首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Octenol (1-octen-3-ol), acetone, 4-methylphenol, 3-n-propylphenol, and other potential attractants (human urine, stable fly faeces), as well as guiacol, creosol (potential repellents), were tested as baits for biting flies in North America using standard phthalogen blue IF3GM cotton Nzi traps, or similar commercial polyester traps. Baits were tested during the summers of 2001-04 at a residence in Canada and during January-August 2001 at a dairy in the U.S.A. Behaviour in the presence of octenol was also studied by intercepting flies approaching a trap through the use of transparent adhesive film. Analogous bait and/or trap comparisons were conducted in natural settings in June 1996 in Kenya and in September-December 1997 in Ethiopia. In Canada, catches of five of six common tabanids (Tabanus similis Macquart, Tabanus quinquevittatus Wiedemann, Hybomitra lasiophthalma [Macquart], Chrysops univittatus Macquart, Chrysops aberrans Philip) and the stable fly Stomoxys calcitrans L. were increased significantly by 1.2-2.1 times with octenol (1.5 mg/h). Catches of T. quinquevittatus and S. calcitrans were 3.5-3.6 times higher on a sticky enclosure surrounding a trap baited with octenol. No other baits or bait combinations had an effect on trap catches in North America. In Ethiopia, standard Nzi traps baited with a combination of acetone, octenol and cattle urine caught 1.8-9.9 times as many Stomoxys as similarly baited epsilon, pyramidal, NG2G, S3, biconical and canopy traps, in order of decreasing catch. When baits were compared, catches in Nzi traps of six stable fly species, including S. calcitrans, were not affected by octenol (released at approximately 1 mg/h), or cattle urine (140 mg/h), used alone or in combination with acetone (890 mg/h). Acetone alone, however, significantly increased the catches of common Stomoxys such as Stomoxys niger niger Macquart, Stomoxys taeniatus Bigot, and S. calcitrans by 2.4, 1.6 and 1.9 times, respectively. Catches of Glossina pallidipes Austen were increased significantly in traps baited with acetone, urine or octenol, or any combination, relative to those in unbaited traps (1.4-3.6x). Catches of Glossina morsitans submorsitans Newstead were increased significantly by 1.5-1.7 times, but only when baits were used individually. Unlike other studies with East African tsetse, catches of both tsetse species with the complete bait combination (acetone, urine and octenol) did not differ from those in unbaited traps. Experiments with an incomplete ring of electric nets surrounding a Nzi trap, and a new approach using a sticky enclosure made from transparent adhesive film, revealed diverse responses to artificial objects and baits among biting flies. In Kenya, daily trap efficiency estimates for traps baited with either carbon dioxide (6 L/min) or a combination of acetone, cattle urine and octenol were 21-27% for G. pallidipes, 7-36% for Glossina longipennis Corti, 27-33% for S. n. niger, and 19-33% for Stomoxys niger bilineatus Grünberg, assuming 100% electrocution efficiency. Actual trap efficiencies may have been lower, given observed outside : inside electric net catch ratios of 0.6 : 1.6. Observed ratios averaged 54% of expected values, with 10 of 15 possible ratios less than the minimum possible value of 1.0.  相似文献   

2.
Experiments were carried out to improve the NG2B tsetse trap (Brightwell et al., 1987), baited with acetone and cow urine, for use by rural communities to control G.pallidipes Austen and G.longipennis Corti. Modifications included a lower dose rate of acetone, a new cage design and raising the trap about 15-20 cm. Research on different trap cone materials showed that the degree of light transmission of the netting, rather than its colour, was the crucial factor affecting the catch of G.pallidipes. Adding an additional metre of blue cloth to one side of the trap increased catches of females of both species by about 60%. Traps baited with synthetic phenols yielded similar numbers of G.pallidipes and significantly more G.longipennis than those baited with natural cow urine. The latter difference was not apparent when octenol was also used, so cow urine was retained as one of the odour baits in preference to the imported phenols. Although octenol increased catches of G.pallidipes by only about 30%, catches of G.longipennis were increased 2-4-fold, making it a very useful attractant for the latter species. The cost of the trap/odour-bait system was estimated to be US$8.5 per unit per annum. The economics of this method of tsetse control are discussed.  相似文献   

3.
Experiments were conducted to adapt the cloth Nzi trap to a format suitable for fixed applications in biting fly sampling or control. Catches of tabanids [Tabanus L., Chrysops (Meigen), and Hybomitra Enderlein], and stable flies [Stomoxys calcitrans (L.)] in painted plywood traps were compared with those in standard phthalogen blue cloth traps, and in similarly painted cloth traps. The Manitoba horse fly trap and the Tabanus nigrovittatus Macquart "greenhead" box trap were used as additional standards during one tabanid season. Shiny features of traps reduced catches, e.g., paint on cloth instead of wood, or use of aluminum screening instead of netting. Nevertheless, appropriately painted plywood Nzi traps caught as many biting flies as did standard cloth Nzi traps, if paint finishes were matte, and with the use of phthalogen blue colorants. Nzi traps collected about the same tabanid fauna as the Manitoba and T. nigrovittatus traps, but with improved catches of Chrysops and Tabanus. Recommendations are provided on appropriate color matching, and selection of readily-available materials for trap construction.  相似文献   

4.
Cow urine and the two phenols responsible for the attraction of biting flies to cow urine (4‐methylphenol, 3‐n‐propylphenol) were compared with octenol (1‐octen‐3‐ol) as baits for Tabanidae. Relative to an unbaited Nzi trap, catches of the horseflies Hybomitra lasiophthalma (Macquart), Tabanus similis Macquart and Tabanus quinquevittatus Wiedemann (Diptera: Tabanidae) were increased by 1.5–2.6, 1.4–2.0 and 1.4–1.9 times, respectively, whenever a bait included octenol released at either 0.13 mg/h or 1.5 mg/h, regardless of the presence of phenols or urine. Catches were not affected when traps were baited with phenols alone at evaporation rates of 0.38 mg/h (4‐methylphenol) and 0.022 mg/h (3‐n‐propylphenol). Catches of Hybomitra horseflies were increased by 1.5–1.9 times with cow urine and 2.6 times with cow urine + octenol. This bait combination could prove to be particularly useful for Hybomitra horseflies, the common tabanids of northern environments.  相似文献   

5.
The stratification of haematophagous Diptera was assessed in two boreal forests in northern Sweden by placing traps baited with carbon dioxide at 1.5 m, 5.0 m and 10.0 m above the ground. More than 40 000 specimens were captured, including 617 biting midges (Ceratopogonidae), 4029 mosquitoes (Culicidae) and 36 092 black flies (Simuliidae). Catches at the various trap heights reflected the general vertical distribution of the preferred hosts, with mammalophilic flies predominating (68.6%) in catches at 1.5 m and ornithophilic flies (42.4%) in catches at 10.0 m; however, most flies that use host birds at ground level were caught in the lowest traps (e.g. 85.1% of Simulium annulus were collected at 1.5 m). Within-species variation in vertical patterns between forests suggests plasticity in responses to environmental factors such as vegetative structure.  相似文献   

6.
Riverine tsetse flies such as Glossina palpalis gambiensis and G. tachinoides are the vectors of human and animal trypanosomoses in West Africa. Despite intimate links between tsetse and water, to our knowledge there has never been any attempt to design trapping devices that would catch tsetse on water. In mangrove (Guinea) one challenging issue is the tide, because height above the ground for a trap is a key factor affecting tsetse catches. The trap was mounted on the remains of an old wooden dugout, and attached with rope to nearby branches, thereby allowing it to rise and fall with the tide. Catches showed a very high density of 93.9 flies/"water-trap"/day, which was significantly higher (p < 0.05) than all the catches from other habitats where the classical trap had been used. In savannah, on the Comoe river of South Burkina Faso, the biconical trap was mounted on a small wooden raft anchored to a stone, and catches were compared with the classical biconical trap put on the shores. G. p. gambiensis and G. tachinoides densities were not significantly different from those from the classical biconical one. The adaptations described here have allowed to efficiently catch tsetse on the water, which to our knowledge is reported here for the first time. This represents a great progress and opens new opportunities to undertake studies on the vectors of trypanosomoses in mangrove areas of Guinea, which are currently the areas showing the highest prevalences of sleeping sickness in West Africa. It also has huge potential for tsetse control using insecticide impregnated traps in savannah areas where traps become less efficient in rainy season. The Guinean National control programme has already expressed its willingness to use such modified traps in its control campaigns in Guinea, as has the national PATTEC programme in Burkina Faso during rainy season.  相似文献   

7.
The performance of Nzi traps for tabanids (Tabanus similis Macquart, T. quinquevittatus Wiedemann, Chrysops aberrans Philip, C. univittatus Macquart, C. cincticornis Walker, Hybomitra lasiophthalma (Macquart)), stable flies (Stomoxys calcitrans Linnaeus) (Diptera: Muscidae) and mosquitoes (Aedes) (Diptera: Culicidae) was investigated at various sites in Canada (Ontario, Alberta) and USA (Iowa, Florida, Louisiana). Traps made from selected fabrics, insect nettings and hand-dyed blue cotton were compared to the African design to provide practical recommendations for temperate environments. Comparisons of substituted materials showed that trap performance was optimal only when traps were made from appropriate fabrics in the colours produced by either copper phthalocyanine (phthalogen blue), or its sulphonated forms (turquoise). Fabrics dyed with other blue chromophores were not as effective (anthraquinone, disazo, formazan, indanthrone, triphenodioxazine). An appropriate texture as well as an appropriate colour was critical for optimal performance. Smooth, shiny synthetic fabrics (polyester, nylon) and polyester blends reduced catches. Low catches occurred even for nominal phthalogen blue, but slightly-shiny, polyester fabrics in widespread use for tsetse. The most suitable retail fabric in place of phthalogen blue cotton was Sunbrella Pacific Blue acrylic awning/marine fabric. It was both attractive and durable, and had a matching colour-fast black. Nzi traps caught grossly similar numbers of biting flies as canopy, Vavoua, and Alsynite cylinder traps, but with differences in relative performance among species or locations.  相似文献   

8.
Abstract. 1. Shortcomings in the methodology of testing mechanical traps for tsetse and other flies have been partically overcome by relating all trap efficiencies to that of electric trapping devices which have been shown, independently, to capture over 95% of tsetse colliding with them.
2. In Rhodesia the classical 'animal' type traps only caught a small percentage of tsetse which approached them. The addition of ox odour increased the number of tsetse visiting the trap but did not affect trap efficiency.
3. Changes in trap design have resulted in increases in trapping efficiency of up to 4–5-fold over classical designs.
4. The addition of large quantities of ox odour increased the efficiency of the most successful trap described here, as well as the absolute number of flies taken. When the odour of livestock of total mass 11.5 tonnes was used, over 2000 tsetse could be trapped in a 3 h period.
5. None of the traps described here was particularly suitable for tabanids but some were used to trap large numbers of biting muscids.
6. The implications for new methods of tsetse control are discussed.  相似文献   

9.
Baits for tabanids (Diptera: Tabanidae) were tested in the Northwest Territories (60 °N) and Ontario (45 °N) using Nzi traps. Tests targeted ammonia, phenols/cow urine and octenol. About 200 000 tabanids were captured in 15 experiments with a maximum capture of 4182 in one trap in 1 day. In the Northwest Territories, phenols, urine and octenol were effective single baits for only some species. At both locations, adding ammonia to an unbaited or an octenol-baited trap had no effect on catches. By contrast, catches were increased for several species when ammonia was combined with phenols or urine. In Ontario, including ammonia in various baits increased catches by 1.5- to 3.4-fold relative to octenol alone for three Hybomitra and one Tabanus species. Synergism between ammonia and phenols was clearly demonstrated for the dominant Hybomitra species in Ontario (Hybomitra lasiophthalma), but not for the dominant species in the Northwest Territories (Hybomitra epistates). In five other northern Hybomitra species, baits of ammonia and/or octenol in combination with phenols resulted in a 1.7- to 4.1-fold increase in catch relative to an unbaited trap. Further tests of ammonia as a synergist for biting flies may prove useful in, for example, tsetse, which respond strongly to phenols.  相似文献   

10.

Background

In the savannahs of East and Southern Africa, tsetse flies (Glossina spp.) transmit Trypanosoma brucei rhodesiense which causes Rhodesian sleeping sickness, the zoonotic form of human African trypanosomiasis. The flies feed mainly on wild and domestic animals and are usually repelled by humans. However, this innate aversion to humans can be undermined by environmental stresses on tsetse populations, so increasing disease risk. To monitor changes in risk, we need traps designed specifically to quantify the responsiveness of savannah tsetse to humans, but the traps currently available are designed to simulate other hosts.

Methodology/Principal Findings

In Zimbabwe, two approaches were made towards developing a man-like trap for savannah tsetse: either modifying an ox-like trap or creating new designs. Tsetse catches from a standard ox-like trap used with and without artificial ox odor were reduced by two men standing nearby, by an average of 34% for Glossina morsitans morsitans and 56% for G. pallidipes, thus giving catches more like those made by hand-nets from men. Sampling by electrocuting devices suggested that the men stopped flies arriving near the trap and discouraged trap-entering responses. Most of human repellence was olfactory, as evidenced by the reduction in catches when the trap was used with the odor of hidden men. Geranyl acetone, known to occur in human odor, and dispensed at 0.2 mg/h, was about as repellent as human odor but not as powerfully repellent as wood smoke. New traps looking and smelling like men gave catches like those from men.

Conclusion/Significance

Catches from the completely new man-like traps seem too small to give reliable indices of human repellence. Better indications would be provided by comparing the catches of an ox-like trap either with or without artificial human odor. The chemistry and practical applications of the repellence of human odor and smoke deserve further study.  相似文献   

11.
During 1986 the tsetse fly Glossina pallidipes Austen was monitored daily at Nguruman, southwestern Kenya, using three unbaited biconical traps. This was done to investigate the nature and causes of daily variation in trap catches. The variability of the observed catches was compared to a model which includes the trapping probability and the stochastic variation in the sex-ratio. By comparing the catches of male and female flies we are able to establish the sampling distribution of the trap catches. In addition to seasonal changes in the trap catches, day-to-day variations are observed and these are considered greater than the variation arising from the stochastic nature of the sampling process. Recommendations are made in relation to sampling tsetse fly populations.  相似文献   

12.
Various chamber designs for infecting natural populations ofGlossina pallidipes, G. longipennis,andG. fuscipes fuscipeswith the entomopathogenic fungusMetarhizium anisopliaewere tested in the field. All three species of tsetse flies entered the chambers and became infected with the fungus. Mortality attributed to infection byM. anisopliaeranged from 0 to 76% forG. pallidipes/G. longipennisand from 0 to 80% forG. fuscipes.One design proved to be more efficient than the others in permitting the passage of flies and contaminating them with fungal conidia. Dry conidia ofM. anisopliaein the infection chamber retained their infectivity for more than 21 days in the field.  相似文献   

13.
Recent studies of Palpalis group tsetse [Glossina fuscipes fuscipes (Diptera: Glossinidae) in Kenya] suggest that small (0.25 × 0.25 m) insecticide-treated targets will be more cost-effective than the larger (≥1.0 × 1.0 m) designs currently used to control tsetse. Studies were undertaken in Zimbabwe to assess whether small targets are also more cost-effective for the Morsitans group tsetse, Glossina morsitans morsitans and Glossina pallidipes. Numbers of tsetse contacting targets of 0.25 × 0.25 m or 1.0 × 1.0 m, respectively, were estimated using arrangements of electrocuting grids which killed or stunned tsetse as they contacted the target. Catches of G. pallidipes and G. m. morsitans at small (0.25 × 0.25 m) targets were, respectively, ~1% and ~6% of catches at large (1.0 × 1.0 m) targets. Hence, the tsetse killed per unit area of target was greater for the larger than the smaller target, suggesting that small targets are not cost-effective for use against Morsitans group species. The results suggest that there is a fundamental difference in the host-orientated behaviour of Morsitans and Palpalis group tsetse and that the former are more responsive to host odours, whereas the latter seem highly responsive to visual stimuli.  相似文献   

14.
Abstract. Glossina longipennis were recorded visiting and engorging on cattle in an enclosure and on a single ox in a crush using transparent electrocuting nets in an incomplete ring. Of the total flies caught, 3–6% of males and 5–6% of females in the total catches were engorged (a feeding success rate of up to 16.6% and 12.6%, respectively, depending on assumptions made about the proportion which had an opportunity to feed). Direct observation of tsetse from an observation pit showed 57% landing on the front legs, 13% on the hind legs, and 11 % on the belly of the host. The largest number of bloodmeals was taken from the front legs, although only 14% of landings there terminated in feeding; a higher proportion of the flies alighting on the hind legs and flank succeeded in feeding (28% and 21% respectively). Glossina longipennis were attracted to targets baited with ox odour from an underground pit in a dose-dependent manner. Odour of humans was much less attractive to G.longipennis than that of oxen (for equivalent biomass). Analysis of bloodmeal samples from tsetse caught in two sites on die ranch showed that G.longipennis preferentially feeds on suids, bovids and hippopotamus.  相似文献   

15.
A means of contaminating tsetse flies in the field with fluorescent pigment powders has been developed, using pigment in open-ended plastic chambers at the cage position on traps. Glossina pallidipes Austen and G.morsitans morsitans Westwood passed rapidly through the chambers, and on exit were contaminated with consistent doses of powder: about 90 micrograms/fly when powder was presented on the chamber roof and about 28 micrograms/fly when powder was presented on the chamber floor. The technique automatically marks tsetse flies with pigment, cheaply, simply and with the minimum imposition of stress and is expected to be particularly useful in ecological studies. Its potential for marking other biting flies is discussed.  相似文献   

16.
In the Mouhoun River basin, Burkina Faso, the main vectors of African animal trypanosomoses are Glossina palpalis gambiensis Vanderplank and Glossina tachinoides Westwood (Diptera: Glossinidae), both of which are riverine tsetse species. The aim of our study was to understand the impact of landscape anthropogenic changes on the seasonal dynamics of vectors and associated trypanosomosis risk. Three sites were selected on the basis of the level of disturbance of tsetse habitats and predominant tsetse species: disturbed (Boromo, for G. tachinoides) and half-disturbed (Douroula for G. tachinoides and Kadomba for G. p. gambiensis). At each of these sites, seasonal variations in the apparent densities of tsetse and mechanical vectors and tsetse infection rates were monitored over 17 months. Tsetse densities differed significantly between sites and seasons. Of 5613 captured tsetse, 1897 were dissected; 34 of these were found to be infected with trypanosomes. The most frequent infection was Trypanosoma vivax (1.4%), followed by Trypanosoma congolense (0.3%) and Trypanosoma brucei (0.05%). The mean physiological age of 703 tsetse females was investigated to better characterize the transmission risk. Despite the environmental changes, it appeared that tsetse lived long enough to transmit trypanosomes, especially in half-disturbed landscapes. A total of 3021 other biting flies from 15 species (mainly Tabanidae and Stomoxyinae) were also caught: their densities also differed significantly among sites and seasons. Their relative importance regarding trypanosome transmission is discussed; the trypanosomosis risk in cattle was similar at all sites despite very low tsetse densities (but high mechanical vector densities) in one of them.  相似文献   

17.
Drosophila suzukii Matsumura (Diptera: Drosophilidae), a recent invasive pest of small and stone fruits, has been detected in more than half of the U.S. states, and in Canada, Mexico, and Europe. Upon discovery, several different trap designs were recommended for monitoring. This study compared the trap designs across seven states/provinces in North America and nine crop types. Between May and November 2011, we compared a clear cup with 10 side holes (clear); a commercial trap with two side holes (commercial); a Rubbermaid container with mesh lid and rain tent (Haviland), and with 10 side holes and no tent (modified Haviland); a red cup with 10 side holes (red); and a white container with mesh lid and rain tent (Van Steenwyk). Although fly catches among traps varied per site, overall, the Haviland trap caught the most D. suzukii, followed by the red, Van Steenwyk, and clear trap. The modified Haviland and commercial trap had low captures. Among five crop types in Oregon, a clear cup with mesh sides (Dreves) also was tested and caught the most flies. Traps with greater entry areas, found in mesh traps, caught more flies than traps with smaller entry areas. In terms of sensitivity and selectivity, traps that caught more flies likewise caught flies earlier, and all traps caught 26-31% D. suzukii out of the total Drosophila captured. Future trap improvements should incorporate more entry points and focus on selective baits to improve efficiency and selectivity with regard to the seasonal behavior of D. suzukii.  相似文献   

18.
In Part I it was shown that the sampling distribution of trap catches of tsetse flies, Glossina pallidipes Austen, at Nguruman, Kenya, using unbaited biconical traps follows a Poisson distribution. In this paper we examine the effect of humidity and temperature on day-to-day and seasonal variations in the trap catches. It is shown that the seasonal variation is significantly correlated with maximum daily temperature, the catches increasing with temperature when the maximum temperature is below 34 degrees C and decreasing with temperature when it is above 34 degrees C. The correlation between trap catches and relative humidity is not as good as the correlation with the maximum temperature, and the two together do not improve the fit to the trap catches. The day-to-day variation is significantly greater than the intrinsic variation due to the stochastic nature of the sampling process and for some traps it is correlated with temperature and humidity. An autoregressive model gives a half-life for the decay of departures from the mean of about 1 day and it is suggested that this indicates the movement of flies in response to animal movement or to climatic factors other than temperature or humidity. After removing the temperature dependent part of the seasonal variation and the autoregressive component of the data, the male and female catches are still significantly correlated.  相似文献   

19.
We investigated the dynamics of Glossina spp. and their role in the transmission of trypanosomiasis in the sleeping sickness endemic Serengeti ecosystem, northwestern Tanzania. The study investigated Glossina species composition, trap density, trypanosome infection rates, and the diversity of trypanosomes infecting the species. Tsetse were trapped using monopyramidal traps in the mornings between 06:00 to 11:00 and transported to the veterinary laboratory in Serengeti National Park where they were sorted into species and sex, and dissected microscopically to determine trypanosome infection rates. Age estimation of dissected flies was also conducted concurrently. Tsetse samples positive for trypanosomes were subjected to PCR to determine the identity of the detected trypanosomes. Out of 2,519 tsetse trapped, 1,522 (60.42%) were G. swynnertoni, 993 (39.42%) were G. pallidipes, three (0.12%) were G. m. morsitans, and one (0.04%) was G. brevipalpis. The trap density for G. swynnertoni was between 1.40 and 14.17 while that of G. pallidipes was between 0.23 and 9.70. Out of 677 dissected G. swynnertoni, 63 flies (9.3%) were infected, of which 62 (98.4%) were females. A total of 199 G. pallidipes was also dissected but none was infected. There was no significant difference between the apparent densities of G. swynnertoni compared to that of G. pallidipes (t = 1.42, p = 0.18). Molecular characterization of the 63 infected G. swynnertoni midguts showed that 19 (30.2%) were trypanosomes associated with suid animals while nine (14.3%) were trypanosomes associated with bovid animals and five samples (7.9%) had T. brucei s.l genomic DNA. Thirty (47.6%) tsetse samples could not be identified. Subsequent PCR to differentiate between T. b. brucei and T. b. rhodesiense showed that all five samples that contained the T. brucei s.l genomic DNA were positive for the SRA molecular marker indicating that they were T. b. rhodesiense. These results indicate that G. swynnertoni plays a major role in the transmission of trypaniosomiasis in the area and that deliberate and sustainable control measures should be initiated and scaled up.  相似文献   

20.
In 2004, we evaluated the relative performance of 8-unit Lindgren multiple-funnel (funnel), Intercept panel (panel), and Colossus pipe (pipe) traps, baited with ethanol and ac-pinene lures, in catching saproxylic beetles (Coleoptera) in pine stands in northern Florida and western South Carolina. Panel traps were as good as, if not better than, funnel and pipe traps for catching Cerambycidae. In particular, more Monochamus titillator (F.) were captured in panel traps than in pipe and funnel traps. Of three species of Buprestidae captured in our study, most Buprestis lineata F. were caught in panel traps, whereas most Acmaeodera tubulus (F.) were caught in funnel traps. Catches of Chalcophora virginiensis Drury and the root-feeding weevils Hylobius pales Herbst an dPachylobius picivorus LeConte (Curculionidae) were unaffected by trap type. Among bark beetles (Curculionidae: Scolytinae), catches of Ips grandicollis (Eichhoff) were unaffected by trap type, whereas most Dendroctonus terebrans (Olivier) were caught in panel traps, most Hylastes salebrosus Eichhoff were caught in panel and pipe traps, and most Hylastes tenuis Eichhoff were caught in funnel traps. Among ambrosia beetles (Curculionidae: Scolytinae), panel traps caught the most Xyleborinus saxesenii (Ratzeburg), whereas pipe traps caught the most Xyleborus Eichhoff spp. More Xylosandrus crassiusculus (Motschulsky) and Dryoxylon onoharaensis (Murayama) were caught in panel and funnel traps than in pipe traps. Among bark beetle predators, more Platysoma Leach spp. (Histeridae) were caught in pipe and panel traps than in funnel traps, whereas most Lasconotus Erichson spp. (Zopheridae) were caught in funnel traps. Variation among trap performance for various species suggests that managers should consider more than one type of trap in their detection programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号