plasmids without any assistance from the Rep proteins. As observed earlier with other host factors, lack of Bik1 or Bim1 also causes a cohesion defect between sister plasmids leading to plasmid missegregation.  相似文献   

8.
The kinesin-8 family of microtubule motors plays?a critical role in microtubule length control in cells. These motors have complex effects on microtubule dynamics: they destabilize growing microtubules yet stabilize shrinking microtubules. The budding yeast kinesin-8, Kip3, accumulates on plus ends of growing but not shrinking microtubules. Here we identify an essential role of the tail domain of Kip3 in mediating both its destabilizing and its stabilizing activities. The Kip3 tail promotes Kip3's accumulation at the plus ends and facilitates the destabilizing effect of Kip3. However, the Kip3 tail also inhibits microtubule shrinkage and is required for promoting microtubule rescue by Kip3. These effects of the tail domain are likely to be mediated by the tubulin- and microtubule-binding activities that we describe. We propose a concentration-dependent model for the coordination of the destabilizing and stabilizing activities of Kip3 and discuss its relevance to cellular microtubule organization.  相似文献   

9.
Kinetochore attachment to the ends of dynamic microtubules is a conserved feature of mitotic spindle organization that is thought to be critical for proper chromosome segregation. Although kinetochores have been described to transition from lateral to end-on attachments, the phase of lateral attachment has been difficult to study in yeast due to its transient nature. We have previously described a kinetochore mutant, DAM1-765, which exhibits lateral attachments and misregulation of microtubule length. Here we show that the misregulation of microtubule length in DAM1-765 cells occurs despite localization of microtubule associated proteins Bik1, Stu2, Cin8, and Kip3 to microtubules. DAM1-765 kinetochores recruit the spindle checkpoint protein Bub1, however Bub1 localization to DAM1-765 kinetochores is not sufficient to cause a cell cycle arrest. Interestingly, the DAM1-765 mutation rescues the temperature sensitivity of a biorientation-deficient ipl1-321 mutant, and DAM1-765 chromosome loss rates are similar to wild-type cells. The spindle checkpoint in DAM1-765 cells responds properly to unattached kinetochores created by nocodazole treatment and loss of tension caused by a cohesin mutant. Progression of DAM1-765 cells through mitosis therefore suggests that satisfaction of the checkpoint depends more highly on biorientation of sister kinetochores than on achievement of a specific interaction between kinetochores and microtubule plus ends.  相似文献   

10.
EB1 targets to polymerizing microtubule ends, where it is favorably positioned to regulate microtubule polymerization and confer molecular recognition of the microtubule end. In this study, we focus on two aspects of the EB1-microtubule interaction: regulation of microtubule dynamics by EB1 and the mechanism of EB1 association with microtubules. Immunodepletion of EB1 from cytostatic factor-arrested M-phase Xenopus egg extracts dramatically reduced microtubule length; this was complemented by readdition of EB1. By time-lapse microscopy, EB1 increased the frequency of microtubule rescues and decreased catastrophes, resulting in increased polymerization and decreased depolymerization and pausing. Imaging of EB1 fluorescence revealed a novel structure: filamentous extensions on microtubule plus ends that appeared during microtubule pauses; loss of these extensions correlated with the abrupt onset of polymerization. Fluorescent EB1 localized to comets at the polymerizing plus ends of microtubules in cytostatic factor extracts and uniformly along the lengths of microtubules in interphase extracts. The temporal decay of EB1 fluorescence from polymerizing microtubule plus ends predicted a dissociation half-life of seconds. Fluorescence recovery after photobleaching also revealed dissociation and rebinding of EB1 to the microtubule wall with a similar half-life. EB1 targeting to microtubules is thus described by a combination of higher affinity binding to polymerizing ends and lower affinity binding along the wall, with continuous dissociation. The latter is likely to be attenuated in interphase. The highly conserved effect of EB1 on microtubule dynamics suggests it belongs to a core set of regulatory factors conserved in higher organisms, and the complex pattern of EB1 targeting to microtubules could be exploited by the cell for coordinating microtubule behaviors.  相似文献   

11.
The microtubule cytoskeleton and the mitotic spindle are highly dynamic structures, yet their sizes are remarkably constant, thus indicating that the growth and shrinkage of their constituent microtubules are finely balanced. This balance is achieved, in part, through kinesin-8 proteins (such as Kip3p in budding yeast and KLP67A in Drosophila) that destabilize microtubules. Here, we directly demonstrate that Kip3p destabilizes microtubules by depolymerizing them--accounting for the effects of kinesin-8 perturbations on microtubule and spindle length observed in fungi and metazoan cells. Furthermore, using single-molecule microscopy assays, we show that Kip3p has several properties that distinguish it from other depolymerizing kinesins, such as the kinesin-13 MCAK. First, Kip3p disassembles microtubules exclusively at the plus end and second, remarkably, Kip3p depolymerizes longer microtubules faster than shorter ones. These properties are consequences of Kip3p being a highly processive, plus-end-directed motor, both in vitro and in vivo. Length-dependent depolymerization provides a new mechanism for controlling the lengths of subcellular structures.  相似文献   

12.
EB1 targets to kinetochores with attached,polymerizing microtubules   总被引:6,自引:0,他引:6       下载免费PDF全文
Microtubule polymerization dynamics at kinetochores is coupled to chromosome movements, but its regulation there is poorly understood. The plus end tracking protein EB1 is required both for regulating microtubule dynamics and for maintaining a euploid genome. To address the role of EB1 in aneuploidy, we visualized its targeting in mitotic PtK1 cells. Fluorescent EB1, which localized to polymerizing ends of astral and spindle microtubules, was used to track their polymerization. EB1 also associated with a subset of attached kinetochores in late prometaphase and metaphase, and rarely in anaphase. Localization occurred in a narrow crescent, concave toward the centromere, consistent with targeting to the microtubule plus end-kinetochore interface. EB1 did not localize to kinetochores lacking attached kinetochore microtubules in prophase or early prometaphase, or upon nocodazole treatment. By time lapse, EB1 specifically targeted to kinetochores moving antipoleward, coupled to microtubule plus end polymerization, and not during plus end depolymerization. It localized independently of spindle bipolarity, the spindle checkpoint, and dynein/dynactin function. EB1 is the first protein whose targeting reflects kinetochore directionality, unlike other plus end tracking proteins that show enhanced kinetochore binding in the absence of microtubules. Our results suggest EB1 may modulate kinetochore microtubule polymerization and/or attachment.  相似文献   

13.
On and Around Microtubules: An Overview   总被引:1,自引:0,他引:1  
Microtubules are hollow tubes some 25 nm in diameter participating in the eukaryotic cytoskeleton. They are built from αβ-tubulin heterodimers that associate to form protofilaments running lengthwise along the microtubule wall with the β-tubulin subunit facing the microtubule plus end conferring a structural polarity. The α- and β-tubulins are highly conserved. A third member of the tubulin family, γ-tubulin, plays a role in microtubule nucleation and assembly. Other members of the tubulin family appear to be involved in microtubule nucleation. Microtubule assembly is accompanied by hydrolysis of GTP associated with β-tubulin so that microtubules consist principally of ‘GDP-tubulin’ stabilized at the plus end by a short ‘cap’. An important property of microtubules is dynamic instability characterized by growth randomly interrupted by pauses and shrinkage. Many proteins interact with microtubules within the cell and are involved in essential functions such as microtubule growth, stabilization, destabilization, and interactions with chromosomes during cell division. The motor proteins kinesin and dynein use microtubules as pathways for transport and are also involved in cell division. Crystallography and electron microscopy are providing a structural basis for understanding the interactions of microtubules with antimitotic drugs, with motor proteins and with plus end tracking proteins.  相似文献   

14.
Microtubule dynamics are regulated by plus-end tracking proteins (+TIPs), which bind microtubule ends and influence their polymerization properties. In addition to binding microtubules, most +TIPs physically associate with other +TIPs, creating a complex web of interactions. To fully understand how +TIPs regulate microtubule dynamics, it is essential to know the intrinsic biochemical activities of each +TIP and how +TIP interactions affect these activities. Here, we describe the activities of Bim1 and Bik1, two +TIP proteins from budding yeast and members of the EB1 and CLIP-170 families, respectively. We find that purified Bim1 and Bik1 form homodimers that interact with each other to form a tetramer. Bim1 binds along the microtubule lattice but with highest affinity for the microtubule end; however, Bik1 requires Bim1 for localization to the microtubule lattice and end. In vitro microtubule polymerization assays show that Bim1 promotes microtubule assembly, primarily by decreasing the frequency of catastrophes. In contrast, Bik1 inhibits microtubule assembly by slowing growth and, consequently, promoting catastrophes. Interestingly, the Bim1-Bik1 complex affects microtubule dynamics in much the same way as Bim1 alone. These studies reveal new activities for EB1 and CLIP-170 family members and demonstrate how interactions between two +TIP proteins influence their activities.  相似文献   

15.
Kinetochore attachment to the ends of dynamic microtubules is a conserved feature of mitotic spindle organization that is thought to be critical for proper chromosome segregation. Although kinetochores have been described to transition from lateral to end-on attachments, the phase of lateral attachment has been difficult to study in yeast due to its transient nature. We have previously described a kinetochore mutant, DAM1-765, which exhibits lateral attachments and misregulation of microtubule length. Here we show that the misregulation of microtubule length in DAM1-765 cells occurs despite localization of microtubule associated proteins Bik1, Stu2, Cin8 and Kip3 to microtubules. DAM1-765 kinetochores recruit the spindle checkpoint protein Bub1, however Bub1 localization to DAM1-765 kinetochores is not sufficient to cause a cell cycle arrest. Interestingly, the DAM1-765 mutation rescues the temperature sensitivity of a biorientationdeficient ipl1-321 mutant, and DAM1-765 chromosome loss rates are similar to wild-type cells. the spindle checkpoint in DAM1-765 cells responds properly to unattached kinetochores created by nocodazole treatment and loss of tension caused by a cohesin mutant. progression of DAM1-765 cells through mitosis therefore suggests that satisfaction of the checkpoint depends more highly on biorientation of sister kinetochores than on achievement of a specific interaction between kinetochores and microtubule plus ends.Key words: spindle assembly checkpoint, kinetochore-microtubule attachments, biorientation, DAM1-765  相似文献   

16.
The budding yeast protein Kip3p is a member of the conserved kinesin-8 family of microtubule motors, which are required for microtubule-cortical interactions, normal spindle assembly and kinetochore dynamics. Here, we demonstrate that Kip3p is both a plus end-directed motor and a plus end-specific depolymerase--a unique combination of activities not found in other kinesins. The ATPase activity of Kip3p was activated by both microtubules and unpolymerized tubulin. Furthermore, Kip3p in the ATP-bound state formed a complex with unpolymerized tubulin. Thus, motile kinesin-8s may depolymerize microtubules by a mechanism that is similar to that used by non-motile kinesin-13 proteins. Fluorescent speckle analysis established that, in vivo, Kip3p moved toward and accumulated on the plus ends of growing microtubules, suggesting that motor activity brings Kip3p to its site of action. Globally, and more dramatically on cortical contact, Kip3p promoted catastrophes and pausing, and inhibited microtubule growth. These findings explain the role of Kip3p in positioning the mitotic spindle in budding yeast and potentially other processes controlled by kinesin-8 family members.  相似文献   

17.
Microtubule plus-end tracking proteins (+TIPs) are a diverse group of molecules that regulate microtubule dynamics and interactions of microtubules with other cellular structures. Many +TIPs have affinity for each other but the functional significance of these associations is unclear. Here we investigate the physical and functional interactions among three +TIPs in S. cerevisiae, Stu2, Bik1, and Bim1. Two-hybrid, coimmunoprecipitation, and in vitro binding assays demonstrate that they associate in all pairwise combinations, although the interaction between Stu2 and Bim1 may be indirect. Three-hybrid assays indicate that these proteins compete for binding to each other. Thus, Stu2, Bik1, and Bim1 interact physically but do not appear to be arranged in a single unique complex. We examined the functional interactions among pairs of proteins by comparing cytoplasmic and spindle microtubule dynamics in cells lacking either one or both proteins. On cytoplasmic microtubules, Stu2 and Bim1 act cooperatively to regulate dynamics in G1 but not in preanaphase, whereas Bik1 acts independently from Stu2 and Bim1. On kinetochore microtubules, Bik1 and Bim1 are redundant for regulating dynamics, whereas Stu2 acts independently from Bik1 and Bim1. These results indicate that interactions among +TIPS can play important roles in the regulation of microtubule dynamics.  相似文献   

18.
Individual microtubules (MTs) exhibit dynamic instability, a behavior in which they cycle between phases of growth and shrinkage while the total amount of MT polymer remains constant. Dynamic instability is promoted by the conserved XMAP215/Dis1 family of microtubule-associated proteins (MAPs). In this study, we conducted an in vivo structure-function analysis of the Drosophila homologue Mini spindles (Msps). Msps exhibits EB1-dependent and spatially regulated MT localization, targeting to microtubule plus ends in the cell interior and decorating the lattice of growing and shrinking microtubules in the cell periphery. RNA interference rescue experiments revealed that the NH(2)-terminal four TOG domains of Msps function as paired units and were sufficient to promote microtubule dynamics and EB1 comet formation. We also identified TOG5 and novel inter-TOG linker motifs that are required for targeting Msps to the microtubule lattice. These novel microtubule contact sites are necessary for the interplay between the conserved TOG domains and inter-TOG MT binding that underlies the ability of Msps to promote MT dynamic instability.  相似文献   

19.
Molecular encounters at microtubule ends in the plant cell cortex   总被引:1,自引:0,他引:1  
The cortical arrays that accompany plant cell division and elongation are organized by a subtle interplay between intrinsic properties of microtubules, their self-organization capacity and a variety of cellular proteins that interact with them, modify their behaviour and drive organization of diverse, higher order arrays during the cell cycle, cell growth and differentiation. As a polar polymer, the microtubule has a minus and a plus end, which differ in structure and dynamic characteristics, and to which different sets of partners and activities associate. Recent advances in characterization of minus and plus end directed proteins provide insights into both plant microtubule properties and the way highly organized cortical arrays emerge from the orchestrated activity of individual microtubules.  相似文献   

20.
The budding yeast spindle aligns along the mother- bud axis through interactions between cytoplasmic microtubules (CMs) and the cell cortex. Kar9, in complex with the EB1-related protein Bim1, mediates contacts of CMs with the cortex of the daughter cell, the bud. Here we established a novel series of events that target Kar9 to the bud cortex. First, Kar9 binds to spindle pole bodies (SPBs) in G(1) of the cell cycle. Secondly, in G(1)/S the yeast Cdk1, Cdc28, associates with SPBs and phosphorylates Kar9. Thirdly, Kar9 and Cdc28 then move from the SPB to the plus end of CMs directed towards the bud. This movement is dependent upon the microtubule motor protein Kip2. Cdc28 activity is required to concentrate Kar9 at the plus end of CMs and hence to establish contacts with the bud cortex. The Cdc28-regulated localization of Kar9 is therefore an integral part of the program that aligns spindles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号