首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of glucose on growth and anthracycline production by Streptomyces peucetius var. caesius was examined in a chemically defined medium. Glucose concentrations above 100 mM inhibited anthracycline synthesis in the original strain without causing significant change in growth and final pH values. This effect was observed when the carbohydrate was added initially or after 24 h fermentation, but not when added during the stationary growth phase. When the microorganism was pregrown in 100 mM glucose and then transferred to a resting cell system with 444 mM glucose, no significant differences in antibiotic production were observed compared to the control without glucose. The negative effect of glucose on antibiotic synthesis was not observed in a mutant (2-dogR–21) resistant to growth inhibition by 2-deoxyglucose. Glucose consumption by this mutant was approximately 30% of that utilized by the original strain. Compared to the original strain, the mutant 2-dogR–21 exhibited a reduction of 50% in glucose transport and an 85% decrease in glucose kinase activity. The experimental evidence obtained suggests that glucose represses anthracycline formation in a transitory manner and that this effect is related to glucose transport and phosphorylation. Received: 15 January 1999 / Received revision: 7 April 1999 / Accepted: 1 May 1999  相似文献   

2.
Streptomyces peucetius var. caesius produces a family of secondary metabolites called anthracyclines. Production of these compounds is negatively affected in the presence of glucose, galactose, and lactose, but the greatest effect is observed under conditions of excess glucose. Other carbon sources, such as arabinose or glutamate, show either no effect or stimulate production. Among the carbon sources that negatively affect anthracycline production, glucose is consumed in greater concentrations. We determined glucose and galactose transport in S. peucetius var. caesius and in a mutant of this strain whose anthracycline production is insensitive to carbon catabolite repression (CCR). In the original strain, incorporation of glucose and galactose was stimulated when the microorganism was grown in media containing these sugars, although we also observed basal galactose incorporation. Both the induced and the basal incorporation of galactose were suppressed when the microorganism was grown in the presence of glucose. Furthermore, adding glucose directly during the transport assay also inhibited galactose incorporation. In the mutant strain, we observed a reduction in both glucose (48%) and galactose (81%) incorporation compared to the original. Galactose transport in this mutant showed reduced sensitivity to the negative effect of glucose; however, it was still sensitive to inhibition. The deficient transport of these sugars, as well as CCR sensitivity to glucose in this mutant was corrected when the mutant was transformed with the SCO2127 region of the Streptomyces coelicolor genome. Our results support a role for glucose as the most easily utilized carbon source capable of exerting the greatest repression on anthracycline biosynthesis. In consequence, glucose also prevented the repressive effect of galactose by suppressing its incorporation. This suggests the participation of an integral regulatory system, which is initiated by an increase in incorporation of repressive sugars and their metabolism as a prerequisite for establishing the phenomenon of CCR in S. peucetius var. caesius.  相似文献   

3.
Glucose kinase catalyzes the ATP-dependent phosphorylation of glucose. Streptomyces peucetius var. caesius glucose kinase was purified 292-fold to homogeneity. The enzyme has cytosolic localization and is composed of four identical subunits, each of 31 kDa. The purified enzyme easily dissociates into dimers. However, in the presence of 100 mM glucose the enzyme maintains its tetrameric form. Maximum activity was found at 42 degrees C and pH 7.5. Isoelectric focusing of the enzyme showed a pl of 8.4. The N- and C-terminal amino acid sequences were MGLTIGVD and VYFAREPDPIM, respectively. The kinetic mechanism of S. peucetius var. caesius glucose kinase appears to be a rapid equilibrium ordered type, i.e., ordered addition of substrates to the enzyme, where the first substrate is d-glucose. The K(m) values for d-glucose and MgATP(2-) were 1.6 +/- 0.2 and 0.8 +/- 0.1 mM, respectively. Mg(2+) in excess of 10 mM inhibits enzyme activity.  相似文献   

4.
Genes for the biosynthesis of daunorubicin (daunomycin) and doxorubicin (adriamycin), important antitumor drugs, were cloned from Streptomyces peucetius (the daunorubicin producer) and S. peucetius subsp. caesius (the doxorubicin producer) by use of the actI/tcmIa and actIII polyketide synthase gene probes. Restriction mapping and Southern analysis of the DNA cloned in a cosmid vector established that the DNA represented three nonoverlapping regions of the S. peucetius subsp. caesius genome. These three regions plus an additional one that hybridized to the same probes are present in the S. peucetius genome, as reported previously (K. J. Stutzman-Engwall and C. R. Hutchinson, Proc. Natl. Acad. Sci. USA 86:3135-3139, 1989). Functional analysis of representative clones from some of these regions in S. lividans, S. peucetius ATCC 29050, S. peucetius subsp. caesius ATCC 27952, and two of its blocked mutants (strains H6101 and H6125) showed that many of the antibiotic production genes reside in the region of DNA represented by the group IV clones. This conclusion is based on the production of epsilon-rhodomycinone, a key intermediate of the daunorubicin pathway, in certain S. lividans transformants and on the apparent complementation of mutations that block daunorubicin biosynthesis in strains H6101 and H6125. Some of the transformants of strains 29050, 27952, and H6125 exhibited substantial overproduction of epsilon-rhodomycinone and daunorubicin.  相似文献   

5.
6.
This study focuses on comparing different kinetic growth models and the use of neural networks in the batch cultivation of Streptomyces peucetius var. caesius producing epsilon-rhodomycinone. Contois, Monod and Teissier microbial growth models were used as well as the logistic growth modeling approach, which was found best in the simulations of growth and glucose consumption in the batch growth phase. The lag phase was included in the kinetic model with a CO2 trigger and a delay factor. Substrate consumption and product formation were included as Luedeking-Piret and logistic type equations, respectively. Biomass formation was modeled successfully with a 6-8-2 network, and the network was capable of biomass prediction with an R2-value of 0.983. Epsilon-rhodomycinone production was successfully modeled with a recursive 8-3-1 network capable of epsilon-rhodomycinone prediction with an R2-value of 0.903. The predictive power of the neural networks was superior to the kinetic models, which could not be used in predictive modeling of arbitrary batch cultivations.  相似文献   

7.
8.
The growth of anthracycline producer Streptomices peucetius subsp. caesius ATCC 27952-2 was inhibited by presence of glucose on complete media, containing alternative carbon sources. Amount of clones not producing antibiotic increased to 80.2 per cent along with elevation of glucose concentration in corn meal medium from 0.1 to 1.0 per cent. Mutants of S. peucetius subsp. caesius ATCC 27952-2 able to grow on complete media with 2 per cent of glucose (glr-mutants) were obtained. Glr-mutants had decreased antibiotic production in comparison with 27952-2 strain. 17 per cent of studied glr-mutants synthesized 1.6-3.1-fold quantities of anthracyclines in comparison with parental strain. Glr-mutants synthesized more biomass, although more slowly utilized glucose than strain 27952-2.  相似文献   

9.
A simple and robust LC-MS-based methodology for the investigation of lipid mixtures is described, and its application to the analysis of human lipoprotein-associated lipids is demonstrated. After an optional initial fractionation on Silica 60, normal-phase HPLC-MS on a YMC PVA-Sil column is used first for class separation, followed by reversed-phase LC-MS or LC-tandem mass spectrometry using an Atlantis dC18 capillary column, and/or nanospray MS, to fully characterize the individual lipids. The methodology is applied here for the analysis of human apolipoprotein B-associated lipids. This approach allows for the determination of even low percentages of lipids of each molecular species and showed clear differences between lipids associated with apolipoprotein B-100-LDL isolated from a normal individual and those associated with a truncated version, apolipoprotein B-67-containing lipoproteins, isolated from a homozygote patient with familial hypobetalipoproteinemia. The methods described should be easily adaptable to most modern MS instrumentation.  相似文献   

10.
Two DNA segments, dnrR1 and dnrR2, from the Streptomyces peucetius ATCC 29050 genome were identified by their ability to stimulate secondary metabolite production and resistance. When introduced into the wild-type ATCC 29050 strain, the 2.0-kb dnrR1 segment caused a 10-fold overproduction of epsilon-rhodomycinone, a key intermediate of daunorubicin biosynthesis, whereas the 1.9-kb dnrR2 segment increased production of both epsilon-rhodomycinone and daunorubicin 10- and 2-fold, respectively. In addition, the dnrR2 segment restored high-level daunorubicin resistance to strain H6101, a daunorubicin-sensitive mutant of S. peucetius subsp. caesius ATCC 27952. Analysis of the sequence of the dnrR1 fragment revealed the presence of two closely situated open reading frames, dnrI and dnrJ, whose deduced products exhibit high similarity to the products of several other Streptomyces genes that have been implicated in the regulation of secondary metabolism. Insertional inactivation of dnrI in the ATCC 29050 strain with the Tn5 kanamycin resistance gene abolished epsilon-rhodomycinone and daunorubicin production and markedly decreased resistance to daunorubicin. Sequence comparison between the products of dnrIJ and the products of the Streptomyces coelicolor actII-orf4, afsR, and redD-orf1 genes and of the Streptomyces griseus strS, the Saccharopolyspora erythraea eryC1, and the Bacillus stearothermophilus degT genes reveals two families of putative regulatory genes. The members of the DegT, DnrJ, EryC1, and StrS family exhibit some of the features characteristic of the protein kinase (sensor) component of two-component regulatory systems from other bacteria (even though none of the sequences of these four proteins show a significant overall or regional similarity to such protein kinases) and have a consensus helix-turn-helix motif typical of DNA binding proteins. A helix-turn-helix motif is also present in two of the proteins of the other family, AfsR and RedD-Orf1. Both sets of Streptomyces proteins are likely to be trans-acting factors involved in regulating secondary metabolism.  相似文献   

11.
12.
13.
The composition of cell walls was comparatively studied in Streptomyces roseoflavus var. roseofungini 1128 and in its variant 1-68. In the logarithmic phase of growth, the content of teichoic acid in the cell wall of the parent culture was four times as high as in the cell wall of the variant. The cell walls of the parent culture contained 5 to 7 times more O-lysyl residues not only due to a higher content of teichoic acid in the walls but also owing to a lower content of lysyl groups in the teichoic acid of the variant. An additional polysaccharide comprising galactose and glucosamine was found in the cell wall of the variant but not in the parent strain. The peptidoglycan of the both cultures had a structure typical of Streptomyces spp.; its content in the cell walls of the two cultures was identical (ca. 50% of the dry cell wall biomass weight). The results are discussed in connection with the peculiarities of the variant hyphal septation.  相似文献   

14.
The drrC gene, cloned from the daunorubicin (DNR)- and doxorubicin-producing strain of Streptomyces peucetius ATCC 29050, encodes a 764-amino-acid protein with a strong sequence similarity to the Escherichia coli and Micrococcus luteus UvrA proteins involved in excision repair of DNA. Expression of drrC was correlated with the timing of DNR production in the growth medium tested and was not dependent on the presence of DNR. Since introduction of drrC into Streptomyces lividans imparted a DNR resistance phenotype, this gene is believed to be a DNR resistance gene. The drrC gene could be disrupted in the non-DNR-producing S. peucetius dnrJ mutant but not in the wild-type strain, and the resulting dnrJ drrC double mutant was significantly more sensitive to DNR in efficiency-of-plating experiments. Expression of drrC in an E. coli uvrA strain conferred significant DNR resistance to this highly DNR-sensitive mutant. However, the DrrC protein did not complement the uvrA mutation to protect the mutant from the lethal effects of UV or mitomycin even though it enhanced the UV resistance of a uvrA+ strain. We speculate that the DrrC protein mediates a novel type of DNR resistance, possibly different from the mechanism of DNR resistance governed by the S. peucetius drrAB genes, which are believed to encode a DNR antiporter.  相似文献   

15.
16.
Streptomyces peucetius var. caesius, obtained from S. peucetius, the daunomycin producing microorganism, by mutagenic treatment, differs from the parent culture by the color of the vegetative and aerial mycelia and by its antibiotic producing ability. S. peucetius var. caesius accumulates adriamycin in submerged and aerated culture on a medium containing glucose, brewer's yeast, and inorganic salts both in shake flasks and in stirred fermenters. Isolation of the product is performed by solvent extraction, chromatography on buffered cellulose columns, and crystallization as the hydrochloride. The new antitumor agent, adriamycin, is the 14-hydroxy derivative of daunomycin.  相似文献   

17.
Ability of an enzyme complex from Streptomyces recifensis var. lyticus 2435 to inactivate beta-lactam antibiotics was shown. Two lytic endopeptidases with beta-lactamase activity were isolated and identified as beta-lactamases of classes II and V according to the Richmond and Sykes classification system. The ability of the endopeptidases to hydrolyze the beta-lactam ring confirmed the absence of strict substrate specificity in them. Correlation between the capacity of the lytic endopeptidases for lysing staphylococcal cells and their capacity for inactivating beta-lactam antibiotics was observed.  相似文献   

18.
N Maruo  M Ozawa  M Kondo  S Fujita 《Histochemistry》1990,94(3):257-262
A new method has been developed for the precise identification of human bone marrow colony forming unit erythroid (CFU-E) and burst forming unit erythroid (BFU-E) colonies, and for determination of the hemoglobin contents using microcytofluorometry. The method relies on a photochemical reaction in which intracellular hemoglobin is converted into fluorescent porphyrin under violet light (lambda = 405 nm) in the presence of an SH-donor (mercaptoethylamine hydrochloride). The CFU-E and BFU-E colonies showed red fluorescence with two spectrum peaks at 600 and 650 nm when illuminated by violet light. These two peaks are consistent with those of porphyrin fluorescence. The porphyrin fluorescence was not inducible in colony forming unit granulocyte-macrophage (CFU-GM) colonies, while 20% of the CFU-GM colonies were false positive with respect to the conventional benzidine reaction. The photochemically inducible fluorescence began to appear in BFU-E colonies on the 4th day of culture, while the same colonies started to be positive for the benzidine reaction on the 9th day. Therefore, the photochemical reaction was more specific and sensitive than the benzidine reaction for the identification of CFU-E and BFU-E colonies. In addition, this method enabled us to measure the hemoglobin level in the cells forming the colonies because the intensity of the fluorescence was proportional to the amount of hemoglobin when the photochemical reaction was carried out for 50 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We have determined the genome sequence of 8.7 Mb chromosome of Streptomyces peucetius ATCC 27952, which produces clinically important anthracycline chemotherapeutic agents of the polyketide class of antibiotics, daunorubicin and doxorubicin. The cytochrome P450 (CYP) superfamily is represented by 19 sequences in the S. peucetius. Among those, 15 code for functional genes, whereas the remaining four are pseudo genes. CYPs from S. peucetius are phylogenetically close to those of Streptomyces amermitilis. Four CYPs are associated with modular PKS of avermectin and two with doxorubicin biosynthetic gene cluster. CYP252A1 is the new family found in S. peucetius, which shares 38% identity to CYP51 from Streptomyces coelicolor A3 (2). Nine CYPs from S. peucetius are found in the cluster containing various regulatory genes including rar operon, conserved in S. coelicolor A3 (2) and Streptomyces griseus. Although two ferredoxins and four ferredoxin reductases have been identified so far, only one ferredoxin reductase was found in the cluster of CYP147F1 in S. peucetius. To date, 174 CYPs have been described from 45 Streptomyces species in all searchable databases. However, only 18 CYPs are clustered with ferredoxin. The comparative study of cytochrome P450s, ferredoxins, and ferredoxin reductases should be useful for the future development and manipulation of antibiotic biosynthetic pathways.  相似文献   

20.
The Pseudomonas aeruginosa serralysin (E.C. 3.4.24.40.), which is a zinc-dependent metalloprotease from the metzincin superfamily, has quite a broad specificity, which has not yet been clearly identified. We have studied it with an original approach, using a 49-peptide library of the type Z–AXXA (amide) (X=A, L, V, F, S, R, E). The library was analyzed by LC-MS before and after enzymatic hydrolysis. A great number of hydrolyzed peptides were screened and the preferential hydrolysis was the X–X peptide bond, even if in some cases, A–X and X–A bond could be hydrolyzed. No amino acids with a ionized side chain could be found in the P1′ position. The results obtained suggest that the specificity in the Pn′ position, where an hydrophobic residue was preferentially found, seems more selective that in the Pn position. The P1 position was not very specific, but, on a quantitative point of view, the enzymatic activity was particularly increased when R, F or A were in this position. The results allow us to define the P1′ and P1 residues for an optimal substrate of pseudomonal serralysin and usable for the design and the synthesis of a specific inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号