首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmids expressing bacteriophage T7 gene 1.2 or gene 10 DNA transform F plasmid-containing strains of Escherichia coli only at low efficiency, though they transform plasmid-free strains normally. The gene products T7 gp1.2 and T7 gp10 appear to be the toxic agents, and their effects are directed towards the product of the F pifA gene, PifA. T7 gp1.2 and gp10 are also the two targets of the pif exclusion system of F, and their synthesis normally triggers the abortive infection of T7 in pifA+ hosts. The properties of plasmids containing T7 gene 1.2 or 10 suggest that they can be used to study the molecular mechanisms of phage exclusion in model systems that avoid the pleiotropic dysfunctions associated with an abortive infection.  相似文献   

2.
Infections of F plasmid-containing strains of Escherichia coli by bacteriophage T7 result in membrane damage that allows nucleotides to exude from the infected cell into the culture medium. Only pifA of the F pif operon is necessary for "leakiness" of the T7-infected cell. Expression of either T7 gene 1.2 or gene 10 is sufficient to cause leakiness, since infections by phage containing null mutations in both of these genes do not result in permeability changes of the F-containing cell. Even in the absence of phage infection, expression from plasmids of either gene 1.2 or 10 can cause permeability changes, particularly of F plasmid-containing cells. In contrast, gene 1.2 of the related bacteriophage T3 prevents leakiness of the infected cell. In the absence of T3 gene 1.2 function, expression of gene 10 causes membrane damage that allows nucleotides to leak from the cell. Genes 1.2 and 10 of both T3 and T7 are the two genes involved in determining resistance or sensitivity to F exclusion; F exclusion and leakiness of the phage-infected cell are therefore closely related phenomena. However, since leakiness of the infected cell does not necessarily result in phage exclusion, it cannot be used as a predictor of an abortive infection.  相似文献   

3.
The use of different precisely mapped T3/T7 recombinants strengthens the conclusion that abortive infection by T7 of F plasmid-carrying cells is due to the nucleotide sequence at the end of the T7 gene 1. Furthermore, we demonstrate that the exclusion requires suppression of ochre stop codons, a phenomenon that occurs with low frequency in wild-type cells due to ribosomal misreading. The introduction of rspL mutations in which ribosomal misreading is reduced alleviates the exclusion and the presence of ochre tRNA suppressors increases its severity.  相似文献   

4.
细菌常受到数量众多的噬菌体感染,宿主细菌在和噬菌体竞赛中进化出多样化的分子策略,流产感染(abortive infection,Abi)是其中之一。毒素-抗毒素系统(toxin-antitoxin system,TA)会在细菌受到压力胁迫时表达并介导细菌的低代谢甚至休眠,还能直接减少子代噬菌体形成。此外,部分毒素序列和结构与Cas蛋白高度同源,噬菌体甚至会编码抗毒素类似物来阻遏对应毒素的活性。这表明流产感染中细菌死亡过程导致的噬菌体感染失败与TA功能高度重合,TA可能是噬菌体侵染宿主的主要阻力和防御力量之一。文中基于TA系统的分类和功能,对参与噬菌体流产感染的TA系统进行了综述,并预测具有流产功能的TA系统和其在抗生素开发和疾病治疗中的应用前景。这有助于认识细菌-噬菌体相互作用,并指导噬菌体治疗和合成生物学。  相似文献   

5.
Mutants of bacteriophage T7 that escape F restriction   总被引:7,自引:0,他引:7  
Mutants of bacteriophage T7 that escape F restriction have been isolated. Two mutations in gene 10, which codes for the capsid protein, and one mutation in gene 1.2 are required for these phages to grow on F-containing strains. The products of these two genes are the two targets of the exclusion system; the presence of either wild-type product results in an abortive infection. Phages that grow normally in male hosts still lead to membrane dysfunction and nucleotide efflux from the infected cell. This type of membrane damage and the abortive infection are therefore separable phenomena.  相似文献   

6.
Conditional lethal mutant systems developed in T-even bacteriophages T2, T4 and T6 have been used to study the partial exclusion which characterizes mixed infections of these phages. In bacteria mixedly infected with T2 and T4, the dominant phage (T4) acts against localized exclusion sensitivity determinants in the genome of the excluded phage (T2). These determinants are clustered near genes controlling early functions; the determinants themselves do not appear among the progeny, but markers located close to them appear infrequently, by recombination. The excluding action of T4 does not depend on the action of any gene so far identified by conditional lethal mutations, nor does it depend on differences in DNA glucosylation between infecting phages. Regardless of mechanism, the genetic consequence of this partial exclusion is to limit genetic exchange between T2 and T4 in the region of the genome controlling early functions, while retaining the capacity for extensive exchange in other regions; in short, partial exclusion constitutes a localized genetic isolating mechanism. Related forms of partial exclusion characterize mixed infections of other T-even phages, including those of some phages newly isolated from nature.  相似文献   

7.
Nasopharyngeal carcinoma (NPC) is a common cancer in Southeast Asia, especially in southern China. One of the most striking features of this disease is its close relationship with Epstein-Barr Virus (EBV). However, to date there is no direct study on the mechanisms involved in the role of EBV in the tumorigenesis of NPC, largely due to lack of an experimental model. Available hypotheses on the association between EBV and NPC are generated from non-nasopharyngeal epithelial cell systems such as human keratinocytes or mouse epithelial cells, which may not truly represent the biological properties of nasopharyngeal epithelial (NP) cells. In this study, we report the establishment of two immortalized NP cell lines, NP69SV40T and NP39E6/E7, using SV40T and HPV16E6/E7 oncogenes. We found that NP60SV40T and NP39E6/E7 cell lines not only maintained many characteristics of normal NP cells (i.e. keratin profile and responsive to TGFbeta inhibition) but also highly responsive to one of the EBV encoded genes, LMP1. Comparative genome hybridization (CGH) analysis showed that these two cell lines contained multiple genetic alterations, some of which have been described in NPC. The immortalized NP cell lines are non-tumorigenic and exhibit anchorage-dependent growth. These cell lines may provide a possible cell model system for studying the mechanisms involved in the tumorigenesis of NPC.  相似文献   

8.
Despite many years of study, relatively little is known about the effector mechanisms that operate against intestine-dwelling nematodes. Most of the current understanding comes from studies of laboratory model systems in rodents. It is clear that when an intestinal helminth infection takes place the immune system generates a strong Th2-mediated response, which regulates a variety of responses characteristic of helminth infections such as eosinophilia, intestinal mastocytosis and elevated IgE production. The ability to modulate the host''s immune response in vivo with cytokine-specific monoclonal antibodies and recombinant cytokines, together with the use of animals with disruption of key genes involved in the immune response, have provided powerful tools with which to dissect the potential effector mechanisms operating. In the absence of a T-cell compartment the host is unable to expel the parasite. If a Th1-dominated response is generated, protective immunity is almost universally compromised. Thus, it it would appear that some aspect of a Th2-mediated response controls effector mechanisms. Although it is clear that for some infections the mast cell appears to be involved in protection, probably through the generation of a non-specific inflammatory response, how these cells become activated remains unclear. Data from infections in transgenic animals suggest that activation is not through the high-affinity receptor for IgE. Such studies also call into doubt the importance of conventional interactions between effector leucocytes and antibody. There is little evidence to support a protective role for eosinophilia in any system. New data also imply that, although interleukin 4 (IL-4) is generally important (and can exert effects independent of an adaptive immune response), it is not always sufficient to mediate protection; other Th2 cytokines (e.g. IL-13) may warrant closer investigation. It is apparent that a number of potential Th2-controlled effector mechanisms (some of which may be particularly important at mucosal surfaces) remain to be explored. Overall, it is likely that worm expulsion is the result of a combination of multiple mechanisms, some of which are more critical to some species of parasite than to others.  相似文献   

9.
The use of vectors that are designed to allow positive selection of recombinants facilitates cloning experiments in E. coli. Using kid, a lethal gene of the R1 plasmid parD locus, we generated pKID vectors leading to high selective efficiency of recombinants (greater than 90%). The E. coli bacterial host used to propagate these vectors produces the Kis protein, the natural antagonist of Kid. This new positive-selection system exhibits the same efficiency as the original ccdB-based selection vectors, pKIL (4). We also show that the ccdB and kid systems are independent. This property increases the potential of plasmidic poison-antidote systems for genetic applications and opens the door to a generation of new vectors containing the two selection systems.  相似文献   

10.
Growth of Coliphage T7 in Salmonella typhimurium   总被引:5,自引:1,他引:4       下载免费PDF全文
A mutant of Salmonella typhimurium was found to be sensitive to killing by coliphage T7 because of an alteration in its surface properties. However, the infections were abortive and studies with (32)P-labeled T7 grown in Escherichia coli B (T7.B) indicated that the phage DNA was restricted by S. typhimurium. When a mutant T7 which survived the restriction and produced plaques on Salmonella (T7.S) was passed through one cycle of growth in E. coli B, its ability to grow in Salmonella was lost, indicating that host-controlled restriction and modification are operative in this system. Restrictionless S. typhimurium mutants were isolated that permit the growth of not only T7.S but also T7.B and coliphage T3. The physiology of T7 production in the restrictionless host is nearly identical to that in Escherichia coli.  相似文献   

11.
12.
A main goal of the industrialized world is the development of effective vaccines to control infectious diseases with major health and socio-economic impact. Current understanding of the immune response triggered during infection with pathogens causing malaria, hepatitis C and AIDS emphasizes the importance of cytotoxic T lymphocytes (CTLs) in combating these infections. This has led to the development of new vaccination strategies, some of which are in phase I/II clinical trials. Promising strategies of vaccination are based on highly attenuated viral vectors, such as Vaccinia virus (VV) in combination with heterologous like vectors naked DNA, referred to as priming/booster vaccination. While these immunization schedules increased the production of specific CTLs, there is a need to further expand the CD8+T cell population to control an infection. Among molecules that play a significant role in the modulation of the CTL response is the cytokine IL-12. Immunoregulation by IL-12 is of central importance in cell-mediated immunity (CMI) against those pathogens and tumors that are controlled by cell-mediated mechanisms, supported by Thl cells. The use of this cytokine in combination with highly immunogenic VV-derived vectors is a promising system for development of future vaccination schedules. In this review, we summarize recent data on the use of IL-12 in vaccination procedures, as well as undesired side-effects of the cytokine that can be overcome by accurate use of dose, route and time-window administration of IL-12 encoding vectors. Results described here indicate that VV IL-12-mediated enhancement of the specific CMI response against a model antigen HIV-1 env was time- and dose-dependent and that the antigen and the cytokine could be expresed from two different rVVs modulating the doses of the vectors and allowing for enhancement of a specific CMI response. Moreover, the use of IL-12 during DNA prime/VV boost regimens enhanced the specific anti-HIV-1 env cellular response 20 times compared to that generated after a single rVVenv inoculation. Variables such as: a) dose of the cytokine applied, b) time of its administration and c) routes of inoculation play a critical role in the final outcome of the response. The findings presented here can be extended to other antigens, suggesting that immunomodulatory cytokines can be useful in the development of the future vaccines against numerous infectious diseases and tumors.  相似文献   

13.
14.
Feucht A  Lewis PJ 《Gene》2001,264(2):289-297
The intrinsically fluorescent green fluorescent protein has been used in many laboratories as a cytological marker to monitor protein localisation in live cells. Multiple spectrally modified mutant versions and novel fluorescent proteins from other species have subsequently been reported and used for labelling cells with multiple fluorescent protein fusions. In this work we report the design and use of vectors containing some of these spectral variants of GFP for use in the Gram positive bacterium Bacillus subtilis. These vectors complement those previously described (Lewis and Marston, 1999. Gene 227, 101-109) to provide a large suite of plasmid vectors for use in this and other related Gram positive organisms. Using these vectors we have been able to directly demonstrate the sequential assembly/disassembly of proteins involved in the generation of cellular asymmetry during development.  相似文献   

15.
Many Candida infections involve biofilm formation on implanted devices such as an indwelling catheter, a prosthetic heart valve or a denture. Candida biofilms can be formed in vitro using several model systems. In the simplest of these, organisms are grown on the surfaces of small discs of catheter material or denture acrylic. Biofilms of C. albicans prepared in this way consist of matrix-enclosed microcolonies containing yeasts, hyphae and pseudohyphae, arranged in a bilayer structure. Candida biofilms are resistant to a range of antifungal agents in current clinical use, including amphotericin B and fluconazole. Current research suggests that multiple mechanisms are involved in biofilm drug resistance.  相似文献   

16.
D Ross  E Ziff 《Journal of virology》1992,66(5):3110-3117
Human adenovirus 2 grows poorly in monkey cells, partly because of defects in late gene expression. Since deletions in early region 4 (E4) cause similar defects in late gene expression, we examined E4 mRNA expression in abortive infections. Processing of E4 mRNAs was defective during abortive infections, most likely at the level of splicing. At early times in productive infections in HeLa cells, the major E4 species produced is a 2-kb mRNA; at late times, a shift occurs so that smaller spliced E4 mRNAs are also produced. In CV-1 cells, a nonpermissive monkey cell line, this shift did not take place and only the 2-kb species was produced at late times, suggesting a defect in E4 mRNA splicing during abortive infections. The adenovirus DNA-binding protein (DBP) was required for normal processing of E4 mRNAs, since a host range mutant (hr602) containing an altered DBP gene showed a normal late E4 mRNA pattern in CV-1 cells; in addition, DBP was required during infections in HeLa cells for late E4 mRNA expression. DBP was not required for production of the late E4 pattern in transient expression assays in HeLa or 293 cells, suggesting that a second factor in addition to the DBP, present during infection but not transfection, modulates E4 mRNA processing.  相似文献   

17.
18.
《Gene》1997,193(2):129-140
To explore the utility of the bacteriophage T7 binary system in adenovirus (Ad) vectors we constructed three Ad5-based vectors containing the T7 RNA polymerase (T7pol) gene in either early region 1 (E1) or E3. The recombinant Ad vectors were either deficient (AdT7pol1, AdT7pol2) or competent (AdT7pol3) for replication in human cells other than Ad5 transformed (293) cells. To test the ability of the T7 polymerase produced by these vectors to drive gene expression, a reporter vector was constructed with an E1 substitution comprising the bacterial β-galactosidase (βGal) (lacZ) gene under the control of the T7 gene 10 promoter (T7pro) and linked to the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) (AdBHG10T7βGal). Coinfections were performed with the various AdT7pol vectors and the reporter vector, and expression was analysed in three different human cell lines: 293, A549 and MRC-5. Depending on the AdT7pol vector used, different levels of expression were obtained from the reporter gene. In 293 cells, expression was detected following infection at very low multiplicities of infection (moi) with all of the T7pol vectors when coinfected with the reporter vector AdBHG10T7βGal. In A549 and MRC-5 cells very little expression was detected using AdT7pol1 or pol2 and efficient expression was only obtained when relatively high moi values of the replication-competent vector were used in the coinfections. We also constructed a single vector containing both elements of the T7 system (T7pol in E3 and T7 promoter driving expression of the chloramphenicol acetyl transferase (cat) gene in E1). This vector proved difficult to rescue but was stable once isolated. Finally, experiments performed to evaluate the `leakiness' of the Ad-T7 system detected very little expression from the T7pro in the absence of T7 polymerase suggesting this system may be useful for the cloning and expression of genes encoding cytotoxic proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号