首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Historical domestic livestock grazing in sensitive landscapes has commonly been regarded as a major cause of land degradation in Iceland. Shieling areas, where milking livestock were taken to pasture for the summer, represented one element of grazing management and in this paper we consider the extent to which historical shieling-based grazing pressure contributed to land degradation. Based on a grazing model to assess pressures and tephrochronology -based soil accumulation rates allied to micromorphology as a proxy for land degradation, our findings suggest that the shieling sy stem contributed to the maintenance of upland vegetation cover and related productivity levels without causing land degradation from settlement through to ca. AD 1300. As land degradation accelerated from ca. AD 1477 it is likely that shieling management continued to operate effectively contributing to the overall resilience of livestock farming.  相似文献   

2.
Defining historic grazing pressures and rangeland management is vital if early landscape threshold crossing and long–term trajectories of landscape change are to be properly understood. In this paper we use a new environmental simulation model, Búmodel, to assess two contrasting historical grazing landscapes in Myvatnssveit Iceland for two key periods—the colonization period (ca. Landnám, a.d. 872–1000) and the early eighteenth century a.d. Results suggest that there were spatial and temporal variations in productivity and grazing pressure within and between historic grazing areas and indicate that land degradation was not an inevitable consequence of the livestock grazing introduced with settlement. The results also demonstrate the significance of grazing and livestock management strategies in preventing overgrazing, particularly under cooler climatic conditions. The model enables detailed consideration of historic grazing management scenarios and their associated landscape pressures.  相似文献   

3.
Livestock grazing affects over 60% of the world's agricultural lands and can influence rangeland ecosystem services and the quantity and quality of wildlife habitat, resulting in changes in biodiversity. Concomitantly, livestock grazing has the potential to be detrimental to some wildlife species while benefiting other rangeland organisms. Many imperiled grouse species require rangeland landscapes that exhibit diverse vegetation structure and composition to complete their life cycle. However, because of declining populations and reduced distributions, grouse are increasingly becoming a worldwide conservation concern. Grouse, as a suite of upland gamebirds, are often considered an umbrella species for other wildlife and thus used as indicators of rangeland health. With a projected increase in demand for livestock products, better information will be required to mitigate the anthropogenic effects of livestock grazing on rangeland biodiversity. To address this need, we completed a data‐driven and systematic review of the peer‐reviewed literature to determine the current knowledge of the effects of livestock grazing on grouse populations (i.e., chick production and population indices) worldwide. Our meta‐analysis revealed an overall negative effect of livestock grazing on grouse populations. Perhaps more importantly, we identified an information void regarding the effects of livestock grazing on the majority of grouse species. Additionally, the reported indirect effects of livestock grazing on grouse species were inconclusive and more reflective of differences in the experimental design of the available studies. Future studies designed to evaluate the direct and indirect effects of livestock grazing on wildlife should document (i) livestock type, (ii) timing and frequency of grazing, (iii) duration, and (iv) stocking rate. Much of this information was lacking in the available published studies we reviewed, but is essential when making comparisons between different livestock grazing management practices and their potential impacts on rangeland biodiversity.  相似文献   

4.
草地利用移动性的丧失导致生态系统退化,是草地放牧生态学领域兴起的主导性学说。在我国,草地利用移动性的丧失不仅是政策变化导致的,更是众多自然和社会因素叠加演进的结果。草地利用移动性的重建对于中国草地恢复和可持续性管理具有重要意义,但是很难通过恢复传统或季节性轮牧的途径实现。我们可以依托智能围栏、牲畜智能可穿戴设备以及草地生产力无人机快测等新型放牧管理技术,在我国不同气候区域、不同类型草地,因地制宜地发展新型草地移动性管理模式,进而重建“草地利用的移动性”。新型轮牧模式还应与草畜平衡、牲畜补饲以及土壤养分补充等重要生态草牧业措施结合,确保我国草地资源的高效可持续利用。  相似文献   

5.
Grazing by livestock can influence ecosystems in various ways, including altering plant communities, influencing woody plant encroachment, and determining livestock productivity. Evaluating long term effects of grazing on plant composition is valuable not only to understand herbivory on rangelands but to be able to address the primary factors that can threaten long term livestock productivity. We examined plant species composition and woody plant encroachment 45 years after the initiation of differing grazing treatments within a semiarid savanna of the southern Great Plains, USA. Grazing treatments varied in herbivore type (domestic cattle, sheep, and goats vs. goats only) and grazing intensity (heavy, moderate, and no-herbivory). All individual trees of Juniperus ashei Buchholz, the encroaching woody plant of the area, were removed prior to treatment initiation. Moderate and heavy grazing by a combination of species resulted in similar plant communities, while a history of heavy browsing by goats only and no-herbivory resulted in more distinct communities. Cover of J. ashei did not differ between mixed grazing and no-herbivory treatments, indicating that grazing was not responsible for woody plant encroachment. J. ashei cover within the browsed treatment was a third less compared to other treatments; compositional differences within this treatment are possibly due to reduced cover of woody vegetation. Declines in livestock productivity of the area are likely related to compositional changes resulting from increased woody plants. Livestock production within this semi-arid rangeland is likely unsustainable without management of woody plant encroachment, as communities tend to a closed canopy woodland.  相似文献   

6.
Apart from the possible, but unproven presence of some Irish hermits, the Norse colonizers of the Faroe Islands arrived in an unsettled landscape around A.D. 800. The archipelago was essentially unwooded and rich in bird and marine life. The area of land suitable for settlement and farming was relatively meagre and concentrated in coastal areas; inland areas were suitable for shielings (summer pasture) and subsequently more extensive grazing (outfield) activities. Reconstruction of the settlement distribution has not been a well-developed aspect of Faroese historical study. Using archaeological and documentary evidence, we are able to present the first comprehensive distribution map of Norse settlement, which emphasizes an overwhelmingly coastal focus of considerable density. Using historical (including place-names), archaeological, and environmental evidence, we examine the nature and organization of the Viking (early Norse) and medieval (later Norse) settlement. Colonization and economic activity in the islands were strongly influenced by topographic and ecological factors. This, along with social organization, was subject to influences which may have derived, at least in part, from experiences in a Norwegian homeland.  相似文献   

7.
There is very limited information concerning livestock (sheep and goats) and brown hare Lepus europaeus interaction when both coexist. The effect of the intensity of livestock grazing on seasonal habitat use by hares, in a typical Mediterranean rangeland, was evaluated using the pellet-count method. Lightly grazed pastures were less preferred by hares compared with moderately grazed ones, whereas ungrazed pastures were used less intensively than grazed ones. Because livestock grazing reduces the quantity of standing biomass proportionally to its grazing intensity, forage resource was not the driving force for pasture selection. The increased use of moderately grazed pastures by hares in relation to lightly and ungrazed ones, where vegetation was more abundant, could be attributed to their reduced herbage height and density. This behaviour is probably a tactic that hares follow for predator avoidance, because they are more likely to detect visually approaching predators when feeding in a biotope with a limited herbaceous layer. The conclusion of this research is that livestock and brown hare coexistence may be compatible and beneficial rather than competitive when stocking rates do not exceed grazing capacity, leading to the conclusion that proper livestock grazing and hare population management can be feasible in practice.  相似文献   

8.
Human–livestock–wildlife interactions have increased in Kenyan rangelands in recent years, but few attempts have been made to evaluate their impact on the rangeland habitat. This study identified drivers of increased human–livestock–wildlife interactions in the Meru Conservation Area between 1980 and 2000 and their effects on the vegetation community structure. The drivers were habitat fragmentation, decline in pastoral grazing range, loss of wildlife dispersal areas and increase in livestock population density. Agricultural encroachment increased by over 76% in the western zone adjoining Nyambene ranges and the southern Tharaka area, substantially reducing the pastoral grazing range and wildlife dispersal areas. Livestock population increased by 41%, subjecting areas left for pastoral grazing in the northern dispersal area to prolonged heavy grazing that gave woody plant species a competitive edge over herbaceous life‐forms. Consequently, open wooded grassland, which was the dominant vegetation community in 1980, decreased by c. 40% as bushland vegetation increased by 42%. A substantial proportion of agro pastoralists were encountered around Kinna and Rapsu, areas that were predominantly occupied by pastoralists three decades ago, indicating a possible shift in land use in order to spread risks associated with habitat alterations.  相似文献   

9.
Arid grasslands are used worldwide for grazing by domestic livestock, generating debate about how this pastoral enterprise may influence native desert biota. One approach to resolving this question is to experimentally reduce livestock numbers and measure the effects. However, a key challenge in doing this is that historical grazing impacts are likely to be cumulative and may therefore confound comparisons of the short-term responses of desert biota to changes in stocking levels. Arid areas are also subject to infrequent flooding rainfalls that drive productivity and dramatically alter abundances of flora and fauna. We took advantage of an opportunity to study the recent effects of a property-scale cattle removal on two properties with similarly varied grazing histories in central Australia. Following the removal of cattle in 2006 and before and after a significant rainfall event at the beginning of 2007, we sampled vegetation and small vertebrates on eight occasions until October 2008. Our results revealed significant interactions of time of survey with both grazing history and grazing removal for vascular plants, small mammals and reptiles. The mammals exhibited a three-way interaction of time, grazing history and grazing removal, thus highlighting the importance of careful sampling designs and timing for future monitoring. The strongest response to the cessation of grazing after two years was depressed reproductive output of plants in areas where cattle continued to graze. Our results confirm that neither vegetation nor small vertebrates necessarily respond immediately to the removal of livestock, but that rainfall events and cumulative grazing history are key determinants of floral and faunal performance in grassland landscapes with low and variable rainfall. We suggest that improved assessments could be made of the health of arid grazing environments if long-term monitoring were implemented to track the complex interactions that influence how native biota respond to grazing.  相似文献   

10.
Heterogeneous disturbance patterns are fundamental to rangeland conservation and management because heterogeneity creates patchy vegetation, broadens niche availability, increases compositional dissimilarity, and enhances temporal stability of aboveground biomass production. Pyrodiversity is a popular concept for how variability in fire as an ecological disturbance can enhance heterogeneity, but mechanistic understanding of factors that drive heterogeneity is lacking. Mesic grasslands are examples of ecosystems in which pyrodiversity is linked strongly to broad ecological processes such as trophic interactions because grazers are attracted to recently burned areas, creating a unique ecological disturbance referred to as the fire–grazing interaction, or pyric herbivory. But several questions about the application of pyric herbivory remain: What proportion of a grazed landscape must burn, or how many patches are required, to create sufficient spatial heterogeneity and reduce temporal variability? How frequently should patches burn? Does season of fire matter? To bring theory into applied practice, we studied a gradient of grazed tallgrass prairie landscapes created by different sizes, seasons, and frequencies of fire, and used analyses sensitive to nonlinear trends. The greatest spatial heterogeneity and lowest temporal variability in aboveground plant biomass, and greatest plant functional group beta diversity, occurred in landscapes with three to four patches (25%–33% of area burned) and three‐ to four‐year fire return intervals. Beta diversity had a positive association with spatial heterogeneity and negative relationship with temporal variability. Rather than prescribing that these results constitute best management practices, we emphasize the flexibility offered by interactions between patch number and fire frequency for matching rangeland productivity and offtake to specific management goals. As we observed no differences across season of fire, we recommend future research focus on fire frequency within a moderate proportion of the landscape burned, and consider a wider seasonal burn window.  相似文献   

11.
Riparian savanna habitats grazed by hippopotamus or livestock experience seasonal ecological stresses through the depletion of herbaceous vegetation, and are often points of contacts and conflicts between herbivores, humans and their livestock. We investigated how hippopotamus and livestock grazing influence vegetation structure and cover and facilitate other wild herbivores in the Mara region of Kenya. We used 5 km-long transects, each with 13 plots measuring 10 × 10 m2, and which radiate from rivers in the Masai Mara National Reserve and adjoining community pastoral ranches. For each plot, we measured the height and visually estimated the percent cover of grasses, forbs, shrubs and bare ground, herbivore abundance and species richness. Our results showed that grass height was shortest closest to rivers in both landscapes, increased with increasing distance from rivers in the reserve, but was uniformly short in the pastoral ranches. Shifting mosaics of short grass lawns interspersed with patches of medium to tall grasses occurred within 2.5 km of the rivers in the reserve in areas grazed habitually by hippos. Hence, hippo grazing enhanced the structural heterogeneity of vegetation but livestock grazing had a homogenizing effect in the pastoral ranches. The distribution of biomass and the species richness of other ungulates with distance from rivers followed a quadratic pattern in the reserve, suggesting that hippopotamus grazing attracted more herbivores to the vegetation patches at intermediate distances from rivers in the reserve. However, the distribution of biomass and the species richness of other ungulates followed a linear pattern in the pastoral ranches, implying that herbivores avoided areas grazed heavily by livestock in the pastoral ranches, especially near rivers.  相似文献   

12.
In the countries surrounding the Mediterranean basin, most of the semi-natural grazing lands are covered by rangelands. Rangelands can be defined as highly heterogeneous natural vegetation communities with high conservation value, growing in harsh environments (poor soils, unfavourable climatic conditions). In the recent socio-economic context, traditional livestock grazing practices that enabled one to reconcile rangeland preservation and animal production no longer apply, especially because they require labour that has become scarce and costly. The consequence is rangeland degradation, due to underutilization in Southern Europe, and overutilization in Northern Africa. We analysed issues raised by rangeland utilization in livestock farming systems of the Mediterranean basin. Based on a review of the scientific literature about rangeland utilization in this area, we argue that the best way to reconcile animal production and rangeland preservation would be to promote management practices allowing animals to express their adaptative capacities in feeding behaviour and productive response. In order to propose management practices adapted to extensive and simplified systems, we conclude that research efforts should focus on: (i) proposing a functional characterization of vegetation heterogeneity at the scale of the vegetation community, (ii) validating the criteria determining animals' foraging behaviour on Mediterranean rangelands, (iii) developing and using simulation models to test management strategies against seasonal and long-term variability in climatic conditions and (iv) evaluating the potential of modern technologies for improving rangeland utilization.  相似文献   

13.
Vertical mobile grazing is typical in undulating mountain landscapes. However, recent social, economic, and political changes in China are impacting these traditional practices. This paper presents findings of a study conducted in the Tibetan communities of southwest China to assess the current status of mountain pastoralism and its future viability. Rangeland environment, livestock variety, and grazing form were found to be significantly related factors, which made it possible to analyze livestock distribution. The yak population—the main mobile grazer in alpine pasture— is currently stagnating while the population of cattle raised around settlements is steadily increasing. This situation is likely closely related to labor shortages in households, which have triggered the imbalanced distribution of livestock. The fact that the key to rangeland sustainability is to stimulate mobile grazing runs counter to current privatization policies.  相似文献   

14.
This paper incorporates the indigenous ecological knowledge (IEK) of the Maasai pastoralists and ecological methods to assess effects of grazing and cropping on rangeland biodiversity at macro‐ and micro‐landscape scales in northern Tanzania. The joint surveys with pastoralists identified indicator plant species and their associations with micro‐landscapes and livestock grazing suitability (i.e. for cattle and small ruminant grazing), while traditional calf‐pasture reserves (alalili pl. alalilia) were evaluated for preservation of rangeland biodiversity. The macro‐landscapes comprising the cool high plateau (osupuko pl. isipuki) and montane forest highland (endim) were included in the survey. At micro‐landscape scales, the osupuko was classified into uplands (orkung'u), slopes (andamata) and dry valley bottomlands (ayarata). The micro‐landscapes were assessed in terms of herbaceous plant species and woody species richness and risks of soil erosion. Biodiversity varied at both the macro‐ and micro‐landscape scales and in accordance with the land‐use types. Greater plant species diversity and less erosion risks were found in the pastoral landscapes than in the agro‐pastoral landscapes. The calf‐grazing pastures had greater herbaceous species richness than the non‐calf pastures, which in turn had more woody species. The study concludes that the indigenous systems of landscape classification provides a valuable basis for assessing rangeland biodiversity, which ecologists should incorporate into ecological surveys of the rangelands in East Africa in the future.  相似文献   

15.
The effect on vegetation communities of release from grazing by camels and goats has been investigated in the Baynunah region of Abu Dhabi emirate, in The United Arab Emirates, by the study of an exclosure established 11 years previously. Also the effect of sprinkle irrigation (in the absence of grazing) on the rangeland vegetation was investigated. Perennial species richness was significantly lower outside the exclosure compared with inside on both sand and gravel substrata. Annual species richness however was not significantly different. Perrenial percentage covers were lower outside the exclosure compared with inside, especially on sand substrata. The perennial grass Stipagrostis plumosa (L) showed the greatest difference in percentage cover in this respect. The species richness of annuals and perennials was not significantly different between irrigated and non-irrigated areas within the exclosure. The perennial percentage cover was much greater on sprinkle irrigated sand and gravel substrata. The perennial which benefited the most was Zygophyllum hamiense, Scweinf. Annual percentage cover was lower in irrigated quadrats. Suggestions are made about the effect of intensive grazing on the vegetation communities at Baynunah and on the effectiveness of irrigation as a tool for increasing the quality of the rangeland for livestock and wildlife.  相似文献   

16.
In recent decades, the conventional equilibrium paradigm for explaining rangeland vegetation dynamics has been challenged. Proponents of an alternative non‐equilibrium paradigm argue that in variable rangeland environments, external climatic events are critical to vegetation dynamics and there is little opportunity for plant–herbivore interactions to reach equilibrium. Understanding which paradigm more effectively describes an ecosystem has important consequences for management. In particular, some authors have argued that a focus on reducing stocking rates in non‐equilibrium systems may be futile, and management should be opportunistic in response to unpredictable rainfall events. We measured herbaceous biomass and plant species richness and abundance at five 14‐year exclosures on Innamincka Regional Reserve. Four were situated in the dunefields land system, and one on the Cooper Creek floodplain. We did not detect any significant differences between grazed and ungrazed treatments in total species richness or abundance, life form richness or abundance, or herbaceous biomass. Only one species, Portulaca oleracea, showed differences in abundance between treatments at more than one site, but the direction of these differences was not consistent. These results suggest that the non‐equilibrium paradigm more accurately describes vegetation dynamics in the dunefields and floodplains of north‐eastern South Australia. It is possible that some species had been lost from the study area prior to the establishment of the exclosures, thereby precluding recovery with protection from grazing; however, a regional analysis of the flora reveals little evidence of this. We argue that the dominance of ephemeral species confers resilience by limiting the development of strong feedbacks between grazing intensity and vegetation dynamics. Current grazing practices seem consistent with the conservation of plant species diversity across the dunefields and floodplains. Future studies should focus on the impacts of cattle grazing on areas of the landscape dominated by palatable perennials, as well as the small number of rare and potentially grazing‐sensitive species identified.  相似文献   

17.
Anthropogenic disturbances are known to modify plant–animal interactions such as those involving the leaf‐cutting ants, the most voracious and proliferating herbivore across human‐modified landscapes in the Neotropics. Here, we evaluate the effect of chronic anthropogenic disturbance (e.g., firewood collection, livestock grazing) and vegetation seasonality on foraging area, foliage availability in the foraging area, leaf consumption and herbivory rate of the leaf‐cutting ant Atta opaciceps in the semiarid Caatinga, a mosaic of dry forest and scrub vegetation in northeast Brazil. Contrary to our initial expectation, the foraging area was not affected by either disturbance intensity or the interaction between season and disturbance intensity. However, leaf consumption and herbivory rate were higher in more disturbed areas. We also found a strong effect of seasonality, with higher leaf consumption and herbivory rate in the dry season. Our results suggest that the foraging ecology of leaf‐cutting ants is modulated by human disturbance and seasonality as these two drivers affect the spectrum and the amount of resources available for these ants in the Caatinga. Despite the low productivity of Caatinga vegetation, the annual rates of biomass consumption by A. opaciceps are similar to those reported from other leaf‐cutting ants in rain forests and savannas. This is made possible by maintaining high foraging activity even in the peak of the dry season and taking benefit from any resource available, including low‐quality items. Such compensation highlights the adaptive capacity of LCA to persist or even proliferate in human‐modified landscapes from dry to rain forests.  相似文献   

18.
Woody biomass dynamics are an expression of ecosystem function, yet biomass estimates do not provide information on the spatial distribution of woody vegetation within the vertical vegetation subcanopy. We demonstrate the ability of airborne light detection and ranging (LiDAR) to measure aboveground biomass and subcanopy structure, as an explanatory tool to unravel vegetation dynamics in structurally heterogeneous landscapes. We sampled three communal rangelands in Bushbuckridge, South Africa, utilised by rural communities for fuelwood harvesting. Woody biomass estimates ranged between 9 Mg ha-1 on gabbro geology sites to 27 Mg ha-1 on granitic geology sites. Despite predictions of woodland depletion due to unsustainable fuelwood extraction in previous studies, biomass in all the communal rangelands increased between 2008 and 2012. Annual biomass productivity estimates (10–14% p.a.) were higher than previous estimates of 4% and likely a significant contributor to the previous underestimations of modelled biomass supply. We show that biomass increases are attributable to growth of vegetation <5 m in height, and that, in the high wood extraction rangeland, 79% of the changes in the vertical vegetation subcanopy are gains in the 1-3m height class. The higher the wood extraction pressure on the rangelands, the greater the biomass increases in the low height classes within the subcanopy, likely a strong resprouting response to intensive harvesting. Yet, fuelwood shortages are still occurring, as evidenced by the losses in the tall tree height class in the high extraction rangeland. Loss of large trees and gain in subcanopy shrubs could result in a structurally simple landscape with reduced functional capacity. This research demonstrates that intensive harvesting can, paradoxically, increase biomass and this has implications for the sustainability of ecosystem service provision. The structural implications of biomass increases in communal rangelands could be misinterpreted as woodland recovery in the absence of three-dimensional, subcanopy information.  相似文献   

19.
In the context of the North Atlantic arena, the histories and landscape evolution of the Faroe Islands are comparatively less known. The position of the archipelago astride cyclonic tracks and the predominantly rugged terrain with meagre woodland and limited high quality agricultural land, conspired to produce an environment which might be thought to have severely challenged early colonizers. Those settlers, whether Norse/Vikings, or earlier Irish monks, had access to the vital resources of bird cliffs, rivers, and the sea to supplement the produce of their domestic animals and crops. The lack of apparent crises is a function both of the richness of the resources provided by the Faroe Islands, and of the development of appropriate land management practices such as outfield grazing and soil augmentation to counteract any detrimental effects arising from, for instance, reductions in the bird population, soil and slope erosion, the lack of naturally fertile soils, and any climatic downturn. From the research contained within this volume, it seems likely that there have always been sufficient resources available for an enterprising human population and that the Faroes did not exceed their carrying capacity during the Norse period.  相似文献   

20.
Abstract ‘Alpine grazing reduces blazing’ is a widely and strongly held view concerning the effects of livestock grazing on fuels, and therefore fire behaviour and impact, in Australia's high country landscapes. As a test of this hypothesis, we examined the patterns of burning across the alpine (treeless) landscapes of the Bogong High Plains in Victoria, following the extensive fires of January 2003. Data were collected from multiple transects, each 3–5 km long, with survey points located randomly at either 50, 200 or 500 m intervals. The transects traversed the major regions of the Bogong High Plains, both grazed and ungrazed. At each point, we recorded whether the point was burnt or unburnt, the vegetation type (closed‐heath, open‐heath, grassland or herbfield), the estimated prefire shrub cover, slope, aspect, and a GPS location. At burnt heathland sites, we recorded the minimum twig diameter (an a posteriori measure of fire severity) in a sample of common shrubs. In total, there were 108 km of transect lines, 419 survey points and 4050 twig measurements, with sample points equally distributed across grazed and ungrazed country. The occurrence of fire (i.e. burnt or unburnt) in grazed and ungrazed areas was analysed by logistic regression; the variation in twig diameters by anova . Approximately half of all points were burnt. There was no statistically significant difference between grazed and ungrazed areas in the proportion of points burnt. Fire occurrence was determined primarily by vegetation type, with the proportion burnt being 0.87 for closed‐heath, 0.59 for open‐heath, and 0.13 for grassland and all snow‐patch herbfield points unburnt. In both closed‐heath and open‐heath, grazing did not significantly lower the severity of fire, as measured by the diameter of burnt twigs. We interpret the lack of a grazing effect in terms of shrub dynamics (little or no grazing effect on long‐term cover of taller shrubs), diet and behaviour of cattle (herbs and dwarf shrubs eaten; tall shrubs not eaten and closed‐heath vegetation generally avoided), and fuel flammability (shrubs more flammable than grass). Whatever effects livestock grazing may have on vegetation cover, and therefore fuels in alpine landscapes, they are likely to be highly localized, with such effects unlikely to translate into landscape‐scale reduction of fire occurrence or severity. The use of livestock grazing in Australian alpine environments as a fire abatement practice is not justified on scientific grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号