首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
3.
4.
5.
6.
The pyoverdine outer membrane receptor, FpvA, from Pseudomonas aeruginosa translocates ferric pyoverdine across the outer membrane through an energy consuming mechanism using the proton motive force and the TonB-ExbB-ExbD energy transducing complex from the inner membrane. We solved the crystal structure of the full-length FpvA bound to iron-pyoverdine at 2.7 A resolution. Signal transduction to an anti-sigma protein of the inner membrane and to TonB-ExbB-ExbD involves the periplasmic domain, which displays a beta-alpha-beta fold composed of two alpha-helices sandwiched by two beta-sheets. One iron-pyoverdine conformer is bound at the extracellular face of FpvA, revealing the conformer selectivity of the binding site. The loop that contains the TonB box, involved in interactions with TonB, and connects the signaling domain to the plug domain of FpvA is not defined in the electron density following the binding of ferric pyoverdine. The high flexibility of this loop is probably necessary for signal transduction through the outer membrane.  相似文献   

7.
Nader M  Journet L  Meksem A  Guillon L  Schalk IJ 《Biochemistry》2011,50(13):2530-2540
To get access to iron, Pseudomonas aeruginosa produces the siderophore pyoverdine (PVD), composed of a fluorescent chromophore linked to an octapeptide, and its corresponding outer membrane transporter FpvA. This transporter is composed of three domains: a β-barrel inserted into the membrane, a plug that closes the channel formed by the barrel, and a signaling domain in the periplasm. The plug and the signaling domain are separated by a sequence of five residues called the TonB box, which is necessary for the interaction of FpvA with the inner membrane TonB protein. Genetic deletion of the plug domain resulted in the presence of a β-barrel in the outer membrane unable to bind and transport PVD-Fe. Expression of the soluble plug domain with the TonB box inhibited PVD-(55)Fe uptake most likely through interaction with TonB in the periplasm. A reconstituted FpvA in the bacterial outer membrane was obtained by the coexpression of separately encoded plug and β-barrel domains, each endowed with a signal sequence and a signaling domain. This resulted in polypeptide complementation after secretion across the cytoplasmic membrane. The reconstituted FpvA bound PVD-Fe with the same affinity as wild-type FpvA, indicating that the resulting transporter is correctly folded and reconstituted in the outer membrane. PVD-Fe uptake was TonB-dependent but 75% less efficient compared to wild-type FpvA. These data are consistent with a gated mechanism in which no open channel with a complete removal of the plug domain for PVD-Fe diffusion is formed in FpvA at any point during the uptake cycle.  相似文献   

8.
9.
Shigella dysentriae and other Gram‐negative human pathogens are able to use iron from heme bound to hemoglobin for growing. We solved at 2.6 Å resolution the 3D structure of the TonB‐dependent heme/hemoglobin outer membrane receptor ShuA from S. dysenteriae. ShuA binds to hemoglobin and transports heme across the outer membrane. The structure consists of a C‐terminal domain that folds into a 22‐stranded transmembrane β‐barrel, which is filled by the N‐terminal plug domain. One distal histidine ligand of heme is located at the apex of the plug, exposed to the solvent. His86 is situated 9.86 Å apart from His420, the second histidine involved in the heme binding. His420 is in the extracellular loop L7. The heme coordination by His86 and His420 involves conformational changes. The comparisons with the hemophore receptor HasR of Serratia marcescens bound to HasA‐Heme suggest an extracellular induced fit mechanism for the heme binding. The loop L7 contains hydrophobic residues which could interact with the hydrophobic porphyring ring of heme. The energy required for the transport by ShuA is derived from the proton motive force after interactions between the periplasmic N‐terminal TonB‐box of ShuA and the inner membrane protein, TonB. In ShuA, the TonB‐box is buried and cannot interact with TonB. The structural comparisons with HasR suggest its conformational change upon the heme binding for interacting with TonB. The signaling of the heme binding could involve a hydrogen bond network going from His86 to the TonB‐box. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
FepA is the Escherichia coli outer membrane receptor for ferric enterobactin, colicin D and colicin B. The transport processes through FepA are energy-dependent, relying on the periplasmic protein TonB to interact with FepA. Through this interaction, TonB tranduces energy derived from the cytoplasmic membrane across the periplasmic space to FepA. In this study, random mutagenesis strategies were used to define residues of FepA important for its function. Both polymerase chain reaction (PCR)-generated random mutations in the N-terminal 180 amino acids of FepA and spontaneous chromosomal fepA mutations were selected by resistance to colicin B. The PCR mutagenesis strategy targeted the N-terminus because it forms a plug inside the FepA barrel that is expected to be involved in ligand binding, ligand transport, and interaction with TonB. We report the characterization of 15 fepA missense mutations that were localized to three regions of the FepA receptor. The first region was a stretch of eight amino acids referred to as the TonB box. The second region included extracellular loops of both the barrel and the plug. A third region formed a cluster near the barrel wall around positions 75 and 126 of the plug. These mutations provide initial insight into the mechanisms of ligand binding and transport through the FepA receptor.  相似文献   

11.
12.
The mechanism of TonB dependent siderophore uptake through outer membrane transporters in Gram-negative bacteria is poorly understood. In an effort to expand our knowledge of the interaction between TonB and the outer membrane transporters, we have cloned and expressed the FepA cork domain (11–154) from Salmonella typhimurium and characterized its interaction with the periplasmic C-terminal domain of TonB (103–239) by isotope assisted FTIR and NMR spectroscopy. For comparison we also performed similar experiments using the FecA N-terminal domain (1–96) from Escherichia coli which includes the conserved TonB box. The FepA cork domain was completely unfolded in solution, as observed for the E. coli cork domain previously [Usher et al. (2001) Proc Natl Acad Sci USA 98, 10676–10681]. The FepA cork domain was found to bind to TonB, eliciting essentially the same chemical shift changes in TonB C-terminal domain as was observed in the presence of TonB box peptides. The FecA construct did not cause this same structural change in TonB. The binding of the FepA cork domain to TonB-CTD was found to decrease the amount of ordered secondary structure in TonB-CTD. It is likely that the FecA N-terminal domain interferes with TonB-CTD binding to the TonB box. Binding of the FepA cork domain induces a loss of secondary structure in TonB, possibly exposing TonB surface area for additional intermolecular interactions such as potential homodimerization or additional interactions with the barrel of the outer membrane transporter.  相似文献   

13.
Mutants of Escherichia coli K-12 AB2847 and of E. coli K-12 AN92 were isolated which were unable to grow on ferric citrate as the sole iron source. Of 22 mutants, 6 lacked an outer membrane protein, designated FecA protein, which was expressed by growing cells in the presence of 1 mM citrate. Outer membranes showed an enhanced binding of radioactive iron, supplied as a citrate complex, depending on the amount of FecA protein. The FecA protein was the most resistant of the proteins involved in ferric irion iron translocation across the outer membrane (FhuA = TonA, FepA, Cir, or 83K proteins) to the action of pronase P. It is also shown that previously isolated fec mutants (G. C. Woodrow et al., J. Bacteriol. 133:1524-1526, 1978) which are cotransducible with argF all lack the FecA protein. They were termed fecA to distinguish them from the other ferric citrate transport mutants, now designated fecB, which mapped in the same gene region at 7 min but were not cotransducible with ArgF. E. coli W83-24 and Salmonella typhimurium, which are devoid of a citrate-dependent iron transport system, lacked the FecA protein. It is proposed that the FecA protein participates in the transport of ferric citrate.  相似文献   

14.
15.
The pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa translocates ferric-pyoverdine across the outer membrane via an energy consuming mechanism that involves the inner membrane energy transducing complex of TonB-ExbB-ExbD and the proton motive force. We solved the crystal structure of FpvA loaded with iron-free pyoverdine at 3.6 angstroms resolution. The pyoverdine receptor is folded in two domains: a transmembrane 22-stranded beta-barrel domain occluded by an N-terminal domain containing a mixed four-stranded beta-sheet (the plug). The beta-strands of the barrel are connected by long extracellular loops and short periplasmic turns. The iron-free pyoverdine is bound at the surface of the receptor in a pocket lined with aromatic residues while the extracellular loops do not completely cover the pyoverdine binding site. The TonB box, which is involved in intermolecular contacts with the TonB protein of the inner membrane, is observed in an extended conformation. Comparison of this first reported structure of an iron-siderophore transporter from a bacterium other than Escherichia coli with the known structures of the E.coli TonB-dependent transporters reveals a high structural homology and suggests that a common sensing mechanism exists for the iron-loading status in all bacterial iron siderophore transporters.  相似文献   

16.
17.
The ferric hydroxamate uptake receptor FhuA from Escherichia coli transports siderophores across the outer membrane (OM). TonB-ExbB-ExbD transduces energy from the cytoplasmic membrane to the OM by contacts between TonB and OM receptors that contain the Ton box, a consensus sequence near the N terminus. Although the Ton box is a region of known contact between OM receptors and TonB, our biophysical studies established that TonB binds to FhuA through multiple regions of interaction. Panning of phage-displayed random peptide libraries (Ph.D.-12, Ph.D.-C7C) against TonB identified peptide sequences that specifically interact with TonB. Analyses of these sequences using the Receptor Ligand Contacts (RELIC) suite of programs revealed clusters of multiply aligned peptides that mapped to FhuA. These clusters localized to a continuous periplasm-accessible surface: Ton box/switch helix; cork domain/beta1 strand; and periplasmic turn 8. Guided by such matches, synthetic oligonucleotides corresponding to DNA sequences identical to fhuA were fused to malE; peptides corresponding to the above regions were displayed at the N terminus of E.coli maltose-binding protein (MBP). Purified FhuA peptides fused to MBP bound specifically to TonB by ELISA. Furthermore, they competed with ligand-loaded FhuA for binding to TonB. RELIC also identified clusters of multiply aligned peptides corresponding to the Ton box regions in BtuB, FepA, and FecA; to periplasmic turn 8 in BtuB and FecA; and to periplasmic turns 1 and 2 in FepA. These experimental outcomes identify specific molecular contacts made between TonB and OM receptors that extend beyond the well-characterized Ton box.  相似文献   

18.
Transport of molecules larger than 600 Da across the outer membrane involves TonB-dependent receptors and TonB-ExbB-ExbD of the inner membrane. The transport is energy consuming, and involves direct interactions between a short N-terminal sequence of receptor, called the TonB box, and TonB. We solved the structure of the ferric pyoverdine (Pvd-Fe) outer membrane receptor FpvA from Pseudomonas aeruginosa in its apo form. Structure analyses show that residues of the TonB box are in a beta strand which interacts through a mixed four-stranded beta sheet with the periplasmic signaling domain involved in interactions with an inner membrane sigma regulator. In this conformation, the TonB box cannot form a four-stranded beta sheet with TonB. The FhuA-TonB or BtuB-TonB structures show that the TonB-FpvA interactions require a conformational change which involves a beta strand lock-exchange mechanism. This mechanism is compatible with movements of the periplasmic domain deduced from crystallographic analyses of FpvA, FpvA-Pvd, and FpvA-Pvd-Fe.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号