首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two bacteriophages isolated onEnterobacter cloacae (C2, C2F) and three isolated onErwinia herbicola (E3, E16P, E16B) were purified by D2O gradient centrifugation. Phage-containing fractions were negatively stained and examined by electron microscopy. Phages C2, C2F, E3, and E16P showed an elongated head 153×51 nm and a short noncontractile tail 12 nm long terminated by at least two short fibers. These phages correspond to the rate taxonomic group C3. Big capsomeres composing the phage head were evidenced when phage suspensions in D2O were stained. Phage E16B showed an elongated head 97×40.5 nm, and a contractile tail 89 nm long. This phage corresponds to the extremely rate group A3.  相似文献   

2.
Among five strains of Clostridium difficile and 39 strains of Cl. sordellii tested, one Cl. difficile phage and four Cl. sordellii phages were found to be lytic for Cl. difficille strain 2. The five phages were similar in morphology, showing a polyhedral head of 60 nm in diameter, a tail of 105–120 nm, a contractile tail sheath and a base plate. They were sensitive to heat (60°C/10 min) and stable at 4°C for at least 6 months. As the phage donor strains and the indicator strain were not cytotoxigenic, no phage-infected culture of Cl. difficile 2 was able to produce cytotoxin.  相似文献   

3.
Some Properties of Five New Salmonella Bacteriophages   总被引:5,自引:2,他引:3       下载免费PDF全文
Five bacteriophages were isolated from lysogenic strains of Salmonella potdam. On the basis of plaque morphology, thermostability, serology, host range, one-step growth parameters, and phage morphology, they were divided into three groups: group A, phages P4 and P9c; group B, phages P3 and P9a; and group C, phage P10. Group A phages had a hexagonal head 55 nm in diameter with a short tail 15 nm long. These phages were particularly characterized by high thermostability, lack of serological relationship with any of the other phages, and restriction of lysis to other Salmonella strains of Kauffmann-White group C(1). Group B phages had a head identical in size and shape to that of the A phages, but they possessed a tail 118 nm long with a contractile sheath. A unique feature was the occurrence of tail fibers at the end of the core rather than at the base of the sheath. These phages were considerably less thermostable, had extended host ranges, and were serologically distinct from each other but unrelated to the A phages. The group C phage, P10, had a head identical to that of the A and B phages. It had a tail 95 nm in length, with tail fibers attached to a base plate at the end of a contractile sheath. P10 was highly sensitive to heat, lysed only smooth strains of Salmonella, and showed a degree of serological relationship to both B phages. The relationship of these phage groups to previous Salmonella phage grouping schemes is discussed.  相似文献   

4.
J. J. Germida 《Plant and Soil》1986,90(1-3):117-128
Summary This study examined the ecology and interaction ofAzospirillum brasilense and its bacteriophage in soil. Four Chernozemic soils from Canada, a Latosol and three Podzolic soils from Brazil were assayed for phage. Only the Latosol containedA. brasilense phage. None of the soils contained phage for otherA. brasilense orA. lipoferum strains tested. Recovery of phage from soil depended on the growth of indigenous or added host cells. A phage isolated from the Latosol had a hexagonal head of 100 nm and a tail of 200 nm. This phage was morphologically distinct from previously described Azospirillum phage and its host range was limited toA. brasilense strains 29145 and 29711.Survival and recovery of phage added to phage-free soil was dependent on the phage, the initial phage population, the presence of host cells and nutrients, and the soil. Phage persisted in soils at undetectable levels for at least seven weeks, but were still able to interact with multiplying host cells and exhibit a 1000-fold increase in number. Phage required a host cell population of at least 100–1000 per g of soil in order to multiply. The phage burst detected under these conditions increased as the cell to phage ratio increased. Long term incubation studies showed that the activity of phage in soil closely followed the activity of host cells and thus both were manipulated by appropriate amendments to soil.  相似文献   

5.
Electron microscopy of virulent phages for Streptococcus lactis.   总被引:11,自引:8,他引:3       下载免费PDF全文
Electron microscopic studies were made on eight virulent Streptococcus lactis bacteriophages. These phages were taken as representative of eight host range groups established in a study of 75 phage isolates and 253 hosts (213 S. lactis, 22 S. cremoris, 18 S. diacetilactis). The phages studied were shown to have an isometric hexagonal head and noncontractile tails, usually several times longer than the head diameter. The virus heads were octahedral. The phages investigated represented three morphological types on the basis of head diameter , tail thickness, and tail length. These dimensions were approximately: for type I phages, 63, 172, and 11 nm, respectively; type II, 73, 200, and 20 nm, respectively; and type III, represented here by a single phage, 98, 551, and 12 nm, respectively. The tail surface revealed a different arrangment of the structural subunits which lent a helical appearance to the tails of type I and II phages and a guaffered tube appearance to the tail of type III phage. The number of turns along the tail axis, turn length, axial pitch, and helix angle were: type I, 32, 12 to 13 nm, 7.14 nm, and 11 degrees 43', respectively; type II, 24, 24, to 28 nm, 40.00 nm, and 32 degrees 30', respectively; and type III, 120, 12 nm, and no visible slope towards the axis. The morphology types showed complete correlation with serological groups, but not with groups based on host range pattern.  相似文献   

6.
Summary Phage 299, on equilibrium sedimentation in CsCl, gives 3 major bands whose relative proportions depend on growth conditions. One band is whole heads without tails, the other two are infectious phage of differing degrees of disarray and stability. Electron micrographs show that the infectious phage has a head about 60 nm across, probably icosahedral in shape, and a straight tail of approximately 140 nm in length. The tail assemblies appear defective and incomplete. Sedimentation in a sucrose gradient of the DNA extracted from phage 299 is monodisperse with a molecular weight of 20.6±1.5×106 daltons based on comparison with λ and 186 phage DNA’s. The DNA has a base composition of 51.7% guanine and cytosine as determined by bouyant density in CsCl. A comparison of its denaturation behavior by analysis of the hyperchromic shift at 260 nm with that of phage P2 suggests a considerable number of common characteristics, and an absence of a low guanine and cytosine portion on the part of 299 which amounts to approximately 10% of the total DNA.  相似文献   

7.
Halophage SNJ1 was induced with mitomycin C from Natrinema sp. strain F5. The phage produces plaques on Natrinema sp. strain J7 only. The phage has a head of about 67 nm in diameter and a tail of 570 nm in length and belongs morphologically to the family Siphoviridae. The phage is strongly salt dependent; NaCl concentration affects the integrity of SNJ1, phage adsorption, and plaque formation. The optimal NaCl concentration for phage adsorption and plaque formation is 30% and 25%, respectively.  相似文献   

8.
The morphologies of native and chloroform-methanol-treated mycobacteriophage R1 were compared by electron microscopy, utilizing three negative stains. R1 was determined to be a complex phage. The head appears as an elongated cylinder with a pointed end (93 +/- 3 by 42 +/- 3 nm) constructed from an orderly arrangement of capsomeres. The phage tail measures 209 +/- 11 by 11 +/- 1 nm and possesses a striated surface with two base plates at its distal end. Treatment of R1 with chloroform-methanol resulted in disruption of both the head and tail structures and was accompanied by loss of infectivity. However, because no likely lipid-containing structure was observed in native phages, there is the possibility that the mechanism of chloroform-methanol inactivation is something other than lipid extraction.  相似文献   

9.
Tovkach  F. I. 《Microbiology》2002,71(1):65-71
Structural organization of the temperate bacteriophage ZF40 of Erwinia carotovora was studied. Phage ZF40 proved to be a typical member of the Myoviridae family (morphotype A1). Phage particles consist of an isometric head 58.3 nm in diameter and a contractile 86.3-nm-long tail with a complex basal plate and short tail fibers (31.5 nm). Phage tail sheath, a truncated cone in shape, is characterized by specific packaging of structural subunits. The ZF40 phage genome is 45.8 kb in size, as determined by restriction analysis, and contains DNA cohesive ends. The ZF40 phage ofErwinia carotovora is assumed to be a new species of bacteriophages specific for enterobacteria.  相似文献   

10.
Bacteriophage present in wine can attack bacterial starter cultures and inhibit the malolactic fermentation. The possibility of starter culture failure due to phage attack was studied in a commercial dry red wine of pH 3·23, inoculated with a multiple strain starter culture. During two stages of malolactic fermentation, bacterial growth and malate degradation in the wine were inhibited. A phage capable of lysing isolates of Leuconostoc oenos was isolated from the wine. The isolated phage had an icosahedral head of 42–45 nm diameter and a flexible, regularly cross-striated tail 197–207 nm long with a small baseplate. The results confirm that phage can attack bacterial starter cultures in wine at low pH.  相似文献   

11.
A phage, designated PBA12, has been isolated from the soil and found to be virulent on Bacillus subtilis (var. amyloliquefaciens). PBA12 has a large cylindrical head that is 100 nm long and 35 nm in diameter and a tail that is 200 nm in length. The phage contains double-stranded DNA and demonstrates chloroform sensitivity. The processes of both adsorption and replication appear to be slow and inefficient.  相似文献   

12.
Phage T was the only phage observed in lysates of Bacillus megaterium 899a induced with mitomycin C, 0.35 mug/ml. The phage adsorbed slowly to its host in nutrient agar, giving rise to plaques of varying sizes and turbidity. Only clear plaques were observed when the phage and host cells were preincubated in an adsorption buffer and plated under optimum conditions. Plaque turbidity was caused by either the addition of 0.5 x 10(-2) to 1.0 x 10(-2) M CaCl(2) to the phage assay medium, or by raising the incubation temperature to 34 C. Phage T purified on a CsCl gradient had a density of 1.48 g/ml in CsCl and the extracted phage DNA had a buoyant density in CsCl of 1.6975 g/ml, equivalent to 38.2% guanine plus cytosine. The phage was rapidly inactivated at 75 C and was unstable in the presence of chloroform at 4 C, but it was stable in buffer stored in ice. When stage I sporulating cells were induced with mitomycin C, phage were carried into spores which when germinated lyse with the release of phi T. The burst size on induction of early-log vegetative cells was 52, whereas the burst size of induced T(0) sporulating cells, diluted in fresh medium, was 47 for a sporulating strain and 140 for an asporogenous mutant. A typical phage T had a long, noncontracting tail 240 nm long, 9 to 11 nm wide, with a repeating disk unit along the tail, 4 nm in size center to center. The tail ended in a small disk (15 nm wide) which is presumably for attachment to the host. The hexagonal head measures 68 by 57 nm and is composed of donut-shaped units 9 nm in diameter.  相似文献   

13.
Isolation and Characterization of a Bacteriophage for Vibrio fetus   总被引:2,自引:0,他引:2       下载免费PDF全文
Bacteriophages were isolated from 22 of 38 strains of Vibrio fetus by an enrichment process, utilizing the donor and host strains growing together in fluid thioglycollate medium. One phage, V-45, isolated by the conventional lawn-spot method, was characterized by stability in broth, growth kinetics, and morphology. It was sensitive to rapid thermal inactivation, chloroform, and pH values above 6.5. Calcium was required for phage replication and stability in broth. Magnesium provided the best protection against thermal inactivation at 50 C in the pH range of 6.5 to 7.5. The minimum latent period was 135 min, rise time was 75 min, and average burst size was 35 plaque-forming units per infected cell. Phage V-45 resembled Bradley's morphological group B, having a long tail without contractile sheath. Dimensions were: head, about 50 nm; tail, about 7 by 240 nm; and tail lumen, 2 to 3 nm.  相似文献   

14.
Structural organization of the temperate bacteriophage ZF40 of Erwinia carotovora was studied. Phage ZF40 proved to be a typical member of the Myoviridae family (morphotype A1). Phage particles consist of an isometric head 58.3 nm in diameter and a contractile 86.3-nm-long tail with a complex basal plate and short tail fibers (31.5 nm). Phage tail sheath, a truncated cone in shape, is characterized by specific packaging of structural subunits. The ZF40 phage genome is 45.8 kb in size, as determined by restriction analysis, and contains DNA cohesive ends. The ZF40 phage of Erwinia carotovora is assumed to be a new species of bacteriophages specific for enterobacteria.  相似文献   

15.
Particles of PBSX, a defective, noninfectious phage which is inducible from strains of Bacillus subtilis 168, contain at least seven structural proteins resolvable by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Five of these proteins are associated with the phage tail and two with the phage head. An eighth protein, which also may be coded for by the PBSX prophage, has been identified in cells derepressed for PBSX replication.  相似文献   

16.
A bacteriophage with a contractile tail which shows very similar features to R-type pyocins was isolated and characterized. This phage, named PS17,was purified by DEAE-cellulose chromatography and CsCl density gradient centrifugation. It was a DNA-containing phage, and the density of the purified particles in CsCl was found to be 1.468. DNA from this phage had a density of 1.720 in CsCl, indicating its guanine plus cytosine content to be 61.2%. The head was polyhedral, 69 nm in diameter, and the tail was 150 nm in length. This phage was neutralized by antiserum preparations against five R-type pyocins, and the antiserum against this phage was active in neutralizing R-type pyocins. The properties of this phage, PS17, were compared with another similar phage, PS3, which was previously reported.  相似文献   

17.
Morphological characterization of a bacteriophage isolated from the Lactobacillus plantarum portion of a commercial meat starter culture showed that the isolate, phage fri, belonged to the Bradley group A bacteriophages. It had a regular six-sided head (90 nm diameter), and a contractile tail (190 nm in length). Short tail fibres were observed at the distal end of the sheath. Fluorescent staining with acridine orange indicated that phage fri contained double-stranded DNA. The resistance to high concentrations of either chloroform or ether showed that its lipid content was negligible. Heat lability was demonstrated by inactivation of a phage fri population within 10 min at 60°C and within 5 min at 70°C. It tolerated pH levels of 3.0–8.0 and exhibited greater stability in the acid region than did its host strain. The latent and rise periods were both 75 min, and the average burst size 200 pfu/cell. Sensitivity was limited to the Lact. plantarum strain of only one manufacturer of the commercial meat starters investigated.  相似文献   

18.
以上海某些医院临床分离到的多重耐药肺炎克雷伯菌为宿主菌,从不同环境的污水中分离获得1株肺炎克雷伯菌噬菌体KP002。电子显微镜显示其为有尾噬菌体,头部直径约70nm,尾长约80nm,尾宽约20nm。对其生物学特性进行研究,结果显示此株噬菌体在pH 3~9及4~50℃的环境中具有较高活性;6min吸附率达95%以上;潜伏期为10min,爆发期为50min;裂解量为172pfu/cell。结果表明,该噬菌体对pH值和温度适应范围较宽。对其全基因组进行测序分析,结果显示其基因组为环状双链DNA,全长47 173bp,GC含量为48%。本研究筛选获得1株对pH值和温度适应范围较宽的耐药肺炎克雷伯菌烈性噬菌体KP002,为建立耐药肺炎克雷伯菌的噬菌体库以用于治疗临床多重耐药菌感染提供了新的思路。  相似文献   

19.
炭疽芽孢杆菌噬菌体AP631的生物学特性检测   总被引:2,自引:0,他引:2  
王秉翔  张守让 《病毒学报》1992,8(2):193-194
  相似文献   

20.
Ladha  J. K.  Kumar  H. D. 《Archives of microbiology》1975,104(1):171-178
Bacteriophage 16-6-12 of Rhizobium lupini has a long, non-contractile tail and a head which is hexagonal in outline. The tail is 140 nm in length, 11 nm in diameter, and carries a short terminal fiber. Analysis of the tail structure by optical diffraction indicates that it is of the helical “stacked disc” type. After phenol-extraction from purified particles, the DNA of phage 16-6-12 can circularize in vitro. No significant difference in contour length was observed between the linear (14.34±0.28 μm) and circular (14.44±0.24 μm) forms of molecules. After partial denaturation with alkali an AT-GC-map was constructed, which shows an asymmetric distribution of AT- and GC-rich regions. It is concluded that this phage DNA can circularize due to the presence of cohesive ends and that it is not circularly permuted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号