首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasonography was used to measure the pennation angle of the human tibialis anterior (TA), lateral gastrocnemius (LG), medial gastrocnemius (MG), and soleus (Sol). The right and left legs of 8 male and 8 female subjects were tested at rest and during maximum voluntary contraction (MVC). Joint angles were chosen to control muscle tendon lengths so that the muscles were near their optimal length within the length-tension relationship. No differences in pennation angle were detected between the right and left legs. Another consistent finding was that the pennation angle at MVC was significantly greater than at rest for all muscles tested. Optimal pennation angles for the TA, MG, and Sol were significantly greater for the men than for the women. Optimal pennation angles for the TA, LG, MG, and Sol for the male subjects were 14.3 degrees, 23.7 degrees, 34.6 degrees, and 40.1 degrees respectively, whereas values of 12.1 degrees, 16.3 degrees, 27.3 degrees, and 26.3 degrees were recorded for the female subjects. The results of this study suggest the following: (1) similar values for pennation angle can be used for the right and left TA, LG, MG, and Sol; (2) pennation angle is significantly greater at MVC than at rest for all muscles tested; and (3) sex-specific values for optimal pennation angle should be used when modeling the force-generating potential of the primary muscles responsible for ankle plantar and dorsiflexion.  相似文献   

2.
The aim of this study was to quantitatively describe the relationships between joint angles and muscle architecture (lengths (Lf) and angles (Θf) of fascicles) of human triceps surae [medial (MG) and lateral (LG) gastrocnemius and soleus (SOL) muscles] in vivo for three men-cosmonaut after long-duration spaceflight. Sagittal sonographs of MG, LG, SOL were taken at ankle was positioned at 15° (dorsiflexion), 0° (neutral position), +15°, and +30° (plantarflexion), with the knee at 90° at rest and after a long-duration spaceflight. At each position, longitudinal ultrasonic images of the MG and LG and SOL were obtained while the cosmonauts was relaxed from which fascicle lengths and angles with respect to the aponeuroses were determined. After space flight plantarflexor force declined significantly (26%; p < 0.001). The internal architecture of the GM, and LG, and SOL muscle was significantly altered. In the passive condition, Lf changed from 45, 53, and 39 mm (knee, 0°, ankle, −15°) to 26, 33, and 28 mm (knee, 90° ankle, 30°) for MG, LG, and SOL, respectively. Different lengths and angles of fascicles, and their changes by contraction, might be related to differences in force-producing capabilities of the muscles and elastic characteristics of tendons and aponeuroses. The three heads of the triceps surae muscle substantially differ in architecture, which probably reflects their functional roles. Differences in fiber length and pennation angle that were observed among the muscles and could be associated with differences in force production and in elastic properties of musculo-tendinous complex and aponeuroses.  相似文献   

3.
A large inter-individual variation is seen in muscle fascicle length of the athletes but the reasons for this phenomenon are unclear. The purpose of this study was to determine whether genetic factors contribute to the variances in muscle architectural characteristics. Nine monozygous twin pairs (3 males and 6 females), mean age 23 years (range 17-40) were studied. Fascicle length, pennation angle, and muscle thickness of the medial (MG) and lateral (LG) gastrocnemius muscles were measured in vivo by B-mode ultrasound. In the LG muscle intrapair resemblance (P < 0.01) for fascicle length (r = 0.98), pennation angle (r = 0.94) and muscle thickness (r = 0.86) were observed. In MG muscle, however, there was no intrapair resemblance for fascicle length (r = 0.66, P > 0.05), although pennation angle (r = 0.73, P < 0.05) and muscle thickness (r = 0.86, P < 0.01) were significant. Mean percent intrapair difference in LG and MG muscles were 1.8% and 5.1% for fascicle length, 11.3% and 12.3% for pennation angle and 12.4% and 9.9% for muscle thickness, respectively. There is intrapair difference between muscle thickness and pennation angle in both MG (r = 0.69, P < 0.05) and LG (r = 0.70, P < 0.05) muscles. However, no significant correlation was observed for intrapair difference between muscle thickness and fascicle length in both muscles (MG, r = 0.46; LG, r = 0.40). It appears that genetic predisposition is the predominant factor for the determination of muscle fascicle length. However, a lack of intrapair resemblance in MG fascicle length raises the possibility that fascicle length may be further influenced by external environmental factors such as physical training.  相似文献   

4.
Architecturalproperties of the triceps surae muscles were determined in vivo for sixmen. The ankle was positioned at 15° dorsiflexion (15°)and 0, 15, and 30° plantar flexion, with the knee set at 0, 45, and90°. At each position, longitudinal ultrasonic images of the medial(MG) and lateral (LG) gastrocnemius and soleus (Sol) muscles wereobtained while the subject was relaxed (passive) and performed maximalisometric plantar flexion (active), from which fascicle lengths andangles with respect to the aponeuroses were determined. In the passivecondition, fascicle lengths changed from 59, 65, and 43 mm (knee,0°; ankle, 15°) to 32, 41, and 30 mm (knee, 90°ankle, 30°) for MG, LG, and Sol, respectively. Fascicle shorteningby contraction was more pronounced at longer fascicle lengths. MG hadgreatest fascicle angles, ranging from 22 to 67°, and was in a verydisadvantageous condition when the knee was flexed at 90°,irrespective of ankle positions. Different lengths and angles offascicles, and their changes by contraction, might be related todifferences in force-producing capabilities of the muscles and elasticcharacteristics of tendons and aponeuroses.

  相似文献   

5.
The length-force relations of nine different skeletal muscles in the hindlimb of the cat were determined experimentally, with electrical stimulation of the sciatic nerve as the activation mode. It was shown that the active-, passive-, and total-force patterns varied widely among the muscles. The tibialis posterior (TP), medial and lateral gastrocnemius (MG, LG) and flexor digitorum longus (FDL) had a symmetric active-force curve, whereas the tibialis anterior (TA), peroneus brevis (PB), peroneus longus (PL), extensor digitorum longus (EDL), and soleus (SOL) had an asymmetric curve which exhibits about 25% of the maximal isometric force at extreme lengths. The SOL, EDL, and LG had a low-level passive force which appeared at short muscle length, whereas all other muscles exhibited initial passive force just before the optimal length. The total force was rising quasi-linearly for the SOL, whereas the other muscles exhibited an intermediate plateau about the optimal length. The LG and FDL had a substantial but temporary intermediate dip in the total force as the muscle was elongated past the optimal length. The elongation range of the various muscles also varied, ranging from +/- 15 to +/- 30% of the optimal length. The elongation range was symmetric for the FDL, LG, MG, TP, SOL, and EDL, and asymmetric for the PL, PB, and TA, being -12 to + 17%, -12 to + 17%, and -35 to + 12%, respectively. Two different models which incorporate muscle architecture were successfully fitted to the experimental data of the muscles except for the MG and TA. The architecture of these two muscles is highly nonhomogeneous and contains compartments with two pennation patterns or two different optimal lengths. New models, which add spatially and temporally the individual characteristics of each compartment of the muscles, were constructed for these two muscles. The new models demonstrated high correlation to the experimental data obtained from the MG and TA. It was concluded that the length-force relation varies widely among various skeletal muscles and is probably dependent on the primary function of the muscle in the context of integrated movement; this is a manifestation of architectural factors such as fiber pennation pattern and angle, cross-sectional area, ratio of muscle to tendon length, distribution of the fiber length within the muscle and compartmental pennation.  相似文献   

6.
The present study was designed to examine fascicle-tendon interaction in the synergistic medial gastrocnemius (MG) and soleus (Sol) muscles during drop jumps (DJ) performed from different drop heights (DH). Eight subjects performed unilateral DJ with maximal rebounds on a sledge apparatus from different DH. During the exercises, fascicle lengths (using ultrasonography) and electromyographic activities were recorded. The results showed that the fascicles of the MG and Sol muscles behaved differently during the contact phase, but the whole muscle-tendon unit and its tendinous tissue lengthened before shortening in both muscles. The Sol fascicles also lengthened before shortening during the ground contact in all conditions. During the braking phase, the Sol activation increased with increasing DH. However, the amplitude of Sol fascicle lengthening was not dependent on DH during the same phase. In the MG muscle, the fascicles primarily shortened during the braking phase in the lower DH condition. However, in the higher DH conditions, the MG fascicles either behaved isometrically or were lengthened during the braking phase. These results suggest that the fascicles of synergistic muscles (MG and Sol) can behave differently during DJ and that, with increasing DH, there may be specific length change patterns of the fascicles of MG but not of Sol.  相似文献   

7.
In vivo specific tension of human skeletal muscle.   总被引:3,自引:0,他引:3  
In this study, we estimated the specific tensions of soleus (Sol) and tibialis anterior (TA) muscles in six men. Joint moments were measured during maximum voluntary contraction (MVC) and during electrical stimulation. Moment arm lengths and muscle volumes were measured using magnetic resonance imaging, and pennation angles and fascicular lengths were measured using ultrasonography. Tendon and muscle forces were modeled. Two approaches were followed to estimate specific tension. First, muscle moments during electrical stimulation and moment arm lengths, fascicular lengths, and pennation angles during MVC were used (data set A). Then, MVC moments, moment arm lengths at rest, and cadaveric fascicular lengths and pennation angles were used (data set B). The use of data set B yielded the unrealistic specific tension estimates of 104 kN/m(2) in Sol and 658 kN/m(2) in TA. The use of data set A, however, yielded values of 150 and 155 kN/m(2) in Sol and TA, respectively, which agree with in vitro results from fiber type I-predominant muscles. In fact, both Sol and TA are such muscles. Our study demonstrates the feasibility of accurate in vivo estimates of human muscle intrinsic strength.  相似文献   

8.
Despite differences in the anatomical and physiological characteristics of the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (Sol) muscles, it is common practice to investigate them as single triceps surae H-reflex recordings. The aim of this study was to compare the latencies of H-reflex recordings from the Sol, MG, and LG in patients with explicit magnetic resonance imaging (MRI) evidence of unilateral S1 radiculopathy and also compare their diagnostic yield in varied clinical characteristics (i.e., symptom duration and severity of involvement). We found a significant difference between H-reflex latencies of Sol and the two others (p?相似文献   

9.
Sprinters have been found to possess longer muscle fascicles than non-sprinters, which is thought to be beneficial for high-acceleration movements based on muscle force-length-velocity properties. However, it is unknown if their morphology is a result of genetics or training during growth. To explore the influence of training during growth, thirty guinea fowl (Numida meleagris) were split into exercise and sedentary groups. Exercise birds were housed in a large pen and underwent high-acceleration training during their growth period (age 4–14 weeks), while sedentary birds were housed in small pens to restrict movement. Morphological analyses (muscle mass, PCSA, optimal fascicle length, pennation angle) of a hip extensor muscle (ILPO) and plantarflexor muscle (LG), which differ in architecture and function during running, were performed post-mortem. Muscle mass for both ILPO and LG was not different between the two groups. Exercise birds were found to have ∼12% and ∼14% longer optimal fascicle lengths in ILPO and LG, respectively, than the sedentary group despite having ∼3% shorter limbs. From this study we can conclude that optimal fascicle lengths can increase as a result of high-acceleration training during growth. This increase in optimal fascicle length appears to occur irrespective of muscle architecture and in the absence of a change in muscle mass. Our findings suggest high-acceleration training during growth results in muscles that prioritize adaptations for lower strain and shortening velocity over isometric strength. Thus, the adaptations observed suggest these muscles produce higher force during dynamic contractions, which is beneficial for movements requiring large power outputs.  相似文献   

10.
PurposeWe assessed fascicle behaviors of the upper extremities during isometric contractions at different joint angles in this study.MethodsThirteen healthy men and women performed isometric elbow extension tasks at 50% and 75% of maximal voluntary contraction (MVC) at 60°, 90°, and 120° of elbow extension (full extension = 180°). Extended field-of-view B-mode ultrasonography was used to obtain sagittal plane panoramic images of the long head (TB-Long) and medial head (TB-Med) of the triceps brachii at rest and during contraction; fascicle length and pennation angle were measured.ResultsIn the TB-Long, significant fascicle shortening from rest was found during 50% and 75%MVC at 60° and during 75%MVC at 90° of extension. There was no significant fascicle shortening in the TB-Med muscle under any conditions. There was no significant pennation angle change from rest in either muscle. The pennation angle of the TB-Long was significantly greater than that of the TB-Med under all conditions.ConclusionsThese results suggest that fascicle shortening in the TB-Long muscle occurs in flexion; however, no change was found in the TB-Med. In the upper extremity muscle–tendon complex, the superficial and deeper muscles may have different force-transmission efficiency at flexed joint angles.  相似文献   

11.
The purpose ofthis study was to investigate the functional interrelationship betweensynergistic muscle activities during low-level fatiguing contractions.Six human subjects performed static and dynamic contractions at anankle joint angle of 110° plantar flexion and within the range of90-110° (anatomic position = 90°) under constant load(10% maximal voluntary contraction) for 210 min. Surfaceelectromyogram records from lateral gastrocnemius (LG), medialgastrocnemius (MG), and soleus (Sol) muscles showed high and silentactivities alternately in the three muscles and a complementary andalternate activity between muscles in the time course. In the secondhalf of all exercise times, the number of changes in activity increasedsignificantly (P < 0.05) in each muscle. The ratios of active to silent periods of electromyogram activity were significantly higher (P < 0.05) in MG (4.5 ± 2.2) and Sol (4.3 ± 2.8) than in the LG(0.4 ± 0.1), but no significant differences were observed betweenMG and Sol. These results suggest that the relativeactivation of synergistic motor pools are not constant during alow-level fatiguing task.

  相似文献   

12.
This paper examines the acute effect of a bout of static stretches on torque fluctuation during an isometric torque-matching task that required subjects to sustain isometric contractions as steady as possible with the plantar flexor muscles at four intensities (5, 10, 15, and 20% of maximum) for 20 s. The stretching bout comprised five 60-s passive stretches, separated by 10-s rest. During the torque-matching tasks and muscle stretching, the torque (active and passive) and surface electromyogram (EMG) of the medial gastrocnemius (MG), soleus (Sol), and tibialis anterior (TA) were continuously recorded. Concurrently, changes in muscle architecture (fascicle length and pennation angle) of the MG were monitored by ultrasonography. The results showed that during stretching, passive torque decreased and fascicle length increased gradually. Changes in these two parameters were significantly associated (r(2) = 0.46; P < 0.001). When data from the torque-matching tasks were collapsed across the four torque levels, stretches induced greater torque fluctuation (P < 0.001) and enhanced EMG activity (P < 0.05) in MG and TA muscles with no change in coactivation. Furthermore, stretching maneuvers produced a greater decrease (~15%; P < 0.001) in fascicle length during the torque-matching tasks and change in torque fluctuation (CV) was positively associated with changes in fascicle length (r(2) = 0.56; P < 0.001), MG and TA EMG activities, and coactivation (r(2) = 0.35, 0.34, and 0.35, respectively; P < 0.001). In conclusion, these observations indicate that repeated stretches can decrease torque steadiness by increasing muscle compliance and EMG activity of muscles around the joint. The relative influence of such adaptations, however, may depend on the torque level during the torque-matching task.  相似文献   

13.
It has been suggested that a suppression of maximal voluntary contraction (MVC) induced by prolonged vibration is due to an attenuation of Ia afferent activity. The purpose of the present study was to test the hypothesis that aftereffects following prolonged vibration on muscle activity during MVC differ among plantar flexor synergists owing to a supposed difference in muscle fiber composition. The plantar flexion MVC torque and surface electromyogram (EMG) of the medial head of gastrocnemius (MG), the lateral head of gastrocnemius (LG), and the soleus (Sol) were recorded in 13 subjects before and after prolonged vibration applied to the Achilles tendon at 100 Hz for 30 min. The maximal H reflexes and M waves were also determined from the three muscles, and the ratio between H reflexes and M waves (H/Mmax) was calculated before and after the vibration. The MVC torque was decreased by 16.6 +/- 3.7% after the vibration (P < 0.05; ANOVA). The H/Mmax also decreased for all three muscles, indicating that Ia afferent activity was successfully attenuated by the vibration in all plantar flexors. However, a reduction of EMG during MVC was observed only in MG (12.7 +/- 4.0%) and LG (11.4 +/- 3.9%) (P < 0.05; ANOVA), not in Sol (3.4 +/- 3.0%). These results demonstrated that prolonged vibration-induced MVC suppression was attributable mainly to the reduction of muscle activity in MG and LG, both of which have a larger proportion of fast-twitch muscle fibers than Sol. This finding suggests that Ia-afferent activity that reinforces the recruitment of high-threshold motor units is necessary to enhance force exertion during MVC.  相似文献   

14.
In order to create a flexible model of the foot for dynamic musculoskeletal models, anthropometric data combined with geometric information describing the intrinsic musculature are needed. In this study, the left feet of two male and two female cadavers were dissected to expose the intrinsic musculotendon pathways. Three-dimensional coordinates of bony landmarks, tendon origins, insertions, and via points were digitized to submillimeter accuracy. Muscle architectural parameters were also measured, including volume, weight, and pennation angle and sarcomere, fascicle, and free tendon lengths. Optimal muscle fascicle lengths, pen-nation angles at optimal length, physiological cross-sectional areas (PCSA), and tendon slack lengths were calculated from the directly measured values. Fascicle length and pennation angle varied greatly within each subject. Average fascicle lengths normalized by optimal fascicle length varied between 0.73 and 1.25, with 75% of the formalin-preserved muscles being found in a shortened state. The muscle volume and PCSA also had a large variability within subjects but less variation between subjects. The ratio of tendon slack length to optimal fascicle length was found to vary between 1.05 and 9.56. Using this data, a deformable model of the foot can now be created. It is envisioned that deformable feet will significantly improve stability and realism in models of gait, posture, and sporting activities.  相似文献   

15.
Six male subjects made maximal isometric plantar flexions unilaterally (UL) and bilaterally (BL), with the knee joint angle positioned at 90° and 0° (full extension) and the ankle joint kept at 90°. Plantar flexion torque and electromyogram (EMG) of the lateral gastrocnemius (LG) and the soleus (Sol) muscles were recorded. There was a deficit in torque in BL compared to UL (P<0.05), and the deficit was greater when the knee was extended than when bent to 90° (13.9% vs 6.6%). The integrated EMG (iEMG) of UL and BL did not differ when the knee was at 90°. On the other hand, when the knee was extended iEMG of LG was smaller for BL than for UL, suggesting that the larger bilateral deficit when the knee was extended was due to a reduced activity of the LG motor units. In addition, the H-reflex recorded from Sol when the contralateral leg was performing a maximal unilateral plantarflexion was reduced. This would indicate that the force deficit was associated with a reduction of motoneuron excitability. Accepted: 18 August 1997  相似文献   

16.
Fukunaga, Tetsuo, Yoshiho Ichinose, Masamitsu Ito, YasuoKawakami, and Senshi Fukashiro. Determination of fascicle lengthand pennation in a contracting human muscle in vivo.J. Appl. Physiol. 82(1): 354-358, 1997.We have developed a technique to determine fascicle length inhuman vastus lateralis muscle in vivo by using ultrasonography. Whenthe subjects had the knee fully extended passively from a position of110° flexion (relaxed condition), the fascicle length decreasedfrom 133 to 97 mm on average. During static contractions at 10% ofmaximal voluntary contraction strength (tensed condition), fascicleshortening was more pronounced (from 126 to 67 mm), especially when theknee was closer to full extension. Similarly, as the knee was extended, the angle of pennation (fascicle angle, defined as the angle between fascicles and aponeurosis) increased (relaxed, from 14 to 18°; tensed, from 14 to 21°), and a greater increase in the pennation angle was observed in the tensed than in the relaxed condition when theknee was close to extension (<40°). We conclude that there aredifferences in fascicle lengths and pennation angles when the muscle isin a relaxed and isometrically tensed conditions and that thedifferences are affected by joint angles, at least at thesubmaximal contraction level.

  相似文献   

17.
Ultrasonography was used to measure pennation angle and electromyography (EMG) to record muscle activity of the human tibialis anterior (TA), lateral gastrocnemius (LG), medial gastrocnemius (MG), and soleus (SOL) muscles during graded isometric ankle plantar and dorsiflexion contractions done on a Biodex dynamometer. Data from 8 male and 8 female subjects were collected in increments of approximately 25% of maximum voluntary contraction (MVC) ranging from rest to MVC. A significant positive linear relationship (p<0.05) between normalized EMG and pennation angle for all muscles was observed when subject specific pennation angles at rest and MVC were included in the analysis. These were included to account for gender differences and inter-subject variability in pennation angle. The coefficient of determination, R(2), ranged between 0.76 for the TA and 0.87 for the SOL. The EMG-pennation angle relationships have ramifications for use in EMG-driven models of muscle force. The regression equations can be used to characterize fiber pennation angle more accurately and to determine how it changes with contraction intensity, thus providing improved estimates of muscle force when using musculoskeletal models.  相似文献   

18.
Ultrasonography was used to directly measure in vivo fascicle behavior of the medial gastrocnemius (MG) and soleus (SOL) muscles while the subjects (n=6 men) performed maximal voluntary concentric and eccentric plantar flexions at 60, 120, 180 and 240 deg/s. Fascicle shortening and lengthening velocities of MG, obtained from fascicle length changes over time, were significantly higher than those of SOL at +/-120, +/-180 and +240 deg/s, possibly reflecting physiological and mechanical differences between these muscles. On the other hand, the effective fascicle shortening and lengthening velocities, defined as the velocities in the longitudinal direction of muscle belly, were not significantly different between MG and SOL. This could be due to difference in fascicle architecture and/or the existence of mechanical linkages between these muscles. Moreover, when the contribution of tendinous tissues to muscle-tendon complex length change was determined from fascicle length, pennation angle, moment arm and joint angle, it accounted for approximately 50% in both concentric and eccentric trials, but showed considerable intra-subject variations. This result quantifiably demonstrates the importance of tendinous tissues in isokinetically controlled joint movements.  相似文献   

19.
The objective of this study was to examine the effect of joint angle on the electromyogram (EMG) and mechanomyogram (MMG) during maximal voluntary contraction (MVC). Eight subjects performed maximal isometric plantar flexor torque productions at varying knee and/or ankle angles. Maximal voluntary torque, EMG, and MMG from the soleus (Sol), medial (MG) and lateral gastrocnemius (LG) muscles were measured at different joint angles. At varying knee angles, the root mean squared (rms) MMG amplitude of the MG and LG increased with knee joint extension from 60 degrees to 180 degrees (full extension) in steps of 30 degrees, whereas that of the Sol was constant. At varying ankle angles, the rms-MMG of all muscles (Sol, MG, and LG) decreased with torque as ankle joint extending from 80 degrees (10 degrees dorsiflexion position) to 120 degrees (30 degrees plantar flexion position) in steps of 10 degrees. In each case, changes in the rms-MMG of the three muscles were almost parallel to those in torque. In contrast, there were no significant differences in the rms-EMG of all muscles among all joint angles. Our data suggest that the MMG amplitudes recorded from individual muscles during MVCs can represent relative torque-angle relationships that cannot be represented by the EMG signals.  相似文献   

20.
Ultrasonography is a useful technique to study muscle contractions in vivo, however larger muscles like vastus lateralis may be difficult to visualise with smaller, commonly used transducers. Fascicle length is often estimated using linear trigonometry to extrapolate fascicle length to regions where the fascicle is not visible. However, this approach has not been compared to measurements made with a larger field of view for dynamic muscle contractions. Here we compared two different single-transducer extrapolation methods to measure VL muscle fascicle length to a direct measurement made using two synchronised, in-series transducers. The first method used pennation angle and muscle thickness to extrapolate fascicle length outside the image (extrapolate method). The second method determined fascicle length based on the extrapolated intercept between a fascicle and the aponeurosis (intercept method). Nine participants performed maximal effort, isometric, knee extension contractions on a dynamometer at 10° increments from 50 to 100° of knee flexion. Fascicle length and torque were simultaneously recorded for offline analysis. The dual transducer method showed similar patterns of fascicle length change (overall mean coefficient of multiple correlation was 0.76 and 0.71 compared to extrapolate and intercept methods respectively), but reached different absolute lengths during the contractions. This had the effect of producing force–length curves of the same shape, but each curve was shifted in terms of absolute length. We concluded that dual transducers are beneficial for studies that examine absolute fascicle lengths, whereas either of the single transducer methods may produce similar results for normalised length changes, and repeated measures experimental designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号