首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is reported for the quantification of 3-oxoacyl homoserine lactones (3-oxo AHLs), a major class of quorum-sensing signals found in Gram-negative bacteria. It is based on the conversion of 3-oxo AHLs to their pentafluorobenzyloxime derivatives followed by gas chromatography-mass spectrometry (electron capture-negative ion). The method used [13C16]-N-3-oxo-dodecanoyl homoserine lactone ([13C16]-OdDHL) as the internal standard, and its validity was tested by spiking the supernatant and cell fractions with three levels of 3-oxo AHLs, i.e. 1, 10 and 100 ng per sample. These showed the method to be both sensitive (S/N ratio >10:1 for 1 ng) and accurate. The assay was applied to the biofilm and effluent of a green fluorescent protein (GFP)-expressing strain of Pseudomonas aeruginosa (6294) culture grown in flow cells. Biofilm volume was determined for three replicate flow cells by confocal scanning laser microscopy. OdDHL was detected in the biofilm at 632 +/- 381 microM and the effluent at 14 +/- 3 nM. The biofilm concentration is the highest level so far reported for an AHL in a wild-type bacterial system. The next most abundant 3-oxo AHL in the biofilm and effluent was N-3-oxo-tetradecanoyl homoserine lactone (OtDHL) at 40 +/- 15 microM and 1.5 +/- 0.7 nM respectively. OtDHL is unreported for P. aeruginosa and has an activity equivalent to OdDHL in a lasR bioassay. Two other 3-oxo AHLs were detected at lower concentrations: N3-oxo-decanoyl homoserine lactone (ODHL) in the biofilm (3 +/- 2 microM) and effluent (1 +/- 0.1 nM); and N-3-oxo-octanoyl homoserine lactone (OOHL) in the effluent (0.1 +/- 0.1 nM).  相似文献   

2.
Enantiomerically pure α-hydroxy amides have been prepared from the corresponding α-oxo esters by the use of a double sequence reaction involving in a first step the highly enantioselective Saccharomyces cerevisiae bioreduction and then in a second step, the resulting α-hydroxy esters followed a non-enantiospecific lipase catalyzed aminolysis with n-butylamine reaction. In the first non-organic solvent process, the moistened baker’s yeast reduced seven α-oxo esters with high conversions degree (93% for one substrate and >99% for the others) and high enantioselectivities [>99% for all the substrates except for ketopantoyl lactone, which gave 88% of enantiomeric excess (ee)]. At the same way, the isolated resulting chiral α-hydroxy esters were subjected to the second Candida antarctica lipase fraction B (CAL-B) catalyzed aminolysis in dioxane conducting to the corresponding chiral α-hydroxy amides with high conversions degree, between 88 and 99%. Both processes were carried out at 28–30°C.  相似文献   

3.
A common form of bacterial quorum sensing involves the production and release of acyl homoserine lactone (AHL) signal metabolites. The nitrogen-fixing symbiont Rhizobium leguminosarum reportedly produces at least six different AHLs, but little is known about the regulation of biosynthesis of these molecules. We used a radiolabeling protocol to quantify the relative amounts of AHLs synthesized over time by R. leguminosarum cells with and without the symbiosis plasmid pRL1JI. Cells containing pRL1JI were found to produce three predominant signals. In decreasing order of abundance, these were N-(3-oxo)octanoyl homoserine lactone [(3-O)C(8)HSL], N-octanoyl homoserine lactone, and N-hexanoyl homoserine lactone. Cells without pRL1JI produced only two major signals, N-(3-hydroxy-7-cis)tetradecanoyl homoserine lactone [(3-OH)C(14:1)HSL] and (3-O)C(8)HSL. Each AHL exhibited a distinct temporal pattern of synthesis, suggesting that each AHL is subject to unique regulatory mechanisms. While (3-O)C(8)HSL was produced in both cultures, the patterns of synthesis were different in cells with and without pRL1JI, possibly as a result of redundant gene functions that are present on both the chromosome and the symbiosis plasmid. None of the AHLs appeared to regulate its own biosynthesis, although exogenous (3-OH)C(14:1)HSL did activate synthesis of the three AHLs made by cells containing pRL1JI. These results indicate that the synthesis of multiple AHLs in R. leguminosarum is regulated by complex mechanisms that operate independently of quorum sensing itself but that (3-OH)C(14:1)HSL can supersede these controls in pRL1JI-containing cells. This work provides an important global perspective for AHL regulation that both complements and contrasts with the results of previous studies performed with isolated gene systems.  相似文献   

4.
Oxidized halogen antimicrobials, such as hypochlorous and hypobromous acids, have been used extensively for microbial control in industrial systems. Recent discoveries have shown that acylated homoserine lactone cell-to-cell signaling molecules are important for biofilm formation in Pseudomonas aeruginosa, suggesting that biofouling can be controlled by interfering with bacterial cell-to-cell communication. This study was conducted to investigate the potential for oxidized halogens to react with acylated homoserine lactone-based signaling molecules. Acylated homoserine lactones containing a 3-oxo group were found to rapidly react with oxidized halogens, while acylated homoserine lactones lacking the 3-oxo functionality did not react. The Chromobacterium violaceum CV026 bioassay was used to determine the effects of such reactions on acylated homoserine lactone activity. The results demonstrated that 3-oxo acyl homoserine lactone activity was rapidly lost upon exposure to oxidized halogens; however, acylated homoserine lactones lacking the 3-oxo group retained activity. Experiments with the marine alga Laminaria digitata demonstrated that natural haloperoxidase systems are capable of mediating the deactivation of acylated homoserine lactones. This may illustrate a natural defense mechanism to prevent biofouling on the surface of this marine alga. The Chromobacterium violaceum activity assay illustrates that reactions between 3-oxo acylated homoserine lactone molecules and oxidized halogens do occur despite the presence of biofilm components at much greater concentrations. This work suggests that oxidized halogens may control biofilm not only via a cidal mechanism, but also by possibly interfering with 3-oxo acylated homoserine lactone-based cell signaling.  相似文献   

5.
Oxidized halogen antimicrobials, such as hypochlorous and hypobromous acids, have been used extensively for microbial control in industrial systems. Recent discoveries have shown that acylated homoserine lactone cell-to-cell signaling molecules are important for biofilm formation in Pseudomonas aeruginosa, suggesting that biofouling can be controlled by interfering with bacterial cell-to-cell communication. This study was conducted to investigate the potential for oxidized halogens to react with acylated homoserine lactone-based signaling molecules. Acylated homoserine lactones containing a 3-oxo group were found to rapidly react with oxidized halogens, while acylated homoserine lactones lacking the 3-oxo functionality did not react. The Chromobacterium violaceum CV026 bioassay was used to determine the effects of such reactions on acylated homoserine lactone activity. The results demonstrated that 3-oxo acyl homoserine lactone activity was rapidly lost upon exposure to oxidized halogens; however, acylated homoserine lactones lacking the 3-oxo group retained activity. Experiments with the marine alga Laminaria digitata demonstrated that natural haloperoxidase systems are capable of mediating the deactivation of acylated homoserine lactones. This may illustrate a natural defense mechanism to prevent biofouling on the surface of this marine alga. The Chromobacterium violaceum activity assay illustrates that reactions between 3-oxo acylated homoserine lactone molecules and oxidized halogens do occur despite the presence of biofilm components at much greater concentrations. This work suggests that oxidized halogens may control biofilm not only via a cidal mechanism, but also by possibly interfering with 3-oxo acylated homoserine lactone-based cell signaling.  相似文献   

6.
以薯蓣皂甙元丁二酸单酯为原料,经过与氨基酸缩合,合成了5个新化合物,4—L—(N—丁二酸—2—基)胺基—4—氧代丁酸薯蓣皂甙元酯二钠盐(1),4—(N—乙酸—2—基)胺基—4—氧代丁酸薯蓣皂甙元酯钠盐(2),4—L(N—(5—胍基)戊酸—2—基)胺基—4—氧代丁酸薯蓣皂甙元酯醋酸盐(3),4—(N—(3—咪唑-4—基)丙酸—2—基)胺基—4—氧代丁酸薯蓣皂甙元酯醋酸盐(4),4—(N—戊二酸—2—基)胺基—4—氧代丁酸薯蓣皂甙元酯二钠盐(5),并对其进行了结构鉴定,同时发现这5个化合物对大鼠都具有抗心肌梗死活性。  相似文献   

7.
The biosyntheses of aroma active gamma- and delta-lactones have been previously characterized in yeasts and plants by incubation of labeled fatty acid derivatives. The lactones were considered as end products. Liquid cultures of the lactone-producing yeast Sporobolomyces odorus were used to investigate catabolic pathways of the lactones by incubation of ethyl (+/-)-5-hydroxy(1-(13)C1)decanoate ((13C)-1b) and methyl (+/-)-4-hydroxy(1-(13)C1)decanoate ((13C)-7a). Aliquots of the culture broth were analyzed with GC/MS after CH2N2 derivatization. S. odorus degraded (13C)-1b to 5-oxo(1-(13)C1)decanoic acid ((13C)-2c) and, subsequently, to pentyl (1-(13)C1)pentanedioate ((13C)-3c) and 3-[(1-(13)C1)carboxypropyl] hexanoate ((13C)-4c) by a Baeyer-Villiger-type oxidation (BVO). In addition, the oxidation of (13C)-7a to 4-oxo(1-(13)C1)decanoic acid ((13C)-8c) and a BVO of (13C)-8c to hexyl (1-(13)C1)butanedioate ((13C)-9c) is reported. So far, BVO has been observed in bacteria and some fungi; the data presented indicate a BVO catalyzed by the yeast S. odorus in the course of endogenous lactone metabolism.  相似文献   

8.
3 beta,16 beta,19-Trihydroxyandrost-5-en-17-one (12) was synthesized from 5 alpha-bromo-3 beta-acetoxy-6 beta,19-epoxyandrostan-17-one (2) through acetoxylation at C-16 beta of the enol acetate 4 with lead tetraacetate and reductive cleavage of the epoxide ring with zinc dust yielding the 3 beta,16 beta-diacetoxy-19-hydroxy steroid 11, followed by hydrolysis of the acetoxy groups with sulfuric acid. Jones oxidation of compound 11 followed by the acid hydrolysis gave the 19-oxo steroid 15. 5 alpha-Bromo-3 beta-hydroxy-16 beta-acetoxy-6 beta,19-epoxyandrostan-17-one (8), obtained by selective hydrolysis of the 3-formate 5 with ammonium hydroxide, was oxidized with Jones reagent to afford the 3-oxo steroid 16, which was converted into the 19-hydroxy derivative 17 by treatment with zinc dust. 16 beta,19-Dihydroxyandrost-4-ene-3,17-dione (18) and its 19-oxo derivative 21 were obtained from compound 17 through a similar reaction sequence.  相似文献   

9.
Operation of the branched-chain 2-hydroxy acid/2-oxo acid shuttle for the transfer of reducing equivalents in mitochondria of mouse spermatozoa was studied in vitro in reconstituted systems. Results show that the branched-chain 2-oxo acids within the mitochondria are offered several metabolic pathways. (a) Decarboxylation: mouse sperm mitochondria possess high branched-chain 2-oxo acid decarboxylase activity. (b) Recycling to the cytosol by using a transport system which can be inhibited by alpha-cyano-3-hydroxycinnamate and pH 6.8. (c) Transamination to the corresponding amino acids: experiments presented indicate that leucine formed from 4-methyl-2-oxopentanoate may pass to the external phase, re-initiating the cycle. These two last possibilities would allow autocatalytic operation of the shuttle. The branched-chain 2-hydroxy acids apparently do not utilize the monocarboxylate carrier to penetrate the mitochondria.  相似文献   

10.
Two NADPH-dependent oxidoreductases catalyzing the enantioselective reduction of 3-oxo esters to (S)- and (R)-3-hydroxy acid esters, [hereafter called (S)- and (R)-enzymes] have been purified 121- and 332-fold, respectively, from cell extracts of Saccharomyces cerevisiae by means of streptomycin sulfate treatment, Sephadex G-25 filtration, DEAE-Sepharose CL-6B chromatography, Sephadex G-150 filtration, Sepharose 6B filtration and hydroxyapatite chromatography. The relative molecular mass Mr, of the (S)-enzyme was estimated to be 48,000-50,000 on Sephadex G-150 column chromatography and 48,000 on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The enzyme was most active at pH 6.9 and reduced 3-oxo esters, 4-oxo and 5-oxo acids and esters enantioselectively to (S)- hydroxy compounds in the presence of NADPH. The Km values for ethyl 3-oxobutyrate, ethyl 3-oxohexanoate, 4-oxopentanoic and 5-oxohexanoic acid were determined as 0.9 mM, 5.3 mM, 17.1 mM and 13.1 mM, respectively. The Mr of the (R)-enzyme, estimated by means of column chromatography on Sepharose 6B, was 800,000. Under dissociating conditions of SDS/polyacrylamide gel electrophoresis the enzyme resolved into subunits of Mr 200,000 and 210,000, respectively. The enzyme is optimally active at pH 6.1, catalyzing specifically the reduction of 3-oxo esters to (R)-hydroxy esters, using NADPH for coenzyme. Km values for ethyl 3-oxobutyrate and ethyl 3-oxohexanoate were determined as 17.0 mM and 2.0 mM, respectively. Investigations with purified fatty acid synthase of baker's yeast revealed that the (R)-enzyme was identical with a subunit of this multifunctional complex; intact fatty acid synthase (Mr 2.4 X 10(6)) showed no activity in catalyzing the reduction of 3-oxo esters.  相似文献   

11.
Burkholderia pseudomallei, a Gram-negative saprophytic bacterium, is the causative agent of the potentially fatal melioidosis disease in humans. In this study, environmental parameters including temperature, nutrient content, pH and the presence of glucose were shown to play a role in in vitro biofilm formation by 28 B. pseudomallei clinical isolates, including four isolates with large colony variants (LCVs) and small colony variants (SCVs) morphotypes. Enhanced biofilm formation was observed when the isolates were tested in LB medium, at 30°C, at pH 7.2, and in the presence of as little as 2 mM glucose respectively. It was also shown that all SVCs displayed significantly greater capacity to form biofilms than the corresponding LCVs when cultured in LB at 37°C. In addition, octanoyl-homoserine lactone (C(8)-HSL), a quorum sensing molecule, was identified by mass spectrometry analysis in bacterial isolates referred to as LCV CTH, LCV VIT, SCV TOM, SCV CTH, 1 and 3, and the presence of other AHL's with higher masses; decanoyl-homoserine lactone (C(10)-HSL) and dodecanoyl-homoserine lactone (C(12)-HSL) were also found in all tested strain in this study. Last but not least, we had successfully acquired two Bacillus sp. soil isolates, termed KW and SA respectively, which possessed strong AHLs degradation activity. Biofilm formation of B. pseudomallei isolates was significantly decreased after treated with culture supernatants of KW and SA strains, demonstrating that AHLs may play a role in B. pseudomallei biofilm formation.  相似文献   

12.
The production of violacein by Pseudoalteromonas sp. 520P1 has many features of quorum sensing. Signaling molecules were extracted from bacterial culture and subsequently identified as N-(3-oxooctanoyl)-homoserine lactone and N-tetradecanoyl-homoserine lactone. The former but not the latter induced the production of violacein in strain 520P1. We conclude that N-(3-oxooctanoyl)-homoserine lactone is a signaling molecule involved in the production of violacein.  相似文献   

13.
The acyl-homoserine lactone molecular species (AHLs) produced by the Yersinia pestis AHL synthase YspI were identified by biochemical and physical/chemical techniques. Bioassays of extracts from culture supernatants of the recombinant YspI and wild-type Yersinia pestis showed similar profiles of AHLs. Analysis by liquid chromatography-mass spectrometry revealed that the predominant AHLs were N-3-oxooctanoyl-L-homoserine lactone and N-3-oxo-hexanoyl-L-homoserine lactone.  相似文献   

14.
N-acylhomoserine lactones (AHLs) are conserved signal molecules that control diverse biological activities in quorum sensing system of Gram-negative bacteria. Recently, several soil bacteria were found to degrade AHLs, thereby interfering with the quorum sensing system. Previously, Rhodococcus erythropolis W2 was reported to degrade AHLs by both oxido-reductase and AHL-acylase. In the present study, two AHL-utilizing bacteria, strains LS31 and PI33, were isolated and identified as the genus Rhodococcus. They exhibited different AHL-utilization abilities: Rhodococcus sp. strain LS31 rapidly degraded a wide range of AHLs, including N-3-oxo-hexanoyl-l-homoserine lactone (OHHL), whereas Rhodococcus sp. strain PI33 showed relatively less activity towards 3-oxo substituents. Coculture of strain LS31 with Erwinia carotovora effectively reduced the amount of OHHL and pectate lyase activity, compared with coculture of strain PI33 with E. carotovora. A mass spectrometry analysis indicated that both strains hydrolyzed the lactone ring of AHL to generate acylhomoserine, suggesting that AHL-lactonases (AHLases) from the two Rhodococcus strains are involved in the degradation of AHL, in contrast to R. erythropolis W2. To the best of our knowledge, this is the first report on AHLases of Rhodococcus spp.  相似文献   

15.
Quorum sensing (QS) is a mechanism by which gram-negative bacteria regulate their gene expression by making use of cell density. QS is triggered by a small molecule known as an autoinducer. Typically, gram-negative bacteria such as Vibrio produce signaling molecules called acyl homoserine lactones (AHLs). However, their levels are very low, making them difficult to detect. We used thin layer chromatography (TLC) to examine AHLs in different Vibrio species, such as Vibrio alginolyticus, Vibrio parahemolyticus, and Vibrio cholerae, against a standard- Chromobacterium violaceum. Further, AHLs were characterised by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC–MS). C4-HSL (N- butanoyl- L- homoserine lactone), C6-HSL (N- hexanoyl- L- homoserine lactone), 3-oxo-C8-HSL (N-(3-Oxooctanoyl)-DL-homoserine lactone), C8-HSL (N- octanoyl- L- homoserine lactone), C110-HSL (N- decanoyl- L- homoserine lactone), C12-HSL (N- dodecanoyl- L- homoserine lactone) and C14-HSL (N- tetradecanoyl- L- homoserine lactone) were identified from Vibrio. These results may provide a basis for blocking the AHL molecules of Vibrio, thereby reducing their pathogenicity and eliminating the need for antimicrobials.  相似文献   

16.
Abtsract Comamonas strain D1 enzymatically inactivates quorum-sensing (QS) signal molecules of the N-acyl homoserine lactone (N-AHSL) family, and exhibits the broadest inactivation range of known bacteria. It degrades N-AHSL with acyl-side chains ranging from 4 to 16 carbons, with or without 3-oxo or 3-hydroxy substitutions. N-AHSL degradation yields HSL but not N-acyl homoserine: strain D1 therefore harbors an amidohydrolase activity. Strain D1 is the fifth bacterium species in which an N-AHSL amidohydrolase is described. Consistent with its N-AHSL degradation ability, strain D1 efficiently quenches various QS-dependent functions in other bacteria, such as violacein production by Chromobacterium violaceum and pathogenicity and antibiotic production in Pectobacterium.  相似文献   

17.
Most Proteobacteria produce N-acylhomoserine lactones for bacterial cell-to-cell communication, a process called quorum sensing. Interference of quorum sensing, commonly known as quorum quenching, represents an important way to control quorum sensing. This work reports the isolation of quorum quenching bacterium strain 2WS8 from Malaysia tropical wetland water (2°11'8"N, 102°15'2"E, in 2007) by using a modified version of a previously reported KG medium. Strain 2WS8 was isolated based on its ability to utilize N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) as the sole source of energy. This bacterium clustered closely to Pseudomonas aeruginosa PAO1. Strain 2SW8 possesses both quiP and pvdQ homologue acylase genes. Rapid Resolution Liquid Chromatography analysis confirmed that strain 2SW8 preferentially degraded N-acylhomoserine lactones with 3-oxo group substitution but not those with unsubstituted groups at C3 position in the acyl side chain. Strain 2SW8 also showed 2-heptyl-3-hydroxy-4-quinolone production.  相似文献   

18.
We report for the first time the production of acyl homoserine lactones (AHLs) by Erwina amylovora, an important quarantine bacterial pathogen that causes fire blight in plants. E. amylovora produces one N-acyl homoserine lactone [a N-(3-oxo-hexanoyl)-homoserine lactone or a N-(3-hydroxy-hexanoyl)-homoserine lactone] quorum sensing signal molecule both in vitro and in planta (pear plant). Given the involvement of AHLs in plant pathogenesis, we speculate that AHL-dependent quorum sensing could play an important role in the regulation of E. amylovora virulence.  相似文献   

19.
Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infection of humans and animals. The virulence of this pathogen is thought to depend on a number of secreted proteins, including the MprA metalloprotease. We observed that MprA is produced upon entry into the stationary phase, when the cell density is high, and this prompted us to study cell density-dependent regulation in B. pseudomallei. A search of the B. pseudomallei genome led to identification of a quorum-sensing system involving the LuxI-LuxR homologs PmlI-PmlR. PmlI directed the synthesis of an N-acylhomoserine lactone identified as N-decanoylhomoserine lactone. A B. pseudomallei pmlI mutant was significantly less virulent than the parental strain in a murine model of infection by the intraperitoneal, subcutaneous, and intranasal routes. Inactivation of pmlI resulted in overproduction of MprA at the onset of the stationary phase. A wild-type phenotype was restored following complementation with pmlI or addition of cell-free culture supernatant. In contrast, there was no significant difference between the virulence of a B. pseudomallei mprA mutant and the virulence of the wild-type strain. These results suggest that the PmlI-PmlR quorum-sensing system of B. pseudomallei is essential for full virulence in a mouse model and downregulates the production of MprA at a high cell density.  相似文献   

20.
Vibrio anguillarum produces several interlinked acylated homoserine lactone (AHL) signal molecules which may influence expression of its virulence factors such as exoprotease production and biofilm formation. Using both thin layer chromatography and HPLC-high resolution mass spectrometry (HPLC-HRMS), we demonstrate in this study that the same types of AHLs are produced by many serotypes of V. anguillarum and that altering in vitro growth conditions (salinity, temperature and iron concentration) has little influence on the AHL-profile. Most strains produced N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL) and N-(3-hydroxy-hexanoyl)-l-homoserine lactone (3-hydroxy-C6-HSL) as the dominant molecules. Also, two spots with AHL activity appeared on TLC plates, which could not be identified as AHL structures. Trace amounts of N-(3-hydroxy-octanoyl)-l-homoserine lactone, N-(3-hydroxy-decanoyl)-l-homoserine lactone and N-(3-hydroxy-dodecanoyl)-l-homoserine lactone (3-hydroxy-C8-HSL, 3-hydroxy-C10-HSL and 3-oxo-C12-HSL, respectively) were also detected by HPLC-HRMS analysis from in vitro cultures. Most studies of quorum sensing (QS) systems have been conducted in vitro, the purpose of our study was to determine if the same acylated homoserine lactones were produced in vivo during infection. Extracts from infected fish were purified using several solid phase extraction strategies to allow chromatographic detection and separation by both TLC and HLPC-HRMS. 3-oxo-C10-HSL and 3-hydroxy-C6-HSL were detected in organs from fish dying from vibriosis, however, compared to in vitro culturing where 3-oxo-C10-HSL is the dominant molecule, 3-hydroxy-C6-HSL was prominent in the infected fish tissues. Hence, the balance between the QS systems may be different during infection compared to in vitro cultures. For future studies of QS systems and the possible specific interference with expression of virulence factors, in vitro cultures should be optimised to reflect the in vivo situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号