首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have characterized the glucocorticoid hormone induction of glutamine synthetase mRNA in embryonic chick retinal organ cultures by quantitative dot hybridization using a cDNA clone derived from chick retinal RNA. Hydrocortisone (Kapp = 3-4 nM) and dexamethasone (Kapp = 1-2 nM) produce an approximate 30-fold increase in glutamine synthetase mRNA after incubation of organ cultures derived from embryonic day 12 retinae with either hormone for 3 hr. Progesterone is a poor inducer. The glucocorticoid-mediated rise is rapid (t1/2 = 2-3 hr) and occurs in the presence of either of the protein synthesis inhibitors cycloheximide or puromycin, indicating that the induction is a primary or direct response to the hormone. However, the magnitude of the hormonal response observed in culture increases markedly during retinal development. These observations, coupled with the previously reported absence of a hormonal induction in embryonic liver, raise the possibility of a synergistic mechanism, involving tissue-specific regulatory molecules in addition to the glucocorticoid hormone receptor, to explain the retinal-specific primary glucocorticoid hormone induction of glutamine synthetase mRNA.  相似文献   

3.
4.
5.
In certain lines of hepatoma tissue culture (HTC) cells, glutamine synthetase (EC 6.3.1.2) specific activity is increased 2.5- to 3-fold by the addition of glucocorticoids to the growth media. Actinomycin D blocks both the induction and deinduction of glutamine synthetase by glucocorticoids, suggesting a requirement of RNA synthesis for both processes. Using an antiserum raised against purified rat liver glutamine synthetase, we have precipitated radiolabeled glutamine synthetase from HTC cells. Electrophoresis of the immunoprecipitates on sodium didecyl sulfate-acrylamide gels isolates the subunit of glutamine synthetase and permits the radioactivity in the glutamine synthetase band to be quantitated. Using this technique, we have investigated the effect of dexamethasone, a synthetic glucocorticoid, on the rates of synthesis and degradation of glutamine synthetase. Dexamethasone (10(-7) M) increases the rate of synthesis of glutamine synthetase 2- to 3-fold but has no effect on the rate of glutamine synthetase degradation. The rates of total cell protein synthesis and degradation are not significantly affected by dexamethasone. The presence of actinomycin D at the time of removal of dexamethasone from induced cells prevents the fall in the induced rate of synthesis of glutamine synthetase normally seen when the inhibitor is removed from the culture medium. The regulation of glutamine synthetase by dexamethasone has been compared to the regulation of another dexamethasone-inducible enzyme in HTC cells, tyrosine aminotransferase, and been found to be similar in all parameters studied.  相似文献   

6.
The cellular actions of the thyroid hormones L-thyroxine and L-triiodothyronine are mediated by the association of hormone with a chromatin-associated receptor. In cultured GH1 cells, a hormone-responsive rat pituitary cell line, thyroid hormone decreases the concentration of its receptor at early incubation times by reducing the accumulation of newly synthesized receptor. In this study, we demonstrate that cholera toxin also reduces the amount of nuclear receptor in GH1 cells in a time- and dose-dependent fashion, without altering the affinity of the receptor for hormone. The reduction of receptor mediated by cholera toxin is not secondary to a generalized inhibition of cell protein synthesis or cell replication rates and this effect can be abolished by pretreatment of the cholera toxin with soluble ganglioside II3-alpha-N- acetylneuraminosylgangliotetraosylceramide . This effect requires an intact cholera toxin molecule and does not occur at similar concentrations of the membrane-binding B subunit of cholera toxin. In order to study the influence of cholera toxin on thyroid hormone receptor turnover, we have used a dense amino acid-labeling technique. The results indicate that cholera toxin does not change the half-life of receptor, but decreases the rate of appearance of newly synthesized receptor. This decreased rate completely accounts for the lowered steady state receptor levels. The extent of cAMP stimulation by cholera toxin does not correlate with the extent of receptor reduction and forskolin, which stimulates cAMP 25- to 500-fold, does not decrease thyroid hormone receptor abundance. These studies suggest that cholera toxin modulates receptor levels by a mechanism(s) that is not mediated by cAMP in GH1 cells.  相似文献   

7.
8.
9.
We report the isolation of a complimentary DNA (cDNA) clone encoding glutamine synthetase, derived from a population of methionine sulfoxime-resistant mouse GF1 fibroblasts. When GF1 cells are incubated for 48 h in the presence of the glucocorticoid hormone dexamethasone, the specific activity of glutamine synthetase (GS), assayed as glutamyltransferase activity, increases by threefold. Based on dot hybridization analysis, hormonal treatment also produces a similar increase in the level of GS mRNA. When GF1 cells or mouse Neuro 2A neuroblastoma cells are transferred from medium containing 4 mM glutamine to glutamine-free medium, glutamyltransferase activity increases by at least fivefold. However, the presence or absence or glutamine in the medium does not affect the relative level of glutamine synthetase mRNA in either cell line. With both GF1 and Neuro 2A cells, the half-time for the decline in glutamine synthetase enzyme activity on addition of glutamine to the medium is approximately 1.5 h. This rapid decline, coupled with the lack of effect of glutamine on the level of GS messenger RNA in Neuro 2A cells, renders it unlikely that neural cells alter glutamine synthetase levels in response to glutamine by a biosynthetic mechanism, as suggested by previous authors [L. Lacoste, K.D. Chaudhary, and J. Lapointe (1982) J. Neurochem. 39, 78-85].  相似文献   

10.
11.
12.
The enzyme glutamine synthetase (GS) ranks as one of the most remarkable glucocorticoid-inducible mammalian genes. In many tissues and cell lines, the synthetic glucocorticoid dexamethasone alone increases GS expression several fold. The direct response is mainly mediated by a cellular glucocorticoid receptor that, upon binding of the hormone, interacts with glucocorticoid responsive elements (GREs) of the gene. In cells of hepatocellular origin the response is mediated by a GRE located in the first intron of the gene. Surprisingly, hepatocytes do not respond to glucocorticoids with enhanced GS expression, despite the presence of an intact glucocorticoid receptor, which, in the same cells, stimulates expression of other genes such as tyrosine amino transferase. Reporter gene assays identified a sequence element downstream from the intronic GRE that inhibits the enhancement of expression by glucocorticoids. This silencer was designated GS silencer element of the rat. Gel mobility shift assays demonstrate the binding of a factor in hepatocyte nuclear extract. This yet unknown factor was designated GS silencer-binding protein. It is absent in FAO cells that respond to glucocorticoids with enhanced expression of GS and present in HepG2 cells that do not respond.  相似文献   

13.
Using cultured GH1 cells, a growth hormone and prolactin-producing rat pituitary cell line, we have shown that n-butyrate and other short chain carboxylic acids stimulate histone acetylation and elicit a reduction of thyroid hormone nuclear receptor which is inversely related to the extent of acetylation (Samuels, H. H., Stanley, F., Casanova, J., and Shao, T. C. (1980) J. Biol. Chem. 255, 2499-2508). In this study, we compared the n-butyrate and propionate modulation of receptor levels to regulation of the growth hormone and prolactin response by 3,5,3'-triiodo-L-thyronine (L-T3). n-Butyrate (0.1-10 mM) did not stimulate growth hormone production. L-T3 stimulated the growth hormone response 4- to 5-fold and n-butyrate (0.5-1 mM) increased L-T3 stimulation of growth hormone production 1.5- to 2-fold compared to L-T3 alone. L-T3 stimulation of growth hormone production at higher n-butyrate concentrations decreased in parallel with the n-butyrate-mediated reduction of receptor levels. In contrast with the growth hormone response, n-butyrate (0.5 mM) increased basal prolactin production about 5-fold. Prolactin production, which is inhibited 25 to 50% by L-T3, was stimulated between 20- and 70-fold by L-T3 + n-butyrate (0.5-1 mM) and this decreased at higher n-butyrate levels. Prolactin mRNA and growth hormone mRNA levels paralleled the changes in prolactin and growth hormone production rates. These effects of L-T3, n-butyrate, or L-T3 + n-butyrate appeared unrelated to changes in cAMP levels or global changes in DNA methylation of the growth hormone or prolactin genes. Propionate elicited the same effects as n-butyrate but at a 5- to 10-fold higher concentration consistent with their relative effect on stimulating acetylation of chromatin proteins. These results suggest that prolactin gene expression is under partial regulatory repression which is reversed by a carboxylic acid-mediated postsynthetic modification event which allows for stimulation of the prolactin gene by thyroid hormone.  相似文献   

14.
15.
In order to elucidate the complex mechanism(s) of action of steroid hormones, thyroid hormone and retinoic acid in pituitary mammotrophs, a clonal cell line (G3) was isolated from the rat pituitary tumor MtT/F84. G3 cells were found to secrete prolactin constitutively and to contain receptors for estrogen, glucocorticoid, progesterone and thyroid hormone. Stimulation of G3 cells with thyroid hormone resulted in a modest but significant increase in estrogen and progesterone receptor levels, however, retinoic acid treatment had no effect. Simultaneous addition of thyroid hormone and estrogen showed an additive effect on progesterone receptor levels in G3 cells. Thyroid hormone as well as estrogen enhanced the growth of G3 cells. Interestingly, retinoic acid was also found to enhance their growth but its enhancement was less potent than thyroid hormone and estrogen. Low concentrations of estradiol and thyroid hormone showed additive effects, but G3 cells stimulated with high concentrations of thyroid hormone failed to elicit an additive effect with estrogen, suggesting the presence of a common pathway in the growth-stimulatory actions of these hormones. In addition, exposure of G3 cells to retinoic acid completely abolished the effects of estrogen or thyroid hormone in terms of cell growth. These results suggest that there are complex interactions in the signalling pathways for estrogen, thyroid hormone and retinoic acid action in G3 cells.  相似文献   

16.
Recent studies from this laboratory have demonstrated the presence of thyroid hormone response elements (TREs) in the 5'-flanking region of the rat alpha and TSH beta subunit genes. Using an avidin-biotin complex DNA binding assay, we have shown that these TREs bind the thyroid hormone (T3) receptor present in nuclear extracts of GH3 cells, as well as the in vitro synthesized Hc-erbA beta, which has been identified as a member of the family of T3 receptors. The binding of Hc-erbA beta to the alpha subunit TRE can be enhanced 3-4-fold by including GH3 nuclear extract in the binding assay. Binding to the TRE present in the TSH beta gene or the rat growth hormone gene was similarly enhanced, although to a lesser degree. The enhanced binding activity is trypsin-sensitive and heat labile, and is not reproduced by the addition of histones, bovine serum albumin, or cytosol instead of nuclear extract. Gel exclusion chromatography suggests a molecular size of approximately 65,000 Da. This protein, which is present in several different cell types, is also able to complement binding of the rat erbA alpha-1 and the pituitary-specific erbA beta-2 forms of the receptor. These data suggest that the binding of the T3 receptor to a TRE is augmented by another nuclear protein, which may be involved in the mechanism of action of thyroid hormone.  相似文献   

17.
Treatment of intact GH1 cells with sodium molybdate inhibits the subsequent rate of nuclear accumulation of hormone-occupied glucocorticoid and estrogen receptors. Cells were incubated at 23 degrees C for 1 h with 30 mM molybdate and then for up to 30 min with [3H]triamcinolone acetonide or [3H]estradiol in the continued presence of molybdate. Although molybdate did not affect the rate of receptor occupancy with either steroid, cells treated with molybdate had more occupied cytosolic and fewer occupied nuclear receptors than control cells. For the glucocorticoid receptor, cells treated with molybdate had more 10 S and fewer 4 S cytosolic receptors than control cells. In low salt cytosol molybdate inhibits the temperature-mediated subunit dissociation of occupied 10 S glucocorticoid receptor. These results suggest that a hormone-mediated dissociation of an intracellular 10 S oligomeric glucocorticoid receptor form to its 4 S subunits is required prior to accumulation of occupied receptors in the nuclear fraction. In cells incubated at 37 degrees C for 1 h or longer with [3H]triamcinolone acetonide, molybdate shifts the steady state intracellular distribution of receptor toward the 10 S cytosolic receptor form, consistent with the interpretation that molybdate affects the rapidly exchanging subunit equilibrium between the 10 S and 4 S cytosolic forms by slowing the rate of 10 S receptor dissociation. Molybdate prevents loss of glucocorticoid-occupied 10 S but not 4 S receptors in heated cytosol by stabilizing the relatively protease-resistant 10 S receptor. Since molybdate stabilizes 10 S oligomeric steroid receptors in vitro, the effects of molybdate on nuclear accumulation of occupied receptors in intact cells support the intracellular existence and physiological relevance of 10 S glucocorticoid and estrogen receptors. These results support a general model for steroid receptor activation in which binding of hormone promotes dissociation of intracellular 8-10 S oligomeric receptors to their DNA-binding subunits.  相似文献   

18.
19.
20.
The effect of media conditions on the glucocorticoid response has been examined in three types of cultured cells. In rat pituitary tumor cells (GC cells) growth hormone production was stimulated by glucocorticoids provided fresh culture media was present (enriched media conditions). In contrast, dexamethasone either failed to induce or deinduce growth hormone synthesis if added to cultures which had not received fresh media for 3 days (depleted media condition). With human skin fibroblasts, cortisol stimulated [3H]thymidine incorporation in the enriched condition but inhibited this response in the depleted condition. In mouse lymphoma (S49) cells the enriched media conditions significantly delayed the killing response to glucocorticoids (20% killing after 24 h versus 90% killing after 24 h for the depleted condition). Thus, the magnitude and in some cases, the direction of the glucocorticoid response are sensitive to the conditions to which the cells are exposed. In all three cell types the steroid also rapidly (detectable by 15 min, maximal by 2 h) altered chromatin structure as detected by a change in the number of initiation sites for Escherichia coli RNA polymerase assayed under cell-free conditions. This early nuclear response could be in a positive or negative direction and was also affected by the culture conditions; enriched media favored a positive or less negative effect on the initiation sites by the steroid, while depleted media favored a steroid-induced inhibition of this chromatin function. In S49 and GC cells the kinetics and magnitude of the change in chromatin closely followed receptor . glucocorticoid complex binding to nuclei while removal of dexamethasone from the culture media resulted in a rapid (t 1/2 = approximately 20 min) disappearance of the effect which paralleled loss of bound hormone from the nucleus. The glucocorticoid effect on chromatin was not observed in two lines of glucocorticoid-resistant mutant S49 cells. One line (R-) lacks detectable glucocorticoid receptors; the other line (Nti) has receptors that bind the hormone normally, but the receptor . glucocorticoid complexes bind more avidly to the nucleus. These results suggest that the receptor is involved in both the stimulatory and the inhibitory effects on chromatin. The findings in the Nti cells and of a slight lag between nuclear binding of receptors and initiation site alteration implies that some receptor property, in addition to nuclear binding per se, is responsible for the influence on chromatin. These results are discussed in terms of a model in which steroid hormones initiate their actions by influencing a reaction that modifies chromatin structure. The direction and magnitude of the reaction, and its effect on the expression of specific genes, are dictated by the metabolic state and differentiation of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号