首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
NADPH oxidase p22phox subunit is responsible for the production of reactive oxygen species in the vascular tissue. The C242T polymorphism in the p22phox gene has been associated with diverse coronary artery disease phenotypes, but the findings about the protective or harmful effects of the T allele are still controversial. Our main aim was to assess the effect of p22phox C242T genotypes on arterial stiffness, a predictor of late morbidity and mortality, in individuals from the general population. We randomly selected 1,178 individuals from the general population of Vitoria City, Brazil. Genotypes for the C242T polymorphism were detected by PCR-RFLP, and pulse wave velocity (PWV) values were measured with a noninvasive automatic device Complior. p22phox and TNF-α gene expression were quantified by real-time PCR in human arterial mammary smooth muscle cells. In both the entire and nonhypertensive groups: individuals carrying the TT genotype had higher PWV values and higher risk for increased arterial stiffness [odds ratio (OR) 1.93, 95% confidence interval (CI) 1.27-2.92 and OR 1.78, 95% CI 1.07-2.95, respectively] compared with individuals carrying CC+CT genotypes, even after adjustment for covariates. No difference in the p22phox gene expression according C242T genotypes was observed. However, TNF-α gene expression was higher in cells from individual carrying the T allele, suggesting that this genetic marker is associated with functional phenotypes at the gene expression level. In conclusion, we suggest that p22phox C242T polymorphism is associated with arterial stiffness evaluated by PWV in the general population. This genetic association shed light on the understanding of the genetic modulation on vascular dysfunction mediated by NADPH oxidase.  相似文献   

2.
Oxidative stress plays an important role in the pathogenesis of diabetes and its complications. Genetic variations of enzymes producing reactive oxygen species could change their activity, thus contributing to the susceptibility to oxidative stress. The aim of this study was to examine the role of the NADPH oxidase C242T polymorphism in the development of carotid atherosclerosis in patients with type 2 diabetes. 286 diabetic patients and 150 healthy controls were enrolled in the study. Carotid atherosclerosis was quantified ultrasonographically as carotid intima-media thickness, plaque score (0–6) and plaque type (1–5). Diabetic patients were divided into low and high risk groups based on ultrasound phenotypes of carotid atherosclerosis. Genotypes were determined by real-time PCR. Levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) were measured by enzyme-linked immunosorbent assay (ELISA). Diabetic patients demonstrated a statistically significant difference compared to healthy controls in the following parameters: age, BMI, waist circumference, smoking prevalence, glucose, triglyceride and 8-OHdG serum levels. Control subjects had significantly higher levels of HDL, LDL and total cholesterol than diabetics (p?<?0.001). The NADPH C242T polymorphism was not related with clinical characteristics, lipid parameters and 8-OHdG serum levels. We found no significant difference in the NADPH genotype distribution between diabetics and controls (p?=?0.19) nor between low and high risk subgroups of diabetics (mean CIMT: p?=?0.67; plaque score: p?=?0.49, plaque type: p?=?0.56). In the present study the NADPH C242T polymorphism was not associated with the degree of oxidative stress and carotid atherosclerosis. Further studies will show if it can be used as a genetic marker for carotid atherosclerosis in diabetic patients.  相似文献   

3.
The p22phox protein subunit is essential for NADPH oxidase activity. The prevalence of C242T variants of p22phox gene was studied in 101 healthy Egyptian controls and 104 acute myocardial infarction (AMI) Egyptian patients. Contribution of oxidative stress, represented by serum oxidized-LDL (ox-LDL), in development of AMI was also examined and correlated with C242T gene variants. Genotyping and ox-LDL were assessed by PCR–RFLP and ELISA. Results showed that wild type CC genotype is prevalent in 27 % of controls; CT and TT are in 72 and 1 %. In patients, the distribution was 40.2, 59.8 and 0 % for CC, CT and TT; respectively, showing a significant difference (p = 0.0259). Serum ox-LDL levels were higher in patients than controls (p ≤ 0.0001). Subjects having CT genotype had lower levels of ox-LDL than CC genotype (p ≤ 0.005). C242T polymorphism of p22phox gene of NADPH oxidase is a novel genetic marker associated with reduced susceptibility to AMI.  相似文献   

4.

Background

Epidemiological studies have evaluated the association between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase p22phox C242T polymorphism and risk of ischemic cerebrovascular disease (ICVD), but the results remain inconclusive. This meta-analysis was therefore designed to clarify these controversies.

Methodology/Principal Findings

Systematic searches of electronic databases Embase, PubMed and Web of Science, as well as hand searching of the references of identified articles and the meeting abstracts were performed. Statistical analyses were performed using software Review Manager (Version 5.1.7) and Stata (Version 11.0). The pooled odds ratios (ORs) with 95% confidence intervals (95%CIs) were performed. Fixed or random effects model was separately used depending on the heterogeneity between studies. Publication bias was tested by Begg''s funnel plot and Egger''s regression test. A total of 6 studies including 1,948 cases and 2,357 controls were combined showing no statistical evidence of association between NADPH oxidase p22phox C242T polymorphism and overall ICVD (allelic model: OR = 1.08, 95%CI = 0.93–1.26; additive model: OR = 1.33, 95%CI = 0.81–2.17; dominant model: OR = 1.00, 95%CI = 0.86–1.15; recessive model: OR = 1.06, 95%CI = 0.77–1.45). Significant association was found in large-artery atherosclerotic stroke subgroup (allelic model: OR = 1.12, 95%CI = 0.88–1.41; additive model: OR = 1.36, 95%CI = 0.60–3.09; dominant model: OR = 1.25, 95%CI = 0.74–2.11; recessive model: OR = 2.17, 95%CI = 1.11–4.23). No statistical evidence of significant association was observed for small-vessel occlusive stroke, as well as Asian subgroup and Caucasian subgroup. Statistical powers on the combined sample size (total and subgroup) were all lower than 80%.

Conclusions/Significance

This meta-analysis indicates that NADPH oxidase p22phox C242T polymorphism is more associated with large-artery atherosclerotic stroke than small-vessel occlusive stroke. However, this conclusion should be interpreted with caution due to the small sample size. Larger sample-size studies with homogeneous ICVD patients and well-matched controls are required.  相似文献   

5.
We examined the effects of the NADPH oxidase p22phox C242T polymorphism on endurance exercise performance and oxidative DNA damage in response to acute and chronic exercises. One hundred three subjects were recruited, among which 26 healthy subjects (CC: 12, TC: 12, and TT: 2) were studied during rest, exercise at 85% VO2max, and recovery before and after 8 weeks of tread-mill running. Lymphocyte DNA damage increased significantly in response to exercise (p < 0.05). There were no significant differences in plasma MDA, SOD concentrations and lymphocyte DNA damage between CC genotype and T allele group, but significant endurance training differences were observed. Endurance training increased exercise time to exhaustion in both the CC genotype and T allele groups (p < 0.05) but no significant difference was found between groups. The results of the current study with young, healthy, Korean men are interpreted to mean that 1) the majority had the CC genotype of the NADPH oxidase p22phox C242T polymorphism (82.5%: CC, 15.5%: TC, 1.9%: TT), 2) acute exercise increased lymphocyte DNA damage, 3) endurance training significantly increased exercise time to exhaustion, and alleviated lymphocyte DNA damage, and 4) The NADPH oxidase p22phox C242T polymorphism, however, did not alter lymphocyte DNA damage or exercise performance at rest, immediately after exercise, or during recovery.  相似文献   

6.
Genetic control of free radical oxidation, generation of reactive oxygen species, as well as of preoxidant and antioxidant balance in airway diseases, including bronchial asthma, is an important issue of the research in pulmonology. The present study is the first investigation of association between two common polymorphisms, C242T (exon 4) and A640G (3' untranslated region), within the NADPH oxidase gene (CYBA) and the risk of bronchial asthma. Samples of asthma patients (n =209) and healthy controls (n = 210) of Russian nationality were examined. Genotyping of the CYBA C242T and A640G polymorphisms was performed using polymerase chain reaction and restriction fragment length polymorphism. It was demonstrated that the frequency of heterozygous CYBA genotype A640G in bronchial asthma patient group was lower than that in control group (OR = 0.66; 95%CI, 0.45-0.97; P = 0.04). Separate analysis of different clinical pathogenetic variants of the disease showed that homozygous wild-type CYBA genotype A640A was associated with the increased risk of allergic bronchial asthma (OR = 1.76; 95%CI, 1.07-2.90; P = 0.03), while heterozygous CYBA genotype A640G was associated with the decreased risk of this form of the disease (OR = 0.63; 95%CI, 0.41-0.96; P = 0.03). Thus, a new candidate gene for allergic bronchial asthma was discovered. Possible mechanisms of the involvement of CYBA in the development of asthmatic phenotype are discussed.  相似文献   

7.

Objectives

Dopamine-β-hydroxylase (DBH) is the enzyme responsible for the conversion of dopamine (DA) to norepinephrine (NE, noradrenaline) which is a key neurotransmitter in the central and peripheral nervous systems. Bipolar disorder is a major psychiatric disorder. The present study was designed to explore the associations of polymorphisms of DBH gene in Turkish patients with bipolar disorder.

Methods

− 1021C>T (rs1611115) polymorphism in promoter region, 444G>A (rs1108580) polymorphism in exon 2 and 1603C>T (rs6271; C535R) polymorphism in exon11 of DBH gene were analyzed in 106 patients with bipolar disorder and 106 healthy subjects by using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis.

Results

The results showed statistically significant associations for genotypic and allelic distribution between the 1603C>T polymorphism and bipolar disease (p = 0.0012 and p = 0.034, respectively). There was no association observed between the genotype and allelic frequencies for − 1021C>T and 444G>A polymorphisms and bipolar disorder.

Conclusions

Our data suggests that the 1603C>T polymorphism of the DBH gene is associated with susceptibility to bipolar disorder in a Turkish population.  相似文献   

8.
9.
Human neutrophils participate in the host innate immune response, partly mediated by the multicomponent superoxide-generating enzyme NADPH oxidase. A correlation between phosphorylation of cytosolic NADPH oxidase components and enzyme activation has been identified but is not well understood. We previously showed that p22(phox), the small subunit of the membrane-bound oxidase component flavocytochrome b(558), is an in vitro substrate for both a phosphatidic acid-activated kinase and conventional protein kinase C isoforms (Regier, D. S., Waite, K. A., Wallin, R., and McPhail, L. C. (1999) J. Biol. Chem. 274, 36601-36608). Here we show that several neutrophil agonists (phorbol myristate acetate, opsonized zymosan, and N-formyl-methionyl-leucyl-phenylalanine) induce p22(phox) phosphorylation in intact neutrophils. To determine if phospholipase D (PLD) is needed for p22(phox) phosphorylation, cells were pretreated with ethanol, which reduces phosphatidic acid production by PLD in stimulated cells. Phorbol myristate acetate-induced phosphorylation of p22(phox) and NADPH oxidase activity were not reduced by ethanol. In contrast, ethanol reduced both activities when cells were stimulated by N-formyl-methionyl-leucyl-phenylalanine or opsonized zymosan. Varying the time of stimulation with opsonized zymosan showed that the phosphorylation of p22(phox) coincides with NADPH oxidase activation. GF109203X, an inhibitor of protein kinase C and the phosphatidic acid-activated protein kinase, decreased both p22(phox) phosphorylation and NADPH oxidase activity in parallel in opsonized zymosan-stimulated cells. Stimulus-induced phosphorylation of p22(phox) was on Thr residue(s), in agreement with in vitro results. Overall, these data show that NADPH oxidase activity and p22(phox) phosphorylation are correlated and suggest two mechanisms (PLD-dependent and -independent) by which p22(phox) phosphorylation occurs.  相似文献   

10.
Activation of phagocyte NADPH oxidase requires interaction between p47(phox) and p22(phox). p47(phox) in resting phagocytes does not bind p22(phox). Phosphorylation of serines in the p47(phox) C terminus enables binding to the p22(phox) C terminus by inducing a conformational change in p47(phox) that unmasks the SH3A domain. We report that an arginine/lysine-rich region in the p47(phox) C terminus binds the p47(phox) SH3 domains expressed in tandem (SH3AB) but does not bind the individual N-terminal SH3A and C-terminal SH3B domains. Peptides matching amino acids 301-320 and 314-335 of the p47(phox) arginine/lysine-rich region block the p47(phox) SH3AB/p22(phox) C-terminal and p47(phox) SH3AB/p47(phox) C-terminal binding and inhibit NADPH oxidase activity in vitro. Peptides with phosphoserines substituted for serines 310 and 328 do not block binding and are poor inhibitors of oxidase activity. Mutated full-length p47(phox) with aspartic acid substitutions to mimic the effects of phosphorylations at serines 310 and 328 bind the p22(phox) proline-rich region in contrast to wild-type p47(phox). We conclude that the p47(phox) SH3A domain-binding site is blocked by an interaction between the p47(phox) SH3AB domains and the C-terminal arginine/lysine-rich region. Phosphorylation of serines in the p47(phox) C terminus disrupts this interaction leading to exposure of the SH3A domain, binding to p22(phox), and activation of the NADPH oxidase.  相似文献   

11.
The NADPH oxidase of phagocytes is a membrane-bound heterodimeric flavocytochrome which catalyses the transfer of electrons from NADPH in the cytoplasm to oxygen in the phagosome. A number of cytosolic proteins are involved in its activation/deactivation: p47phox, p67phox, p40phox and the small GTP-binding protein, rac. The cytosolic phox proteins interact with the cytoskeleton in human neutrophils and, in particular, an interaction with coronin has been reported (Grogan A., Reeves, E., Keep, N. H., Wientjes, F., Totty, N., Burlingame, N. L., Hsuan, J., and Segal, A. W. (1997) J. Cell Sci. 110, 3071-3081). Here, we report on the interaction of another cytoskeletal protein, moesin, with the phox proteins. Moesin belongs to the ezrin-radixin-moesin family of F-actin-binding proteins and we show that it binds to p47phox and p40phox in a phosphoinositide-dependent manner. Furthermore, we show that its N-terminal part binds to the PX domain of p47phox and p40phox.  相似文献   

12.
p40(phox) of the phagocyte NADPH oxidase forms a complex with p67(phox) in cytosol, and coincidentally decreases in patients who lack p67(phox). Here we investigated the mode of translocation of p40(phox) to the membrane, its cytoskeletal localization on activation of the NADPH oxidase, and the dependency of its expression relative to that of p67(phox). When human polymorphonuclear leukocytes (PMNs) were stimulated with phorbol myristate acetate (PMA), p40(phox) was translocated to the membrane along with p67(phox), and not was released into the cytosol. Studies with resting PMNs using Triton X-100 revealed the exclusive localization of p67(phox) in the cytoskeletal fraction. Unexpectedly, however, about half of p40(phox), which is deemed to be fully associated with p67(phox), was recovered in the non-cytoskeletal fraction. Unlike p47(phox), the association of p40(phox) with cytoskeleton was not induced by the PMA-stimulation. These results indicate not only that p40(phox) associates with cytoskeleton via a molecule of p67(phox), but also that there are distinct states of p40(phox) that can be manipulated with Triton X-100. Lastly, Western-blot analysis of hematopoietic cells revealed no correlation between p40(phox) and p67(phox) in their protein expressions during cell differentiation, and also that p40(phox) can be stably present alone in cells, unless in the case of mature PMNs. In this regard, definitive proof was obtained with Epstein-Barr virus-transformed B cells of a p67(phox)-deficient patient, in which p40(phox) was normally expressed.  相似文献   

13.
The cell-free activation of human neutrophil NADPH oxidase is enhanced by actin, and actin filaments formed during activation are suggested to stabilize the oxidase. In an attempt to elucidate the mechanism, we examined the protein-protein interactions between actin and cytosolic components of the oxidase. Far-Western blotting using recombinant phox proteins showed that both alpha- and beta-actin interacted with p47(phox) and rac1, and weakly with rac2. A deletion mutant of p47(phox) proved that its C-terminal region was essential for the interaction. The dissociation constant (K(d)) for interaction between actin and p47(phox) was estimated to be 0.45 microM by surface plasmon resonance, and that between actin and rac1 or rac2 was 1.7 or 4.6 microM, respectively. Far-Western blotting using cytosol as a target showed an interaction between actin and endogenous p47(phox) and rac proteins. These results suggest that actin can directly interact with p47(phox) and possibly with rac in the cells.  相似文献   

14.
We have screened the basal promoter region, of KRTHB6 gene involving CAAT and TATA boxes in randomly selected 125 individuals of Indian origin by PCR-SSCP and DNA sequencing. We observed a novel promoter polymorphism (-71C>T) which could be differentiated by using LweI restriction enzyme. The frequency of -71 C allele, allele A (Accession no AY203963), was observed to be higher ( 0.712) in comparison to -71 T allele, allele B (0.288) (Accession no. AY037552).  相似文献   

15.
Phagocytic NADH/NADPH oxidase is an important enzyme producing reactive oxygen species within subendothelial space of vessels. Findings have shown that p22phox subunit is an essential element related to the enzyme activity. Since some p22phox polymorphisms are thought to have functional roles in the enzyme thus, we studied the association between rs4673 (C242T) and rs13306294 (A/G) haplotypes and the severity of stenosis in coronary arteries. One hundred eighty-two subjects undergoing coronary angiography were recruited on the base of study design. Patients (n=114) had at least a stenosed coronary artery (>50% stenosis) and subdivided into three subgroups; SVD (n=28), 2VD (n=31) and 3VD (n=55) while controls (n=68) had the normal coronary arteries (<5% stenosis). The direct haplotyping technique of SNPs was performed using ARMS-RFLP-PCR method. Furthermore, alphabet-based tools predicted the changes of secondary structure at the rs4673 position. All haplotypes being proposed theoretically were found in the study population. The distribution of two-allele haplotypes had no significant difference between patients and controls (P=0.1). Although the rs4673 allele frequency was not significant between the groups (P>0.5), chi square test and multinomial regression analysis showed an observed high risk for rs13306294 A allele among patients. The bioinformatics tools predicted that the p22phox secondary structure is not changed due to the substitution of Tyr→His at the rs4673 position. We concluded that the polymorphisms have no allele linkage on the chromosome. In addition, the rs13306294 A allele is a potential factor of stenosis of coronary arteries that increases susceptibility for the extent of disease.  相似文献   

16.
17.
18.
An NADPH oxidase is thought to be a main source of vascular superoxide (O(2)(-)) production. The functional role of this oxidase, however, and the contribution of the different subunits of the enzyme to cellular signaling are still incompletely understood. We determined the role of the p47phox subunit of the oxidase in O(2)(-) generation and signaling in aortic rings and cultured smooth muscle cells (SMC) from wild-type (WT) and p47phox-deficient (p47phox -/-) mice. Basal O(2)(-) levels in aortae of p47phox -/- mice were lower than those in WT aortae. Infusion of [val(5)]-angiotensin II increased O(2)(-) levels in aortae from WT more than in aortae from p47phox -/- mice. O(2)(-) generation was similar in quiescent SMC from WT and p47phox -/- mice. However, exposure to thrombin selectively increased O(2)(-) generation in VSMC from WT, but not from p47phox -/- mice. Thrombin-activated redox-mediated signal transduction and gene expression was attenuated in VSMC from p47phox -/- compared to cells from WT mice as determined by p38 MAP kinase activation and VEGF gene expression. We conclude that p47phox is important for vascular ROS production and redox-modulated signaling and gene expression in VSMC.  相似文献   

19.
Systemic oxidative stress plays a role in many degenerative diseases. Although regular physical activity has been known as the most effective nonpharmacological intervention to alleviate the oxidative stress, the beneficial effect varies between individuals. We investigated whether NADPH oxidase p22phox gene C242T and A640G polymorphisms are associated with systemic oxidative stress level response to exercise training (ExTr). Fifty-nine sedentary middle-aged to older Caucasians with relatively high cardiovascular disease risk factors underwent a 6-mo standardized ExTr program. Body mass index, plasma lipoprotein-lipid profiles, cardiovascular fitness, and plasma thiobarbituric acid reactive substances (TBARS) were measured before and after ExTr. Demographic and initial levels of cardiovascular disease risk factors were similar among genotype groups for both polymorphisms. Overall, TBARS was decreased by 16% with ExTr in the entire group (P < 0.001). There was no significant difference in TBARS changes with ExTr among the C242T genotype groups. However, A allele carriers showed greater reduction in TBARS than noncarriers at the A640G locus (P = 0.05). There was a significant interaction (P = 0.05) between ExTr and A640G polymorphism in TBARS changes with ExTr. This interaction remained after accounting for age and baseline TBARS level. Furthermore, diplotype analysis showed that TBARS was decreased to a greater extent in the C242/A640 haplotype carriers compared with the noncarriers (P < 0.05). We found that p22phox polymorphisms, especially A640G, were associated with differential changes in systemic oxidative stress with aerobic exercise training.  相似文献   

20.
Phox (PX) domains are phosphoinositide (PI)-binding domains with broad PI specificity. Two cytosolic components of NADPH oxidase, p40(phox) and p47(phox), contain PX domains. The PX domain of p40(phox) specifically binds phosphatidylinositol 3-phosphate, whereas the PX domain of p47(phox) has two lipid binding sites, one specific for phosphatidylinositol 3,4-bisphosphate and the other with affinity for phosphatidic acid or phosphatidylserine. To delineate the mechanisms by which these PX domains interact with PI-containing membranes, we measured the membrane binding of these domains and respective mutants by surface plasmon resonance and monolayer techniques and also calculated the electrostatic potentials of the domains as a function of PI binding. Results indicate that membrane binding of both PX domains is initiated by nonspecific electrostatic interactions, which is followed by the membrane penetration of hydrophobic residues. The membrane penetration of the p40(phox) PX domain is induced by phosphatidylinositol 3-phosphate, whereas that of the p47(phox) PX domain is triggered by both phosphatidylinositol 3,4-bisphosphate and phosphatidic acid (or phosphatidylserine). Studies of enhanced green fluorescent protein-fused PX domains in HEK293 cells indicate that this specific membrane penetration is also important for subcellular localization of the two PX domains. Further studies on the full-length p40(phox) and p47(phox) proteins showed that an intramolecular interaction between the C-terminal Src homology 3 domain and the PX domain prevents the nonspecific monolayer penetration of p47(phox), whereas such an interaction is absent in p40(phox).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号