首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of the fibrinolytic system of cultured human umbilical vein endothelial cells (HUVECs) by recombinant interleukin 1 beta (rIL-1 beta) and tumor necrosis factor alpha (rTNF alpha) was investigated. Functional and immunologic assays indicated that both cytokines decreased HUVEC tissue-type plasminogen activator (tPA) and increased type 1 plasminogen activator inhibitor (PAI-1) in a dose- and time-dependent manner. Maximal effects (50% decrease in tPA antigen; 300-400% increase in PAI-1 activity) were achieved with 2.5 units/ml rIL-1 beta and 200 units/ml rTNF alpha. Combinations of rIL-1 beta and rTNF alpha were not additive at these maximal concentrations. After a 24-h pretreatment with rIL-1 beta, HUVECs secreted tPA at one-quarter of the rate of control cells and released PAI-1 at a rate that was 5-fold higher than controls. Neither the basal rate of PAI-1 release nor the increased rate of release of PAI-1 in response to rIL-1 beta was affected by subsequently treating the cells with secretagogues (e.g. phorbol myristate acetate) suggesting that PAI-1 is not contained within a rapidly releasable, intracellular storage pool. Northern blot analysis using a PAI-1 cDNA probe indicated that the cytokines increased the steady-state levels of the 3.2- and 2.3-kb PAI-1 mRNA species, but with a preferential increase in the larger mRNA form. The fact that both rIL-1 beta and rTNF alpha act in a similar manner strengthens the hypothesis that the local development of inflammatory/immune processes could reduce endothelial fibrinolytic activity.  相似文献   

2.
3.
The fibrinolytic system was investigated in 38 patients (21 males and 17 females) affected by type 1 diabetes mellitus (18 free from complications, 10 with retinopathy, and 10 with autonomic neuropathy) and in 8 healthy controls. Two separate fibrinolysis-stimulating tests were done: standardized venous occlusion and 1-desamino-8-D-arginine vasopressin infusion. Plasma tissue plasminogen activator antigen and activity and plasma plasminogen activator inhibitor activity were measured. All the patients were in good metabolic control (mean HbA1c 7.4%, range 6.1-8.0%). No significant differences were observed either between the diabetic patients and the control subjects, nor among the subgroups of diabetic patients. The fibrinolytic system is probably not involved in type 1 diabetes mellitus.  相似文献   

4.
Plasminogen activator inhibitor type 1 (PAI-1) is the primary physiologic inhibitor of the naturally occurring plasminogen activators. In higher primates two forms of mature PAI-1 mRNA (3.2 kb and 2.2 kb) arise by alternative cleavage and polyadenylation of PAI-1 hnRNA which is regulated in a tissue-specific fashion in humans. In other mammals only the 3.2 kb mRNA has been detected. The putative downstream polyadenylation site in humans that gives rise to the 3.2 kb PAI-1 mRNA consists of three overlapping copies of the consensus polyadenylation sequence while no consensus polyadenylation sequence is found upstream at a position that could generate the shorter mRNA species. To determine whether differential cleavage and polyadenylation of PAI-1 mRNA is due to species-specific differences in trans-acting factors that process PAI-1 mRNA or to the presence of a nonconsensus polyadenylation site acquired recently during primate evolution we prepared plasmids in which the 3' nontranslated region of the human PAI-1 gene or the mouse PAI-1 cDNA was inserted downstream of the neomycin gene in the plasmid pSV2neo. We show that the 3'-nontranslated region of the human PAI-1 gene but not the mouse PAI-1 cDNA conferred alternative cleavage and polyadenylation to the neomycin gene in transfected human Hep G2 cells as well as mouse NIH3T3 and rat L6 cells.  相似文献   

5.
The tissue-specific distribution of tissue-type and urokinase-type plasminogen activator (t-PA and u-PA) and their inhibitor type 1 (PAI-1) was analyzed at mRNA level in five major rat organ tissues. t-PA mRNA was detected in lung, kidney, heart, and liver. u-PA mRNA was detected in kidney and lung. Presence of PA mRNA correlated with the detection of PA activity in extracts of these tissues. PAI-1 mRNA was detected predominantly in heart and lung. Although PAI activity could not be measured directly in tissue extracts, the presence of PAI-1 mRNA correlated with the occurrence of PA.PAI complex in fibrin autography of tissue extracts. Endotoxin injection caused a very large increase in plasma PAI activity. This increase correlated with a marked increase in PAI-1 mRNA in nearly all tissues studied. The increase in PAI-1 mRNA is most pronounced in lung and liver. Endotoxin injection also caused an increased level of t-PA mRNA in heart and kidney, and an increased u-PA mRNA level in kidney. mRNA analysis of freshly isolated and separated subfractionated liver cells showed that the marked increase in PAI-1 mRNA in the liver after endotoxin injection may be due mainly to a strong increase of PAI-1 mRNA in the liver endothelial cells.  相似文献   

6.
Nitric oxide produced in various human tissues by nitric oxide synthase is involved in the regulation of many physiological processes. Mechanism of its action is diverse. The most important physiological activity of nitric oxide is guanylate cyclase activation and an increase of cGMP synthesis. At low concentrations NO plays a pivotal role in vessel relaxation and possesses antithrombotic, antiproliferative and anti-inflammatory features as well. An excessive production of nitric oxide can disturb vascular hemostasis and contribute to development of cardiovascular diseases. Studies provide that NO also participate in fibrynolysis regulation by the influence on the PAI-1 and t-PA expression, what may have important clinical implications. The aim of this review is to present current knowledge about the role of nitric oxide in the regulation of these plasminogen activation system factors.  相似文献   

7.
8.
The "serpin" plasminogen activator inhibitor 1 (PAI-1) is the fast acting inhibitor of plasminogen activators (tissue-type (t-PA) and urokinase type-PA) and is an essential regulatory protein of the fibrinolytic system. Its P1-P1' reactive center (R346 M347) acts as a "bait" for tight binding to t-PA/urokinase-type PA. In vivo, PAI-1 is encountered in complex with vitronectin, an interaction known to stabilize its activity but not to affect the second-order association rate constant (k1) between PAI-1 and t-PA. Nevertheless, by using PAI-1 reactive site variants (R346M, M347S, and R346M M347S), we show that the binding of vitronectin to the PAI-1 mutant proteins improves plasminogen activator inhibition. In the absence of vitronectin the PAI-1 R346M mutants are virtually inactive toward t-PA (k1 less than 1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin the rate of association increases about 1,000-fold (k1 of 6-8 x 10(5) M-1 s-1). This inhibition coincides with the formation of serpin-typical, sodium dodecyl sulfide-stable t-PA.PAI-1 R346M (R346M M347S) complexes. As evidenced by amino acid sequence analysis, the newly created M346-M/S347 peptide bond is susceptible to attack by t-PA, similar to the wild-type R346-M347 peptide bond, indicating that in the presence of vitronectin M346 functions as an efficient P1 residue. In addition, we show that the inhibition of t-PA and urokinase-type PA by PAI-1 mutant proteins is accelerated by the presence of the nonprotease A chains of the plasminogen activators.  相似文献   

9.
The influence of streptokinase on plasminogen activators inhibitor of type I (PAI-1) was investigated with the use of model systems in vitro and in vivo. It was defined, that intravenous streptokinase injection causes an increase in PAI-1 content in mammals' blood plasma. Experiments in vitro have shown that the increase in PAI-1 concentration takes place as a result of streptokinase action. It occurs due to platelets activation with subsequent PAI-1 secretion from their a-granules. It is established, that PAI-1 is secreted by platelets both in free and in complex forms. The data obtained in the work, allow to assume, that the simultaneous substantial increase in PAI-1 content with platelets activation, as a result of streptokinase influence, can lead to new thrombotic complications risk.  相似文献   

10.
Plasminogen activator inhibitor type 1 (PAI-1), the fast-acting inhibitor of tissue-type plasminogen activator (t-PA) and urokinase (u-PA), is a member of the serpin superfamily of proteins. Both in plasma and in the growth substratum of cultured endothelial cells, PAI-1 is associated with its binding protein vitronectin, resulting in a stabilization of active PAI-1. Recently, it has been demonstrated that the PAI-1-binding site on vitronectin is adjacent to a heparin-binding site (Preissner et al., 1990). Furthermore, it can be deduced that the amino acid residues, proposed to mediate heparin binding in the serpins antithrombin III and heparin cofactor II, are conserved in PAI-1. Consequently, here we have investigated whether PAI-1 also interacts with heparin. At pH 7.4, PAI-1 quantitatively binds to heparin-Sepharose and can be eluted with increasing [NaCl]. Binding of PAI-1 to heparin-Sepharose can be efficiently competed with heparin in solution (IC50, 7 microM). In the presence of heparin, the protease specificity of PAI-1 toward thrombin is substantially increased. This is shown by (i) quenching of thrombin activity of PAI-1 in the presence of heparin and (ii) induction of the formation of SDS-stable complexes between thrombin and PAI-1 by heparin. In a dose response curve, both effects reached a maximum at approximately 1 unit/mL and then diminished again upon further increasing the heparin concentration, strongly suggesting a template mechanism as an explanation for the observed effect. In contrast to vitronectin, heparin does not stabilize the active conformation of PAI-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Liew MA  McPhun V  Baker MS 《Cytometry》2000,40(1):32-41
BACKGROUND: Plasminogen activator inhibitor type 2 (PAI-2) is a member of the serine protease inhibitor (SERPIN) superfamily and forms stable complexes with urokinase type plasminogen activator (uPA). uPA can be found on the cell surface attached to its specific receptor (uPAR), allowing for controlled degradation of the extracellular matrix by the activation of plasminogen into plasmin. The aim of this study was to evaluate if PAI-2 could also be detected on the cell surface, providing a means of regulating the activity of cell surface uPA. METHODS: Intact or permeabilized cell lines or human peripheral blood leukocytes were assayed by flow cytometry for cell surface uPA or PAI-2. Plasma membrane-enriched preparations prepared from Jurkat, HaCaT, THP-1, U937, or MM6 cells were assayed by enzyme-linked immunosorbent assay (ELISA) or Western blotting for PAI-2 antigen. RESULTS: By flow cytometry, cell surface PAI-2 was not detected on monocytes from human peripheral blood, MM6, or HaCaT cells. Cell surface PAI-2 was only detected very weakly on the surface of U937 cells. In contrast, PAI-2 could be detected in all of these cells when fixed and permeabilized. By ELISA, PAI-2 was very abundant in the cytosol-enriched preparations of U937, MM6, and HaCaT cells, but was present in lower amounts in the plasma membrane-enriched preparations. By Western blotting, monomeric nonglycosylated PAI-2, but not uPA/PAI-2 complexes, could be detected in the cytosol and plasma membrane-enriched preparations. CONCLUSIONS: These results indicate that PAI-2 cannot be detected on the surface of PAI-2-expressing cells, and confirm that PAI-2 is predominantly a cytosolic protein.  相似文献   

13.
14.
Bovine aortic endothelial cells (BAEs) were used as a model system to study the nature and origin of protein(s) in the extracellular matrix that bind to type 1 plasminogen activator inhibitor (PAI-1). Matrix samples were fractionated by SDS-PAGE and analyzed by PAI-1 ligand binding and by immunoblotting using antibodies to vitronectin (Vn). PAI-1 bound primarily to two Vn-related polypeptides of Mr 63,000 and 57,000, and both of these partially degraded polypeptides were present in the culture serum. Radiolabeling experiments failed to detect significant Vn biosynthesis by BAEs (less than 0.03% of total), or by human umbilical vein endothelial cells and HT 1080 cells. The binding of PAI-1 to Vn was relatively specific since direct binding studies failed to demonstrate significant interactions between PAI-1 and other matrix proteins (e.g., fibronectin, type IV collagen, laminin, or matrigel). Kinetic studies indicate that PAI-1 rapidly accumulates in the matrix when BAEs are plated on Vn, appearing in the conditioned medium only after a significant lag period (1-2 h). However, no PAI-1 was detected in the matrix when the cells were plated on fibronectin-coated dishes, and there was no lag period for PAI-1 accumulation in the medium. These results indicate that PAI-1 binds specifically to serum-derived Vn in the matrix, and suggest that the composition of both the matrix and serum itself may influence the pericellular distribution of this important inhibitor.  相似文献   

15.
16.
Catalytic activity of tissue-type plasminogen activator (t-PA) in plasma is regulated in part by formation of complexes with specific inhibitors as well as by hepatic clearance. Potential interaction of these two regulatory mechanisms was examined in the human hepatoma cell line Hep G2. These cells secrete plasminogen activator inhibitor type-1 (PAI-1) and initiate catabolism of exogenous t-PA by receptor-mediated endocytosis. Specific binding of 125I-t-PA to cells at 4 degrees C results in dose-dependent formation of a 95-kDa species recognized by monospecific anti-PAI-1 and anti-t-PA antibodies and stable in the presence of low (0.2%) concentrations of sodium dodecyl sulfate (SDS). Specific binding of 125I-t-PA and formation of the 95-kDa SDS-stable species are inhibited in a concentration-dependent manner following preincubation of cells with anti-PAI-1 antibodies. High and low molecular weight forms of urokinase plasminogen activator (u-PA) capable of forming specific complexes with PAI-1 complete for 125I-t-PA binding sites. However, the proenzyme form of u-PA (scu-PA), incapable of forming complexes with PAI-1, does not compete for 125I-t-PA binding sites. The role of the serine protease active site of t-PA in mediating both interaction with PAI-1 and specific binding was examined using 125I-t-PA that had been functionally inactivated with D-phenylalanyl-L-propyl-L-arginyl-chloromethyl ketone (PPACK). 125I-t-PA-PPACK, despite a 6-fold lower affinity than active 125I-t-PA, exhibited specific binding to cells without detectable formation of SDS-stable complexes with PAI-1. Both surface-bound 125I-t-PA and 125I-t-PA-PPACK are internalized and degraded by cells at 37 degrees C. 125I-t-PA is internalized as a stable complex with PAI-1, whereas 125I-t-PA-PPACK is internalized with similar kinetics but without the presence of an SDS-stable complex. Thus, PAI-1 appears capable of modulating t-PA catabolism in the human hepatocyte.  相似文献   

17.
18.
The site of the reaction between plasminogen activators and plasminogen activator inhibitor 1 (PAI-1) was investigated in cultures of human umbilical vein endothelial cells. In conditioned medium from endothelial cells, two forms of a plasminogen activator-specific inhibitor can be demonstrated: an active form that readily binds to and inhibits plasminogen activators and an immunologically related quiescent form which has no anti-activator activity but which can be activated by denaturation. In conditioned medium, only a few percent of PAI-1 is the active form. However, the addition of increasing concentrations of tissue-type plasminogen activator (t-PA) or urokinase to confluent endothelial cells produced a saturable (3.0 pmol/5 x 10(5) cells), dose-dependent increase of the activator-PAI-1 complex in the conditioned medium even in the presence of actinomycin D or cycloheximide. This resulted also in a dose-dependent decrease of the residual PAI activity measured by reverse fibrin autography both in the conditioned medium and cell extracts. Short-time exposure of endothelial cells to a large amount of t-PA caused almost complete depletion of all cell-associated PAI activity. Although there was no detectable PAI activity even after activation of PAI by denaturants or antigen in the culture medium at 4 degrees C without the addition of t-PA, the addition of t-PA at 4 degrees C not only resulted in the formation of 70% of the amount of the t-PA.PAI complex in conditioned medium at 37 degrees C, but also induced PAI-1 antigen in a time and dose-dependent manner in the conditioned medium. Moreover, 125I-labeled t-PA immobilized on Sepharose added directly to endothelial cells formed a complex with PAI-1 in a dose-dependent manner. On the other hand, no detectable complex was formed with PAI-1 when Sepharose-immobilized 125I-labeled t-PA was added to endothelial cells under conditions in which the added t-PA could not contact the cells directly but other proteins could pass freely by the use of a Transwell. All these results suggest that a "storage pool" on the surface of endothelial cells or the extracellular matrix produced by endothelial cells contains almost all the active PAI-1, and reaction between PA and PAI-1 mainly occurs on the endothelial cell membranes, resulting in a decrease of the conversion of active PAI-1 to the quiescent form.  相似文献   

19.
20.
The DNA sequence of the c-myc-regulated gene mrl (G. C. Prendergast and M. D. Cole, Mol. Cell. Biol. 9:124-134, 1989) reveals that it encodes plasminogen activator inhibitor 1 (PAI-1), a regulator of extracellular proteolysis. Comparison of the human and mouse PAI-1 promoters and cDNA 3' noncoding regions revealed several highly conserved sequence domains, potential targets for c-myc and other factors influencing PAI-1 expression. We discuss possible roles for PAI-1 in normal and neoplastic cell growth control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号