首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian soluble epoxide hydrolase (sEH) is a multidomain enzyme composed of C- and N-terminal regions that contain active sites for epoxide hydrolase (EH) and phosphatase activities, respectively. We report the cloning of two 60 kDa multidomain enzymes from the purple sea urchin Strongylocentrotus purpuratus displaying significant sequence similarity to both the N- and C-terminal domains of the mammalian sEH. While one urchin enzyme did not exhibit EH activity, the second enzyme hydrolyzed several lipid messenger molecules metabolized by the mammalian sEH, including the epoxyeicosatrienoic acids. Neither of the urchin enzymes displayed phosphatase activity. The urchin EH was inhibited by small molecule inhibitors of the mammalian sEH and is the likely ancestor of the enzyme. Sequence comparisons suggest that the urchin sEH homologs are the result of a gene fusion event between a gene encoding for an EH and a gene for an enzyme of undetermined function. This fusion event was followed by a duplication event to produce the urchin enzymes.  相似文献   

2.
3.
Human soluble epoxide hydrolase (sEH), an enzyme directing the functional disposition of a variety of endogenous and xenobiotic-derived chemical epoxides, was characterized at the genomic level for interindividual variation capable of impacting function. RNA was isolated from 25 human liver samples and used to generate full-length copies of soluble epoxide hydrolase cDNA. The resulting cDNAs were polymerase chain reaction amplified, sequenced, and eight variant loci were identified. The coding region contained five silent single nucleotide polymorphisms (SNPs) and two variant loci resulting in altered protein sequence. An amino acid substitution was identified at residue 287 in exon 8, where the more common arginine was replaced by glutamine. A second variant locus was identified in exon 13 where an arginine residue was inserted following serine 402 resulting in the sequence, arginine 403-404, instead of the more common, arginine 403. This amino acid insertion was confirmed by analyzing genomic DNA from individuals harboring the polymorphic allele. Slot blot hybridization analyses of the liver samples indicated that sEH mRNA steady-state expression varied approximately 10-fold. Transient transfection experiments with CHO and COS-7 cells were used to demonstrate that the two new alleles possess catalytic activity using trans-stilbene oxide as a model substrate. Although the activity of the glutamine 287 variant was similar to the sEH wild type allele, proteins containing the arginine insertion exhibited strikingly lower activity. Allelic forms of human sEH, with markedly different enzymatic profiles, may have important physiological implications with respect to the disposition of epoxides formed from the oxidation of fatty acids, such as arachidonic acid-derived intermediates, as well in the regulation of toxicity due to xenobiotic epoxide exposures.  相似文献   

4.
Affinity chromatographic methods were developed for the one-step purification to homogeneity of recombinant soluble epoxide hydrolases (sEHs) from cress and potato. The enzymes are monomeric, with masses of 36 and 39 kDa and pI values of 4.5 and 5.0, respectively. In spite of a large difference in sequence, the two plant enzymes have properties of inhibition and substrate selectivity which differ only slightly from mammalian sEHs. Whereas mammalian sEHs are highly selective for trans- versus cis-substituted stilbene oxide and 1,3-diphenylpropene oxide (DPPO), plant sEHs exhibit far greater selectivity for trans- versus cis-stilbene oxide, but little to no selectivity for DPPO isomers. The isolation of a covalently linked plant sEH-substrate complex indicated that the plant and mammalian sEHs have a similar mechanism of action. We hypothesize an in vivo role for plant sEH in cutin biosynthesis, based on relatively high plant sEH activity on epoxystearate to form a cutin precursor, 9,10-dihydroxystearate. Plant sEHs display a high thermal stability relative to mammalian sEHs. This stability and their high enantioselectivity for a single substrate suggest that their potential as biocatalysts for the preparation of enantiopure epoxides should be evaluated.  相似文献   

5.
A series of conformationally restricted inhibitors of human soluble epoxide hydrolase (sEH) has been developed. Inhibition potency of the described compounds ranges from 4.2 microM to 1.1 nM against recombinant sEH. N-(1-Acetylpiperidin-4-yl)-N'-(adamant-1-yl) urea (5a) was found to be a potent inhibitor (IC(50) = 7.0 nM) that was also orally bioavailable in canines.  相似文献   

6.
Epoxide hydrolases are a small superfamily of enzymes important for the detoxification of chemically reactive xenobiotic epoxides and for the processing of endogenous epoxides that act as signaling molecules. Here, we report the identification of two human epoxide hydrolases: EH3 and EH4. They share 45% sequence identity, thus representing a new family of mammalian epoxide hydrolases. Quantitative RT-PCR from mouse tissue indicates strongest EH3 expression in lung, skin, and upper gastrointestinal tract. The recombinant enzyme shows a high turnover number with 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid (EET), as well as 9,10-epoxyoctadec-11-enoic acid (leukotoxin). It is inhibited by a subclass of N,N'-disubstituted urea derivatives, including 12-(3-adamantan-1-yl-ureido)-dodecanoic acid, 1-cyclohexyl-3-dodecylurea, and 1-(1-acetylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea, compounds so far believed to be selective inhibitors of mammalian soluble epoxide hydrolase (sEH). Its sensitivity to this subset of sEH inhibitors may have implications on the pharmacologic profile of these compounds. This is particularly relevant because sEH is a potential drug target, and clinical trials are under way exploring the value of sEH inhibitors in the treatment of hypertension and diabetes type II.  相似文献   

7.
A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure–activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.  相似文献   

8.
Ma XX  Liu Y  Zhu Y 《生理科学进展》2010,41(4):267-271
可溶性表氧化物水解酶(soluble epoxide hydrolase,sEH)在哺乳动物体内广泛存在。研究发现,sEH可以降解表氧二十碳三烯酸(epoxyeicosatrienoic acids,EETs)以及其他脂肪酸表氧化物。EETs具有广泛的心血管系统保护及抗炎作用,故sEH因其与心血管疾病的关系而受到关注。新近研究显示,sEH与脂质代谢密切相关,并与其C端水解酶区域和N端磷酸酶区域的不同活性有关。进一步深入探讨sEH的作用机制,将为研究脂质调节紊乱相关的代谢疾病提供一个新的治疗靶点。本文对sEH两端酶活性,及其与脂质代谢调节的研究进展予以综述。  相似文献   

9.
10.
A 192-member library of N,N'-disubstituted urea inhibitors was synthesized by a solid-phase method. The ureas were tested for their inhibitory activities against recombinant human soluble epoxide hydrolase. Simple carbocyclic or para/meta-substituted phenyl groups showed inhibition potencies that were equal to or greater than adamantane-based sEH inhibitors, while the presence of bulky or ionizable groups close to the urea group dramatically decreased their activities.  相似文献   

11.
The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.  相似文献   

12.
Epoxide hydrolase (EC 3.3.2.3) in plants is involved in the metabolism of epoxy fatty acids and in mediating defence responses. We report the cloning of a full-length epoxide hydrolase cDNA (BNSEH1) from oilseed rape (Brassica napus) obtained by screening of a cDNA library prepared from methyl jasmonate induced leaf tissue, and the 5'-RACE technique. The cDNA encodes a soluble protein containing 318 amino acid residues. The identity on the protein level is 85% to an Arabidopsis soluble epoxide hydrolase (sEH) and 50-60% to sEHs cloned from other plants. A 5 x His tag was added to the N-terminus of the BNSEH1 and the construct was over-expressed in the yeast Pichia pastoris. The recombinant protein was recovered at high levels after Ni-agarose chromatography of lysed cell extracts, had a molecular mass of 37 kDa on SDS/PAGE and cross-reacted on Western blots with antibodies raised to a sEH from Arabidopsis thaliana. BNSEH1 was shown to be a monomer by gel filtration analysis. The activity was low towards cis-stilbene oxide but much higher using trans-stilbene oxide as substrate with Vmax of 0.47 micro mol.min.mg-1, Km of 11 micro m and kcat of 0.3 s-1. The optimum temperature of the recombinant enzyme was 55 degrees C and the optimum pH 6-7 for trans-stilbene oxide hydrolysis. The isolation of BNSEH1 will facilitate metabolic engineering of epoxy fatty acid metabolism for functional studies of resistance and seed oil modification in this important oilcrop.  相似文献   

13.
In insects, epoxide hydrolases (EHs) play critical roles in the metabolism of xenobiotic epoxides from the food resources and in the regulation of endogenous chemical mediators, such as juvenile hormones. Using the baculovirus expression system, we expressed and characterized an epoxide hydrolase from Anopheles gambiae (AgEH) that is distinct in evolutionary history from insect juvenile hormone epoxide hydrolases (JHEHs). We partially purified the enzyme by ion exchange chromatography and isoelectric focusing. The experimentally determined molecular weight and pI were estimated to be 35 kD and 6.3 respectively, different than the theoretical ones. The AgEH had the greatest activity on long chain epoxy fatty acids such as 14,15-epoxyeicosatrienoic acids (14,15-EET) and 9,10-epoxy-12Z-octadecenoic acids (9,10-EpOME or leukotoxin) among the substrates evaluated. Juvenile hormone III, a terpenoid insect growth regulator, was the next best substrate tested. The AgEH showed kinetics comparable to the mammalian soluble epoxide hydrolases, and the activity could be inhibited by AUDA [12-(3-adamantan-1-yl-ureido) dodecanoic acid], a urea-based inhibitor designed to inhibit the mammalian soluble epoxide hydrolases. The rabbit serum generated against the soluble epoxide hydrolase of Mus musculus can both cross-react with natural and denatured forms of the AgEH, suggesting immunologically they are similar. The study suggests there are mammalian sEH homologs in insects, and epoxy fatty acids may be important chemical mediators in insects.  相似文献   

14.
Epoxide hydrolases are enzymes involved in metabolism and defense of plants. Genome scanning suggested the presence of several genes encoding epoxide hydrolase in Arabidopsis thaliana. To assure that the predicted genes are functional and the translated products have epoxide hydrolase activity analysis at the protein level is needed. We have started to clone the cDNAs and overexpress them for catalytic and physico-chemical analysis. We here report that Pichia pastoris serves as an efficient system for overexpression of soluble epoxide hydrolase 1 (AtsEH1) from A. thaliana. A tag containing six histidine residues was added to the N-terminus to enable efficient one-step purification on nickel-agarose. The enzyme was expressed at levels >18 mg.L(-1) of culture and a French Press was found to be effective to achieve cell lysis. The recombinant enzyme had a molecular mass of 37 or 38 kDa based on SDS-PAGE or MALDI-TOF analysis, respectively. The enzyme was highly active towards the substrate trans-stilbene oxide (TSO) and had a pH optimum at 7 and a temperature optimum at 54 degrees C. Using TSO as substrate the K(m) and V(max) values were determined to 5 micro M and 2 micromol min(-1) mg protein(-1), respectively. The activity was 50-fold lower towards cis-stilbene oxide. The stability over time was tested from 20 to 54 degrees C and the enzyme lost activity at varying degrees at the temperatures tested but was stable for several months at 4 degrees C.  相似文献   

15.
花生四烯酸经过细胞色素P450(cytochrome P450,CYP)表氧化酶途径生成环氧二十碳三烯酸(epoxy eicosatrienoic acid,EETs),具有扩张血管、降低血压、抗炎等多种生物学功能。在哺乳动物系统中的可溶性环氧化物水解酶(soluble epoxide hydrolase,sEH)具有α/β水解酶折叠结构,对环氧脂肪酸具有高度的选择性。sEH能够快速水解EETs,增加患心血管疾病的风险。目前,研究发现sEH抑制剂具有抑制sEH活性、提高EETs的含量的重要功能。 在多种疾病动物模型中应用sEH抑制剂或sEH基因敲除,证实sEH在心肌肥厚、糖尿病、高血压和肾病等疾病中发挥重要的生理作用。因此,sEH已被作为疾病治疗的新靶点而进行研究。本文就sEH的分布、作用机制以及sEH与疾病的关系等方面进行了讨论。  相似文献   

16.
Mammalian soluble epoxide hydrolase (sEH) converts epoxides to their corresponding diols through the addition of a water molecule. sEH readily hydrolyzes lipid signaling molecules, including the epoxyeicosatrienoic acids (EETs), epoxidized lipids produced from arachidonic acid by the action of cytochrome p450s. Through its metabolism of the EETs and other lipid mediators, sEH contributes to the regulation of vascular tone, nociception, angiogenesis and the inflammatory response. Because of its central physiological role in disease states such as cardiac hypertrophy, diabetes, hypertension, and pain sEH is being investigated as a therapeutic target. This review begins with a brief introduction to sEH protein structure and function. sEH evolution and gene structure are then discussed before human small nucleotide polymorphisms and mammalian gene expression are described in the context of several disease models. The review ends with an overview of studies that have employed the sEH knockout mouse model.  相似文献   

17.
Inhibition of soluble epoxide hydrolase (sEH) has been proposed as a new pharmaceutical approach for treating hypertension and vascular inflammation. The most potent sEH inhibitors reported in literature to date are urea derivatives. However, these compounds have limited pharmacokinetic profiles. We investigated non-urea amide derivatives as sEH inhibitors and identified a potent human sEH inhibitor 14-34 having potency comparable to urea-based inhibitors.  相似文献   

18.
The EPXH2 gene encodes for the soluble epoxide hydrolase (sEH), which has two distinct enzyme activities: epoxide hydrolase (Cterm-EH) and phosphatase (Nterm-phos). The Cterm-EH is involved in the metabolism of epoxides from arachidonic acid and other unsaturated fatty acids, endogenous chemical mediators that play important roles in blood pressure regulation, cell growth, inflammation and pain. While recent findings suggested complementary biological roles for Nterm-phos, its mode of action is not well understood. Herein, we demonstrate that lysophosphatidic acids are excellent substrates for Nterm-phos. We also showed that sEH phosphatase activity represents a significant (20-60%) part of LPA cellular hydrolysis, especially in the cytosol. This possible role of sEH on LPA hydrolysis could explain some of the biology previously associated with the Nterm-phos. These findings also underline possible cellular mechanisms by which both activities of sEH (EH and phosphatase) may have complementary or opposite roles.  相似文献   

19.
Culex mosquitoes have emerged as important model organisms for mosquito biology, and are disease vectors for multiple mosquito-borne pathogens, including West Nile virus. We characterized epoxide hydrolase activities in the mosquito Culex quinquefasciatus, which suggested multiple forms of epoxide hydrolases were present. We found EH activities on epoxy eicosatrienoic acids (EETs). EETs and other eicosanoids are well-established lipid signaling molecules in vertebrates. We showed EETs can be synthesized in vitro from arachidonic acids by mosquito lysate, and EETs were also detected in vivo both in larvae and adult mosquitoes by LC-MS/MS. The EH activities on EETs can be induced by blood feeding, and the highest activity was observed in the midgut of female mosquitoes. The enzyme activities on EETs can be inhibited by urea-based inhibitors designed for mammalian soluble epoxide hydrolases (sEH). The sEH inhibitors have been shown to play diverse biological roles in mammalian systems, and they can be useful tools to study the function of EETs in mosquitoes. Besides juvenile hormone metabolism and detoxification, insect epoxide hydrolases may also play a role in regulating lipid signaling molecules, such as EETs and other epoxy fatty acids, synthesized in vivo or obtained from blood feeding by female mosquitoes.  相似文献   

20.
Inhibition of the mammalian soluble epoxide hydrolase (sEH) is a promising new therapy in the treatment of disorders resulting from hypertension and vascular inflammation. A spectrophotometric assay (4-nitrophenyl-trans-2,3-epoxy-3-phenylpropyl carbonate, NEPC) is currently used to screen libraries of chemicals; however this assay lacks the required sensitivity to differentiate the most potent inhibitors. A series of fluorescent alpha-cyanoester and alpha-cyanocarbonate epoxides that produce a strong fluorescent signal on epoxide hydrolysis by both human and murine sEH were designed as potential substrates for an in vitro inhibition assay. The murine enzyme showed a broad range of specificities, whereas the human enzyme showed the highest specificity for cyano(6-methoxy-naphthalen-2-yl)methyl trans-[(3-phenyloxiran-2-yl)methyl] carbonate. An in vitro inhibition assay was developed using this substrate and recombinant enzyme. The utility of the fluorescent assay was confirmed by determining the IC(50) values for a series of known inhibitors. The new IC(50) values were compared with those determined by spectrophotometric NEPC and radioactive tDPPO assays. The fluorescent assay ranked these inhibitors on the basis of IC(50) values, whereas the NEPC assay did not. The ranking of inhibitor potency generally agreed with that determined using the tDPPO assay. These results show that the fluorescence-based assay is a valuable tool in the development of sEH inhibitors by revealing structure-activity relationships that previously were seen only by using the costly and labor-intensive radioactive tDPPO assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号