首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The study of endothelial development has been intertwined with hematopoiesis since the early 20th century when a bi-potential cell (hemangioblast) was noted to produce both endothelial and hematopoietic cells. Since then, ideas regarding the nature of connection between the vascular and hematopoietic systems have ranged from a tenuous association to direct lineage origination. In this review, historical data that spans hematopoietic development is examined within the context of hemogenic endothelium. Hemogenic endothelium, a specialized endothelial population capable of hematopoiesis, is an emerging theory that has recently gained momentum. Evidence across species and decades are reviewed, as are the possible modulators of the phenomenon, which include pathways that specify definitive hematopoiesis (Runx1), arterial identity (Notch1), as well as physiological and developmental factors.  相似文献   

2.
The c-myc proto-oncogene, which is crucial for the progression of many human cancers, has been implicated in key cellular processes in diverse cell types, including endothelial cells that line the blood vessels and are critical for angiogenesis. The de novo differentiation of endothelial cells is known as vasculogenesis, whereas the growth of new blood vessels from pre-existing vessels is known as angiogenesis. To ascertain the function of c-myc in vascular development, we deleted c-myc in selected cell lineages. Embryos lacking c-myc in endothelial and hematopoietic lineages phenocopied those lacking c-myc in the entire embryo proper. At embryonic day (E) 10.5, both mutant embryos were grossly normal, had initiated primitive hematopoiesis, and both survived until E11.5-12.5, longer than the complete null. However, they progressively developed defective hematopoiesis and angiogenesis. The majority of embryos lacking c-myc specifically in hematopoietic cells phenocopied those lacking c-myc in endothelial and hematopoietic lineages, with impaired definitive hematopoiesis as well as angiogenic remodeling. c-myc is required for embryonic hematopoietic stem cell differentiation, through a cell-autonomous mechanism. Surprisingly, c-myc is not required for vasculogenesis in the embryo. c-myc deletion in endothelial cells does not abrogate endothelial proliferation, survival, migration or capillary formation. Embryos lacking c-myc in a majority of endothelial cells can survive beyond E12.5. Our findings reveal that hematopoiesis is a major function of c-myc in embryos and support the notion that c-myc functions in selected cell lineages rather than in a ubiquitous manner in mammalian development.  相似文献   

3.
4.
The hematopoietic system is dynamic during development and in adulthood, undergoing countless spatial and temporal transitions during the course of one's life. Microenvironmental cues in the many unique hematopoietic niches differ, characterized by distinct soluble molecules, membrane-bound factors, and biophysical features that meet the changing needs of the blood system. Research from the last decade has revealed the importance of substrate elasticity and biomechanical force in determination of stem cell fate. Our understanding of the role of these factors in hematopoiesis is still relatively poor; however, the developmental origin of blood cells from the endothelium provides a model for comparison. Many endothelial mechanical sensors and second messenger systems may also determine hematopoietic stem cell fate, self renewal, and homing behaviors. Further, the intimate contact of hematopoietic cells with mechanosensitive cell types, including osteoblasts, endothelial cells, mesenchymal stem cells, and pericytes, places them in close proximity to paracrine signaling downstream of mechanical signals. The objective of this review is to present an overview of the sensors and intracellular signaling pathways activated by mechanical cues and highlight the role of mechanotransductive pathways in hematopoiesis.  相似文献   

5.
Role of Oncostatin M in hematopoiesis and liver development   总被引:11,自引:0,他引:11  
Definitive hematopoietic stem cells (HSCs) first appear in the aorta/gonad/mesonephros (AGM) region and migrate to the fetal liver where they massively produce hematopoietic cells before establishing hematopoiesis in the bone marrow at a perinatal stage. In the AGM region, Oncostatin M (OSM) enhances the development of both hematopoietic and endothelial cells by possibly stimulating their common precursors, so-called hemangioblasts. During development of HSCs in the AGM region, the liver primodium is formed at the foregut and accepts HSCs. While fetal hepatic cells function as hematopoietic microenvironment for expansion of hematopoietic cells during mid to late gestation, they do not possess most of the metabolic functions of adult liver. Along with the expansion of hematopoietic cells in fetal liver, OSM is produced by hematopoietic cells and induces differentiation of fetal hepatic cells, conferring various metabolic activities of adult liver. Matured hepatic cells then lose the ability to support hematopoiesis. Thus, OSM appears to coordinate the development of liver and hematopoiesis in the fetus.  相似文献   

6.
Blood and vascular endothelial cells form in all vertebrates during gastrulation, a process in which the mesoderm of the embryo is induced and then patterned by molecules whose identity is still largely unknown. Blood islands' of primitive hematopoietic cell clusters surrounded by a layer of endothelial cells form in the yolk sac, external to the developing embryo proper. These lineages arise from a layer of extraembryonic mesoderm that is closely apposed with a layer of primitive (visceral) endoderm. Despite the identification of genes such as Flk1, SCL/tal-1, Cbfa2/Runx1/AML1 and CD34 that are expressed during the induction of primitive hematopoiesis and vasculogenesis, the early molecular and cellular events involved in these processes are not well understood. Recent work has demonstrated that extracellular signals secreted by visceral endoderm surrounding the embryo are essential for the initiation of these events. A member of the Hedgehog family of signaling molecules (Indian hedgehog) is produced by visceral endoderm, can induce formation of blood and endothelial cells in explant cultures and can reprogram prospective neurectoderm along hematopoietic and endothelial cell lineages. Hedgehog proteins also stimulate proliferation of definitive hematopoietic stem/progenitor cells. These findings may have important implications for regulating hematopoiesis and vascular development for therapeutic purposes in humans and for the development of new sources of stem cells for transplantation and gene therapy.  相似文献   

7.
8.
In vertebrates the extraembryonic mesoderm of the yolk sac (YS) is the first site during embryogenesis where morphologically discernible hematopoiesis may be found. Later hematopoiesis shifts into the embryo proper, first to the liver, the major fetal hematopoietic site, then to definitive hematopoietic territories, the spleen and bone marrow. It is widely accepted that in the mouse this picture reflects the migration of pluripotent hematopoietic stem cells (HSC) from the YS accompanied by subsequent colonization of the hematopoietic tissues during embryogenesis. However, there is no conclusive evidence showing unequivocally the initiating role of the YS in murine adult hematopoiesis. Recently, we have demonstrated the important role of embryo body tissues in the development of CFU-S before the establishment of definitive hematopoiesis in the fetal liver. This finding suggests that the early development of the hematopoietic system in the mouse is more complex than has been previously proposed and we consider here the early hematopoietic events in the developing mouse embryo.  相似文献   

9.
We have previously shown that endothelial cells of the aortic floor give rise to hematopoietic cells, revealing the existence of an aortic hemangioblast. It has been proposed that the restriction of hematopoiesis to the aortic floor is based on the existence of two different and complementary endothelial lineages that form the vessel: one originating from the somite would contribute to the roof and sides, another from the splanchnopleura would contribute to the floor. Using quail/chick orthotopic transplantations of paraxial mesoderm, we have traced the distribution of somite-derived endothelial cells during aortic hematopoiesis. We show that the aortic endothelium undergoes two successive waves of remodeling by somitic cells: one when the aortae are still paired, during which the initial roof and sides of the vessels are renewed; and a second, associated to aortic hematopoiesis, in which the hemogenic floor is replaced by somite endothelial cells. This floor thus appears as a temporary structure, spent out and replaced. In addition, the somite contributes to smooth muscle cells of the aorta. In vivo lineage tracing experiments with non-replicative retroviral vectors showed that endothelial cells do not give rise to smooth muscle cells. However, in vitro, purified endothelial cells acquire smooth muscle cells characteristics. Taken together, these data point to the crucial role of the somite in shaping the aorta and also give an explanation for the short life of aortic hematopoiesis.  相似文献   

10.
Wang C  Tang X  Sun X  Miao Z  Lv Y  Yang Y  Zhang H  Zhang P  Liu Y  Du L  Gao Y  Yin M  Ding M  Deng H 《Cell research》2012,22(1):194-207
Embryonic hematopoiesis is a complex process. Elucidating the mechanism regulating hematopoietic differentiation from pluripotent stem cells would allow us to establish a strategy to efficiently generate hematopoietic cells. However, the mechanism governing the generation of hematopoietic progenitors from human embryonic stem cells (hESCs) remains unknown. Here, on the basis of the emergence of CD43(+) hematopoietic cells from hemogenic endothelial (HE) cells, we demonstrated that VEGF was essential and sufficient, and that bFGF was synergistic with VEGF to specify the HE cells and the subsequent transition into CD43(+) hematopoietic cells. Significantly, we identified TGFβ as a novel signal to regulate hematopoietic development, as the TGFβ inhibitor SB 431542 significantly promoted the transition from HE cells into CD43(+) hematopoietic progenitor cells (HPCs) during hESC differentiation. By defining these critical signaling factors during hematopoietic differentiation, we can efficiently generate HPCs from hESCs. Our strategy could offer an in vitro model to study early human hematopoietic development.  相似文献   

11.
The development of the cardiovascular system and the development of the early hematopoietic systems are closely related, and both require signaling through the Tie2 receptor tyrosine kinase. Although endothelial cells and hematopoietic cells as well as their precursors share common gene expression patterns during development, it remains completely unknown how Tie2 signaling coordinately regulates cardiovascular development and early hematopoiesis in vivo. We show here that mice with a targeted mutation in tyrosine residue 1100 in the carboxyl-terminal tail of Tie2 display defective cardiac development and impaired hematopoietic and endothelial cell development in the paraaortic splanchnopleural mesoderm similar to that seen in Tie2-null mutant mice. Surprisingly, however, unlike Tie2-null mutant mice, mice deficient in signaling through this tyrosine residue show a normal association of perivascular cells with nascent blood vessels. These studies are the first to demonstrate the physiological importance of a single tyrosine residue in Tie2, and they suggest that multiple tyrosine residues in the receptor may coordinate cardiovascular development and early hematopoietic development.  相似文献   

12.
Signals of Notch transmembrane receptors function to regulate a wide variety of developmental cell fates. Here we investigate the role of Notch signaling in the development of mesodermal cell types by expressing a tamoxifen-inducible, activated form of Notch1 in embryonic stem cells (ESC). For differentiation of ESC into first mesodermal progenitor cells and then endothelial, mural, cardiac muscle and hematopoietic cells, the OP9 stroma co-culture system was used. Timed activation of Notch signaling by the addition of tamoxifen at various stages during differentiation of ESC into mesodermal cell lineages results in profound alterations in the generation of all of these cells. Differentiation of ESC into Flk1(+) mesodermal cells is inhibited by activated Notch. When Notch signaling is activated in mesodermal cells, generation of cardiac muscle, endothelial and hematopoietic cells is inhibited, favoring the generation of mural cells. Activation of Notch signaling in hematopoietic cells reduces colony formation and maintenance of hematopoiesis. These data suggest that Notch signaling plays a regulatory role in mesodermal development, cardiomyogenesis, the balanced generation of endothelial versus mural cells of blood vessels and hematopoietic development.  相似文献   

13.
During embryonic life, hematopoiesis occurs first in the yolk sac, followed by the aorto-gonado-mesonephric region, the fetal liver, and the bone marrow. The possibility of hematopoiesis in other embryonic sites has been suspected for a long time. With the use of different methodologies (transgenic mice, electron microscopy, laser capture microdissection, organ culture, and cross-transplant experiments), we show that multiple regions within the embryo are capable of forming blood before and during organogenesis. This widespread phenomenon occurs by hemo-vasculogenesis, the formation of blood vessels accompanied by the simultaneous generation of red blood cells. Erythroblasts develop within aggregates of endothelial cell precursors. When the lumen forms, the erythroblasts "bud" from endothelial cells into the forming vessel. The extensive hematopoietic capacity found in the embryo helps explain why, under pathological circumstances such as severe anemia, extramedullary hematopoiesis can occur in any adult tissue. Understanding the intrinsic ability of tissues to manufacture their own blood cells and vessels has the potential to advance the fields of organogenesis, regeneration, and tissue engineering.  相似文献   

14.
Studies with embryonic explants and embryonic stem cells have suggested a role for Hedgehog (Hh) signaling in hematopoiesis. However, targeted deletion of Hh pathway components in the mouse has so far failed to provide in vivo evidence. Here we show that zebrafish embryos mutant in the Hh pathway or treated with the Hh signaling inhibitor cyclopamine display defects in adult hematopoietic stem cell (HSC) formation but not in primitive hematopoiesis. Hh is required in the trunk at three consecutive stages during vascular development: for the medial migration of endothelial progenitors of the dorsal aorta (DA), for arterial gene expression, and for the formation of intersomitic vessel sprouts. Interference with Hh signaling during the first two stages also interferes with HSC formation. Furthermore, HSC and DA formation also share Vegf and Notch requirements, which further distinguishes them from primitive hematopoiesis and underlines their close relationship during vertebrate development.  相似文献   

15.
16.
17.
18.
Embryonic development of the human hematopoietic system   总被引:6,自引:0,他引:6  
Human hematopoiesis is initiated in the yolk sac during the third week of development. At the same time the capacity to produce blood cells also arises in the embryo, within the splanchnopleura, but this potential is not expressed before day 27, when clustered hematopoietic stem cells emerge from the ventral wall of the aorta and vitelline artery. Budding of hematopoietic cells from vessel walls reflects the re-differentiation of local endothelial cells, which are likely derived from angio-hematopoietic mesodermal ancestors emigrated from the splanchnopleura. Yolk sac-derived stem cells are limited to myelo-erythroid development, whereas those born in the embryo are, in addition, lymphopoietic and therefore represent the first multi-potent, adult-type blood progenitors that appear in human ontogeny, preceding shortly the onset of liver hematopoiesis. These results allowed the establishment of a novel hierarchy of blood-forming tissues in human development and induced an in depth reconsideration of the very origin of definitive human hematopoiesis. These results also fully corroborate the outcome of experiments performed in parallel in avian and mouse embryos and point to the conservation in all higher vertebrates of an ancestral route of blood cell production via embryonic vessel walls.  相似文献   

19.
More than a century ago, several embryologists described sites of hematopoietic activity in the vascular wall of mid-gestation vertebrate embryos, and postulated the transient existence of a blood generating endothelium during ontogeny. This hypothesis gained significant attention in the 1970s when orthotopic transplantation experiments between quail and chick embryos revealed specific vascular areas as the site of the origin of definitive hematopoiesis. However, the vascular origin of hematopoietic precursors remained elusive and controversial for decades. Only recently, multiple experimental approaches have clearly documented that during vertebrate development definitive hematopoietic precursors arise from a subset of vascular endothelial cells. Interestingly, this differentiation is promoted by the intravascular fluid mechanical forces generated by the establishment of blood flow upon the initiation of heartbeat, and it is therefore connected with cardiovascular development in several critical aspects. In this review we present our current understanding of the relationship between vascular and definitive hematopoietic development through an historical analysis of the scientific evidence produced in this area of investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号