首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The alpha-ketoglutate (alpha-KG)-dependent dioxygenases are a large class of mononuclear non-heme iron enzymes that require Fe(II), alpha-KG and dioxygen for catalysis, with the alpha-KG cosubstrate supplying the two additional electrons required for dioxygen activation. A sub-class of these enzymes exists in which the alpha-keto acid is covalently attached to the substrate, including (4-hydroxy)mandelate synthase (HmaS) and (4-hydroxyphenyl)pyruvate dioxygenase (HPPD) which utilize the same substrate but exhibit two different general reactivities (H-atom abstraction and electrophilic attack). Previous kinetic studies of Streptomyces avermitilis HPPD have shown that the substrate analog phenylpyruvate (PPA), which only differs from the normal substrate (4-hydroxyphenyl)pyruvate (HPP) by the absence of a para-hydroxyl group on the aromatic ring, does not induce a reaction with dioxygen. While an Fe(IV)O intermediate is proposed to be the reactive species in converting substrate to product, the key step utilizing O(2) to generate this species is the decarboxylation of the alpha-keto acid. It has been generally proposed that the two requirements for decarboxylation are bidentate coordination of the alpha-keto acid to Fe(II) and the presence of a 5C Fe(II) site for the O(2) reaction. Circular dichroism and magnetic circular dichroism studies have been performed and indicate that both enzyme complexes with PPA are similar with bidentate alpha-KG coordination and a 5C Fe(II) site. However, kinetic studies indicate that while HmaS reacts with PPA in a coupled reaction similar to the reaction with HPP, HPPD reacts with PPA in an uncoupled reaction at an approximately 10(5)-fold decreased rate compared to the reaction with HPP. A key difference is spectroscopically observed in the n-->pi( *) transition of the HPPD/Fe(II)/PPA complex which, based upon correlation to density functional theory calculations, is suggested to result from H-bonding between a nearby residue and the carboxylate group of the alpha-keto acid. Such an interaction would disfavor the decarboxylation reaction by stabilizing electron density on the carboxylate group such that the oxidative cleavage to yield CO(2) is disfavored.  相似文献   

2.
(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate (HG). This reaction involves decarboxylation, substituent migration, and aromatic oxygenation in a single catalytic cycle. HPPD is a unique member of the alpha-keto acid dependent oxygenases that require Fe(II) and an alpha-keto acid substrate to oxygenate or oxidize an organic molecule. We have examined the reaction coordinate of HPPD from Streptomyces avermitilis using rapid mixing pre-steady-state methods in conjunction with steady-state kinetic analyses. Acid quench reactions and product analysis of homogentisate indicate that HPPD as isolated is fully active and that experiments limited in dioxygen concentration with respect to that of the enzyme do involve a single turnover. These experiments indicate that during the course of one turnover the concentration of homogentisate is stoichiometric with enzyme concentration by approximately 200 ms, well before the completion of the catalytic cycle. Subsequent single turnover reactions were monitored spectrophotometrically under pseudo-first-order and matched concentration reactant conditions. Three spectrophotometrically distinct intermediates are observed to accumulate. The first of these is a relatively strongly absorbing species with maxima at 380 and 480 nm that forms with a rate constant (k(1)) of 7.4 x 10(4) M(-)(1) s(-)(1) and then decays to a second intermediate with a rate constant (k(2)) of 74 s(-)(1). The rate constant for the decay of the second intermediate (k(3)) is 13 s(-)(1) and is concomitant with the formation of the product, homogentisate, based on rapid quench and pre-steady-state fluorescence measurements. The rate constant for this process decreases to 7.6 s(-)(1) when deuterons are substituted for protons in the aromatic ring of the substrate. The release of product from the enzyme is rate limiting and occurs at 1.6 s(-)(1). This final event exhibits a kinetic isotope effect of 2 with deuterium oxide as the solvent, consistent with a solvent isotope effect on V(max) of 2.6 observed in steady-state experiments.  相似文献   

3.
Kavana M  Moran GR 《Biochemistry》2003,42(34):10238-10245
(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) is a non-heme Fe(II) enzyme that catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate as part of the tyrosine catabolism pathway. Inhibition of HPPD by the triketone 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC) is used to treat type I tyrosinemia, a rare but fatal defect in tyrosine catabolism. Although triketones have been used for many years as HPPD inhibitors for both medical and herbicidal purposes, the mechanism of inhibition is not well understood. The following work provides mechanistic insight into NTBC binding. The tautomeric population of NTBC in aqueous solution is dominated by a single enol as determined by NMR spectroscopy. NTBC preferentially binds to the complex of HPPD and FeII [HPPD.Fe(II)] as evidenced by a visible absorbance feature centered at 450 nm. The binding of NTBC to HPPD.Fe(II) was observed using a rapid mixing method and was shown to occur in two phases and comprise three steps. A hyperbolic dependence of the first observable process with NTBC concentration indicates a pre-equilibrium binding step followed by a limiting rate (K(1) = 1.25 +/- 0.08 mM, k(2) = 8.2 +/- 0.2 s(-1)), while the second phase (k(3) = 0.76 +/- 0.02 s(-1)) had no dependence on NTBC concentration. Neither K(1),k(2), nor k(3) was influenced by pH in the range of 6.0-8.0. Isotope effects on both k(2) and k(3) were observed when D(2)O is used as the solvent (for k(2), k(h)/k(d) = 1.3; for k(3), k(h)/k(d) = 3.2). It is therefore proposed that the bidentate association of NTBC with the active site metal ion (k(2)) precedes the Lewis acid-assisted conversion of the bound enol to the enolate (k(3)). Although the native enzyme without substrate reacts with molecular oxygen to form the oxidized holoenzyme, the HPPD.Fe(II).NTBC complex does not. When the complex is exposed to atmospheric oxygen, the absorbance feature associated with NTBC binding does not diminish over the course of 2 days. This means not only that the HPPD.Fe(II).NTBC complex does not oxidize but also that the dissociation rate constant for NTBC is essentially zero because any HPPD.Fe(II) that formed would readily oxidize in the presence of dioxygen. Consistent with this observation, EPR spectroscopy has shown that only 2% of the HPPD.Fe(II).NTBC complex forms an NO complex as compared to the holoenzyme.  相似文献   

4.
Purpero VM  Moran GR 《Biochemistry》2006,45(19):6044-6055
(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) incorporates both atoms of molecular oxygen into 4-hydroxyphenylpyruvate (HPP) to form homogentisate (HG). This reaction has direct relevance in both medicine and agriculture. In humans, the specific inhibition of HPPD alleviates the symptoms of diseases that arise from tyrosine catabolism defects. However, in plants, the inhibition of HPPD bleaches, stunts, and ultimately kills the organism. The reason for this is that in mammalian metabolism the product HG does not feed into other pathways, whereas in plants it is the precursor for the redox active portion of tocopherols and plastoquinones. There are a number of commercially available herbicides that directly target the inhibition of the HPPD reaction. Plant HPPD however is largely uncharacterized in terms of its catalysis and inhibition reactions. In this study, we examine the catalysis and inhibition of HPPD from Arabidopsis thaliana (AtHPPD). We have expressed AtHPPD and purified the enzyme to high specific activity. This form of HPPD accumulates two transient species in single turnover reactions with the native substrate HPP. These transients appear to be equivalent to intermediates I and III observed in the enzyme from Streptomyces (Johnson-Winters et al. (2005), Biochemistry, 44, 7189-7199). The first intermediate is a relatively strongly absorbing species with maxima at 380 and 490 nm. This species decays to a second intermediate that is fluorescent and has been assigned as the complex of the enzyme with the product, HG. The decay of this intermediate is rate-determining in multiple turnover reactions. The reaction of the enzyme with the analogue of the substrate, phenylpyruvate (PPA), is noncatalytic. A single turnover reaction is observed with this ligand that renders the enzyme oxidized to the ferric form, consumes a stoichiometric amount of dioxygen, and yields 66% phenylacetate as a product. Additional absorbance features at 365 and 670 nm accumulate during inactivation and give the inactivated enzyme a green color but has the same molecular mass as the active enzyme as determined by mass spectrometry.  相似文献   

5.
4-Hydroxyphenylpyruvate dioxygenase   总被引:1,自引:0,他引:1  
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an Fe(II)-dependent, non-heme oxygenase that catalyzes the conversion of 4-hydroxyphenylpyruvate to homogentisate. This reaction involves decarboxylation, substituent migration and aromatic oxygenation in a single catalytic cycle. HPPD is a member of the alpha-keto acid dependent oxygenases that typically require an alpha-keto acid (almost exclusively alpha-ketoglutarate) and molecular oxygen to either oxygenate or oxidize a third molecule. As an exception in this class of enzymes HPPD has only two substrates, does not use alpha-ketoglutarate, and incorporates both atoms of dioxygen into the aromatic product, homogentisate. The tertiary structure of the enzyme would suggest that its mechanism converged with that of other alpha-keto acid enzymes from an extradiol dioxygenase progenitor. The transformation catalyzed by HPPD has both agricultural and therapeutic significance. HPPD catalyzes the second step in the pathway for the catabolism of tyrosine, that is common to essentially all aerobic forms of life. In plants this pathway has an anabolic branch from homogentisate that forms essential isoprenoid redox cofactors such as plastoquinone and tocopherol. Naturally occurring multi-ketone molecules act as allelopathic agents by inhibiting HPPD and preventing the production of homogentisate and hence required redox cofactors. This has been the basis for the development of a range of very effective herbicides that are currently used commercially. In humans, deficiencies of specific enzymes of the tyrosine catabolism pathway give rise to a number of severe metabolic disorders. Interestingly, HPPD inhibitor/herbicide molecules act also as therapeutic agents for a number of debilitating and lethal inborn defects in tyrosine catabolism by preventing the accumulation of toxic metabolites.  相似文献   

6.
The α-ketoglutate (α-KG)-dependent dioxygenases are a large class of mononuclear non-heme iron enzymes that require FeII, α-KG and dioxygen for catalysis, with the α-KG cosubstrate supplying the two additional electrons required for dioxygen activation. A sub-class of these enzymes exists in which the α-keto acid is covalently attached to the substrate, including (4-hydroxy)mandelate synthase (HmaS) and (4-hydroxyphenyl)pyruvate dioxygenase (HPPD) which utilize the same substrate but exhibit two different general reactivities (H-atom abstraction and electrophilic attack). Previous kinetic studies of Streptomyces avermitilis HPPD have shown that the substrate analog phenylpyruvate (PPA), which only differs from the normal substrate (4-hydroxyphenyl)pyruvate (HPP) by the absence of a para-hydroxyl group on the aromatic ring, does not induce a reaction with dioxygen. While an FeIVO intermediate is proposed to be the reactive species in converting substrate to product, the key step utilizing O2 to generate this species is the decarboxylation of the α-keto acid. It has been generally proposed that the two requirements for decarboxylation are bidentate coordination of the α-keto acid to FeII and the presence of a 5C FeII site for the O2 reaction. Circular dichroism and magnetic circular dichroism studies have been performed and indicate that both enzyme complexes with PPA are similar with bidentate α-KG coordination and a 5C FeII site. However, kinetic studies indicate that while HmaS reacts with PPA in a coupled reaction similar to the reaction with HPP, HPPD reacts with PPA in an uncoupled reaction at an 105-fold decreased rate compared to the reaction with HPP. A key difference is spectroscopically observed in the n → π* transition of the HPPD/FeII/PPA complex which, based upon correlation to density functional theory calculations, is suggested to result from H-bonding between a nearby residue and the carboxylate group of the α-keto acid. Such an interaction would disfavor the decarboxylation reaction by stabilizing electron density on the carboxylate group such that the oxidative cleavage to yield CO2 is disfavored.  相似文献   

7.
Brownlee J  He P  Moran GR  Harrison DH 《Biochemistry》2008,47(7):2002-2013
The crystal structure of the hydroxymandelate synthase (HMS).Co2+.hydroxymandelate (HMA) complex determined to a resolution of 2.3 A reveals an overall fold that consists of two similar beta-barrel domains, one of which contains the characteristic His/His/acid metal-coordination motif (facial triad) found in the majority of Fe2+-dependent oxygenases. The fold of the alpha-carbon backbone closely resembles that of the evolutionarily related enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD) in its closed conformation with a root-mean-square deviation of 1.85 A. HPPD uses the same substrates as HMS but forms instead homogentisate (HG). The active site of HMS is significantly smaller than that observed in HPPD, reflecting the relative changes in shape that occur in the conversion of the common HPP substrate to the respective HMA or HG products. The HMA benzylic hydroxyl and carboxylate oxygens coordinate to the Co2+ ion, and three other potential H-bonding interactions to active site residue side chains are observed. Additionally, it is noted that there is a buried well-ordered water molecule 3.2 A from the distal carboxylate oxygen. The p-hydroxyl group of HMA is within hydrogen-bonding distance of the side chain hydroxyl of a serine residue (Ser201) that is conserved in both HMS and HPPD. This potential hydrogen bond and the known geometry of iron ligation for the substrate allowed us to model 4-hydroxyphenylpyruvate (HPP) in the active sites of both HMS and HPPD. These models suggest that the position of the HPP substrate differs between the two enzymes. In HMS, HPP binds analogously to HMA, while in HPPD, the p-hydroxyl group of HPP acts as a hydrogen-bond donor and acceptor to Ser201 and Asn216, respectively. It is suggested that this difference in the ring orientation of the substrate and the corresponding intermediates influences the site of hydroxylation.  相似文献   

8.
4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxyphenylpyruvate (HPP) into homogentisate. HPPD is the molecular target of very effective synthetic herbicides. HPPD inhibitors may also be useful in treating life-threatening tyrosinemia type I and are currently in trials for treatment of Parkinson disease. The reaction mechanism of this key enzyme in both plants and animals has not yet been fully elucidated. In this study, using site-directed mutagenesis supported by quantum mechanical/molecular mechanical theoretical calculations, we investigated the role of catalytic residues potentially interacting with the substrate/intermediates. These results highlight the following: (i) the central role of Gln-272, Gln-286, and Gln-358 in HPP binding and the first nucleophilic attack; (ii) the important movement of the aromatic ring of HPP during the reaction, and (iii) the key role played by Asn-261 and Ser-246 in C1 hydroxylation and the final ortho-rearrangement steps (numbering according to the Arabidopsis HPPD crystal structure 1SQD). Furthermore, this study reveals that the last step of the catalytic reaction, the 1,2 shift of the acetate side chain, which was believed to be unique to the HPPD activity, is also catalyzed by a structurally unrelated enzyme.  相似文献   

9.
Di- and triketone inhibitors of (4-hydroxyphenyl)pyruvate dioxygenase (HPPD) are both effective herbicides and therapeutics. The inhibitory activity is used to halt the production of lipophilic redox cofactors in plants and also in humans to prevent accumulation of toxic metabolic byproducts that arise from specific inborn defects of tyrosine catabolism. The three-dimensional structure of the Fe(II) form of HPPD from Streptomyces avermitilis in complex with the inhibitor 2-[2-nitro-4-(triflouromethyl)benzoyl]-1,3-cyclohexanedione (NTBC) has been determined at a resolution of 2.5 A. NTBC coordinates to the active site metal ion, located at the bottom of a wide solvent-accessible cavity in the C-terminal domain of the protein. The iron is liganded in a predominantly five-coordinate, distorted square-pyramidal arrangement in which Glu349, His187, and His270 are protein-derived ligands and two other ligands are from the 5' and 7' oxygens of NTBC. There is a low-occupancy water molecule in the sixth coordination site in one of the protomers. The distance to His270 is unusually long at 2.5 A, and its orientation is somewhat distorted from ideal ligand geometry to within 2.8 A of the inhibitor nitro group. In contrast to the tetrameric quartenary structure observed for HPPD from other bacterial sources, the asymmetric unit is composed of two weakly associated protomers with a buried surface area of 1266 A(2) and a total of 12 hydrogen-bonding and no electrostatic interactions. The overall tertiary structure is similar to that of HPPD from Pseudomonas fluorescens (Serre et al., (1999) Structure 7, 977-988), although the position of the C-terminal alpha-helix is dramatically shifted. This C-terminal alpha-helix provides Phe364, which in combination with Phe336 sandwiches the phenyl ring of the bound NTBC; no other significant hydrogen-bonding or charge-pairing interactions are observed. Moreover, the structure reveals that, with the exception of Val189, NTBC makes contacts to only fully conserved amino acids. The combination of bidentate metal-ion coordination and pi-stacked aromatic rings is suggestive of a binding mode for the substrate and/or a transition state, which may be the origin of the exceedingly high affinity these inhibitors have for HPPD.  相似文献   

10.
Shah DD  Conrad JA  Heinz B  Brownlee JM  Moran GR 《Biochemistry》2011,50(35):7694-7704
4-Hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate synthase (HMS) each catalyze similar complex dioxygenation reactions using the substrates 4-hydroxyphenylpyruvate (HPP) and dioxygen. The reactions differ in that HPPD hydroxylates at the ring C1 and HMS at the benzylic position. The HPPD reaction is more complex in that hydroxylation at C1 instigates a 1,2-shift of an aceto substituent. Despite that multiple intermediates have been observed to accumulate in single turnover reactions of both enzymes, neither enzyme exhibits significant accumulation of the hydroxylating intermediate. In this study we employ a product analysis method based on the extents of intermediate partitioning with HPP deuterium substitutions to measure the kinetic isotope effects for hydroxylation. These data suggest that, when forming the native product homogentisate, the wild-type form of HPPD produces a ring epoxide as the immediate product of hydroxylation but that the variant HPPDs tended to also show the intermediacy of a benzylic cation for this step. Similarly, the kinetic isotope effects for the other major product observed, quinolacetic acid, showed that either pathway is possible. HMS variants show small normal kinetic isotope effects that indicate displacement of the deuteron in the hydroxylation step. The relatively small magnitude of this value argues best for a hydrogen atom abstraction/rebound mechanism. These data are the first definitive evidence for the nature of the hydroxylation reactions of HPPD and HMS.  相似文献   

11.
The final step in the biosynthesis of the plant hormone ethylene is catalyzed by the non-heme iron-containing enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO). ACC is oxidized at the expense of O(2) to yield ethylene, HCN, CO(2), and two waters. Continuous turnover of ACCO requires the presence of ascorbate and HCO(3)(-) (or an alternative form), but the roles played by these reagents, the order of substrate addition, and the mechanism of oxygen activation are controversial. Here these issues are addressed by development of the first functional single turnover system for ACCO. It is shown that 0.35 mol ethylene/mol Fe(II)ACCO is produced when the enzyme is combined with ACC and O(2) in the presence of HCO(3)(-) but in the absence of ascorbate. Thus, ascorbate is not required for O(2) activation or product formation. Little product is observed in the absence of HCO(3)(-), demonstrating the essential role of this reagent. By monitoring the EPR spectrum of the sample during single turnover, it is shown that the active site Fe(II) oxidizes to Fe(III) during the single turnover. This suggests that the electrons needed for catalysis can be derived from a fraction of the initial Fe(II)ACCO instead of ascorbate. Addition of ascorbate at 10% of its K(m) value significantly accelerates both iron oxidation and ethylene formation, suggesting a novel high-affinity effector role for this reagent. This role can be partially mimicked by a non-redox-active ascorbate analog. A mechanism is proposed that begins with ACC and O(2) binding, iron oxidation, and one-electron reduction to form a peroxy intermediate. Breakdown of this intermediate, perhaps by HCO(3)(-)-mediated proton transfer, is proposed to yield a high-valent iron species, which is the true oxidizing reagent for the bound ACC.  相似文献   

12.
Enzymatic cycling assay for phenylpyruvate   总被引:1,自引:0,他引:1  
Enzymatic cycling assays for the determination of L-phenylalanine and phenylpyruvate in deproteinized tissue extracts are described. Assay 1 couples glutamine transaminase K with L-phenylalanine dehydrogenase. Assay 2 combines phenylalanine dehydrogenase, L-amino acid oxidase, and catalase. In both assays, tyrosine and some other amino acids (or their alpha-keto acid analogs) can replace phenylalanine (or phenylpyruvate) to a small extent. Thus, if phenylalanine is to be measured a correction must be made for the nonspecificity of the reaction. By removing phenylalanine on a cation-exchange column it was possible to measure phenylpyruvate in tissue extracts. Concentrations of phenylpyruvate (mumol/kg) in normal rat liver, kidney, and brain were 2.1 +/- 1.1 (n = 8), 1.8 +/- 0.4 (n = 4), and 3.3 +/- 0.6 (n = 4), respectively.  相似文献   

13.
Blood-brain barrier transport of the alpha-keto acid analogs of amino acids   总被引:2,自引:0,他引:2  
A number of alpha-keto acid analogs of amino acids have been found to penetrate the blood-brain barrier (BBB). Pyruvate, alpha-ketobutyrate, alpha-ketoisocaproate, and alpha-keto-gamma-methiolbutyrate all cross the BBB by a carrier-mediated process and by simple diffusion. Under normal physiological conditions, diffusion accounts for roughly 15% or less of total transport. Aromatic alpha-keto acids, phenylpyruvate, and p-hydroxyphenylpyruvate do not penetrate the BBB, nor do they inhibit the transport of other alpha-keto acids. Evidence based primarily on inhibition studies indicates that the carrier-mediated transport of alpha-keto acids occurs via the same carrier demonstrated previously for propionate, acetoacetate, and beta-hydroxybutyrate transport, commonly referred to as the monocarboxylate carrier. As a group, the alpha-keto acid analogs of the amino acids have the highest affinity for the carrier, followed by propionate and beta-hydroxybutyrate. Starvation for 4 days induces transport of alpha-keto acids, but transport is suppressed in rats fed commercial laboratory rations and subjected to portacaval shunts. The mitochondrial pyruvate translocator inhibitor alpha-cyanocinnamate has no effect on the BBB transport of alpha-keto acids.  相似文献   

14.
TfdA is a non-heme iron enzyme which catalyzes the first step in the oxidative degradation of the widely used herbicide (2, 4-dichlorophenoxy)acetate (2,4-D). Like other alpha-keto acid-dependent enzymes, TfdA utilizes a mononuclear Fe(II) center to activate O(2) and oxidize substrate concomitant with the oxidative decarboxylation of alpha-ketoglutarate (alpha-KG). Spectroscopic analyses of various Cu(II)-substituted and Fe(II)-reconstituted TfdA complexes via electron paramagnetic resonance (EPR), electron spin-echo envelope modulation (ESEEM), and UV-vis spectroscopies have greatly expanded our knowledge of the enzyme's active site. The metal center is coordinated to two histidine residues as indicated by the presence of a five-line pattern in the Cu(II) EPR signal, for which superhyperfine splitting is attributed to two equivalent nitrogen donor atoms from two imidazoles. Furthermore, a comparison of the ESEEM spectra obtained in H(2)O and D(2)O demonstrates that the metal maintains several solvent-accessible sites, a conclusion corroborated by the increase in multiplicity in the EPR superhyperfine splitting observed in the presence of imidazole. Addition of alpha-KG to the Cu-containing enzyme leads to displacement of an equatorial water on copper, as determined by ESEEM analysis. Subsequent addition of 2,4-D leads to the loss of a second water molecule, with retention of a third, axially bound water. In contrast to these results, in Fe(II)-reconstituted TfdA, the cosubstrate alpha-KG chelates to the metal via a C-1 carboxylate oxygen and the alpha-keto oxygen as revealed by characteristic absorption features in the optical spectrum of Fe-TfdA. This binding mode is maintained in the presence of substrate, although the addition of 2,4-D does alter the metal coordination environment, perhaps by creating an O(2)-binding site via solvent displacement. Indeed, loss of solvent to generate an open binding site upon the addition of substrate has also been suggested for the alpha-keto acid-dependent enzyme clavaminate synthase 2 [Zhou et al. (1998) J. Am. Chem. Soc. 120, 13539-13540]. Nitrosyl adducts of various Fe-TfdA complexes have also been investigated by optical and EPR spectroscopy. Of special interest is the tightly bound NO complex of Fe-TfdA.(alpha-KG).(2,4-D), which may represent an accurate model of the initial oxygen-bound species.  相似文献   

15.
The effect of phenylpyruvate on pyruvate metabolism in rat brain   总被引:5,自引:5,他引:0  
1. The effect of phenylalanine and phenylpyruvate on the metabolism of pyruvate by isolated mitochondria from rat brain was investigated. 2. Phenylpyruvate inhibited the fixation of H(14)CO(3) (-) in the presence of pyruvate by intact rat brain mitochondria, whereas phenylalanine and other metabolites of this amino acid had no inhibitory effect on this process. 3. Pyruvate carboxylase activity in freeze-dried rat brain mitochondrial preparations was also inhibited only by phenylpyruvate, and a ;mixed type' inhibition was observed. 4. The K(m) for pyruvate of rat brain pyruvate carboxylase was about 0.2mm. 5. The concentration of phenylpyruvate required for a 50% inhibition of H(14)CO(3) (-) fixation by the intact mitochondria and of pyruvate carboxylase activity was dependent on the concentration of pyruvate used in the incubation medium. 6. The possible significance of inhibition of pyruvate carboxylase activity by phenylpyruvate in the brains of phenylketonuric patients is discussed.  相似文献   

16.
Plant nitrite reductase (NiR) catalyzes the reduction of nitrite (NO(2)(-)) to ammonia, using reduced ferredoxin as the electron donor. NiR contains a [4Fe-4S] cluster and an Fe-siroheme, which is the nitrite binding site. In the enzyme's as-isolated form ([4Fe-4S](2+)/Fe(3+)), resonance Raman spectroscopy indicated that the siroheme is in the high-spin ferric hexacoordinated state with a weak sixth axial ligand. Kinetic and spectroscopic experiments showed that the reaction of NiR with NO(2)(-) results in an unexpectedly EPR-silent complex formed in a single step with a rate constant of 0.45 +/- 0.01 s(-)(1). This binding rate is slow compared to that expected from the NiR turnover rates reported in the literature, suggesting that binding of NO(2)(-) to the as-isolated form of NiR is not the predominant type of substrate binding during enzyme turnover. Resonance Raman spectroscopic characterization of this complex indicated that (i) the siroheme iron is low-spin hexacoordinated ferric, (ii) the ligand coordination is unusually heterogeneous, and (iii) the ligand is not nitric oxide, most likely NO(2)(-). The reaction of oxidized NiR with hydroxylamine (NH(2)OH), a putative intermediate, results in a ferrous siroheme-NO complex that is spectroscopically identical to the one observed during NiR turnover. Resonance Raman and absorption spectroscopy data show that the reaction of oxidized NiR ([4Fe-4S](2+)/Fe(3+)) with hydroxylamine is binding-limited, while the NH(2)OH conversion to nitric oxide is much faster.  相似文献   

17.
1. The effects of phenylpyruvate, a metabolite produced in phenylketonuria, on the pyruvate dehydrogenase-complex activity were investigated in rat brain mitochondria. 2. Pyruvate dehydrogenase activity was measured by two methods, one measuring the release of (14)CO(2) from [1-(14)C]pyruvate and the other measuring the acetyl-CoA formed by means of the coupling enzyme, pigeon liver arylamine acetyltransferase (EC 2.3.1.5). In neither case was there significant inhibition of the pyruvate dehydrogenase complex by phenylpyruvate at concentrations below 2mm. 3. However, phenylpyruvate acted as a classical competitive inhibitor of the coupling enzyme arylamine acetyltransferase, with a K(i) of 100mum. 4. It was concluded that the inhibition of pyruvate dehydrogenase by phenylpyruvate is unlikely to be a primary enzyme defect in phenylketonuria.  相似文献   

18.
Jin S  Kurtz DM  Liu ZJ  Rose J  Wang BC 《Biochemistry》2004,43(11):3204-3213
The X-ray crystal structure of recombinant Desulfovibrio vulgaris rubrerythrin (Rbr) that was subjected to metal constitution first with zinc and then iron, yielding ZnS(4)Rbr, is reported. A [Zn(SCys)(4)] site with no iron and a diiron site with no appreciable zinc in ZnS(4)Rbr were confirmed by analysis of the anomalous scattering data. Partial reduction of the diiron site occurred during the synchrotron X-ray irradiation at 95 K, resulting in two different diiron site structures in the ZnS(4)Rbr crystal. These two structures can be classified as containing mixed-valent Fe1(III)(mu-OH(-))(mu-GluCO(2)(-))(2)Fe2(II) and Fe1(II)(mu-GluCO(2)(-))(2)Fe2(III)-OH(-) cores. The data do not show any evidence for alternative positions of the protein or solvent ligands. The iron and ligand positions of the solvent-bridged site are close to those of the diferric site in all-iron Rbr. The diiron site with only the two carboxylato bridges differs by an approximately 2 A shift in the position of Fe1, which changes from six- to four-coordination. The Fe1- - -Fe2 distance (3.6 A) in this latter site is significantly longer than that of the site with the additional solvent bridge (3.4 A) but significantly shorter than that previously reported for the diferrous site (4.0 A) in all-iron Rbr. The apparent redox-induced movement of Fe1 at 95 K in the ZnS(4)Rbr crystal implies an extremely low activation barrier, which is consistent with the rapid (approximately 30 s(-1)) room temperature turnover of the all-iron Rbr during its catalysis of two-electron reduction of hydrogen peroxide. ZnS(4)Rbr does not show peroxidase activity, presumably because the [Zn(SCys)(4)] site, unlike the [Fe(SCys)(4)] site, cannot mediate electron transfer to the diiron site. One or both of the diiron site structures in the cryoreduced ZnS(4)Rbr crystal are likely to represent that (those) of transient mixed-valent diiron site(s) that must occur upon return of the diferric to the diferrous oxidation level during peroxidase turnover.  相似文献   

19.
20.
Yan F  Moon SJ  Liu P  Zhao Z  Lipscomb JD  Liu A  Liu HW 《Biochemistry》2007,46(44):12628-12638
(S)-2-Hydroxypropylphosphonic acid epoxidase (HppE) is an O2-dependent, nonheme Fe(II)-containing oxidase that converts (S)-2-hydroxypropylphosphonic acid ((S)-HPP) to the regio- and enantiomerically specific epoxide, fosfomycin. Use of (R)-2-hydroxypropylphosphonic acid ((R)-HPP) yields the 2-keto-adduct rather than the epoxide. Here we report the chemical synthesis of a range of HPP analogues designed to probe the basis for this specificity. In past studies, NO has been used as an O2 surrogate to provide an EPR probe of the Fe(II) environment. These studies suggest that O2 binds to the iron, and substrates bind in a single orientation that strongly perturbs the iron environment. Recently, the X-ray crystal structure showed direct binding of the substrate to the iron, but both monodentate (via the phosphonate) and chelated (via the hydroxyl and phosphonate) orientations were observed. In the current study, hyperfine broadening of the homogeneous S = 3/2 EPR spectrum of the HppE-NO-HPP complex was observed when either the hydroxyl or the phosphonate group of HPP was enriched with 17O (I = 5/2). These results indicate that both functional groups of HPP bind to Fe(II) ion at the same time as NO, suggesting that the chelated substrate binding mode dominates in solution. (R)- and (S)-analogue compounds that maintained the core structure of HPP but added bulky terminal groups were turned over to give products analogous to those from (R)- and (S)-HPP, respectively. In contrast, substrate analogues lacking either the phosphonate or hydroxyl group were not turned over. Elongation of the carbon chain between the hydroxyl and phosphonate allowed binding to the iron in a variety of orientations to give keto and diol products at positions determined by the hydroxyl substituent, but no stable epoxide was formed. These studies show the importance of the Fe(II)-substrate chelate structure to active antibiotic formation. This fixed orientation may align the substrate next to the iron-bound activated oxygen species thought to mediate hydrogen atom abstraction from the nearest substrate carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号