首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of DNA in cells relies on the balance between hybridized double-stranded DNA (dsDNA) and local de-hybridized regions of ssDNA that provide access to binding proteins. Traditional melting experiments, in which short pieces of dsDNA are heated up until the point of melting into ssDNA, have determined that AT-rich sequences have a lower binding energy than GC-rich sequences. In cells, however, the double-stranded backbone of DNA is destabilized by negative supercoiling, and not by temperature. To investigate what the effect of GC content is on DNA melting induced by negative supercoiling, we studied DNA molecules with a GC content ranging from 38% to 77%, using single-molecule magnetic tweezer measurements in which the length of a single DNA molecule is measured as a function of applied stretching force and supercoiling density. At low force (<0.5pN), supercoiling results into twisting of the dsDNA backbone and loop formation (plectonemes), without inducing any DNA melting. This process was not influenced by the DNA sequence. When negative supercoiling is introduced at increasing force, local melting of DNA is introduced. We measured for the different DNA molecules a characteristic force F char, at which negative supercoiling induces local melting of the dsDNA. Surprisingly, GC-rich sequences melt at lower forces than AT-rich sequences: F char = 0.56pN for 77% GC but 0.73pN for 38% GC. An explanation for this counterintuitive effect is provided by the realization that supercoiling densities of a few percent only induce melting of a few percent of the base pairs. As a consequence, denaturation bubbles occur in local AT-rich regions and the sequence-dependent effect arises from an increased DNA bending/torsional energy associated with the plectonemes. This new insight indicates that an increased GC-content adjacent to AT-rich DNA regions will enhance local opening of the double-stranded DNA helix.  相似文献   

2.
Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.  相似文献   

3.
Using purified replication factors encoded by herpes simplex virus type 1 and a 70-base minicircle template, we obtained robust DNA synthesis with leading strand products of >20,000 nucleotides and lagging strand fragments from 600 to 9,000 nucleotides as seen by alkaline gel electrophoresis. ICP8 was crucial for the synthesis on both strands. Visualization of the deproteinized products using electron microscopy revealed long, linear dsDNAs, and in 87%, one end, presumably the end with the 70-base circle, was single-stranded. The remaining 13% had multiple single-stranded segments separated by dsDNA segments 500 to 1,000 nucleotides in length located at one end. These features are diagnostic of the trombone mechanism of replication. Indeed, when the products were examined with the replication proteins bound, a dsDNA loop was frequently associated with the replication complex located at one end of the replicated DNA. Furthermore, the frequency of loops correlated with the fraction of DNA undergoing Okazaki fragment synthesis.  相似文献   

4.
5.
High mobility group (HMG) proteins are nuclear proteins believed to significantly affect DNA interactions by altering nucleic acid flexibility. Group B (HMGB) proteins contain HMG box domains known to bind to the DNA minor groove without sequence specificity, slightly intercalating base pairs and inducing a strong bend in the DNA helical axis. A dual-beam optical tweezers system is used to extend double-stranded DNA (dsDNA) in the absence as well as presence of a single box derivative of human HMGB2 [HMGB2(box A)] and a double box derivative of rat HMGB1 [HMGB1(box A+box B)]. The single box domain is observed to reduce the persistence length of the double helix, generating sharp DNA bends with an average bending angle of 99 ± 9° and, at very high concentrations, stabilizing dsDNA against denaturation. The double box protein contains two consecutive HMG box domains joined by a flexible tether. This protein also reduces the DNA persistence length, induces an average bending angle of 77 ± 7°, and stabilizes dsDNA at significantly lower concentrations. These results suggest that single and double box proteins increase DNA flexibility and stability, albeit both effects are achieved at much lower protein concentrations for the double box. In addition, at low concentrations, the single box protein can alter DNA flexibility without stabilizing dsDNA, whereas stabilization at higher concentrations is likely achieved through a cooperative binding mode.  相似文献   

6.
We report a new approach to probing DNA-protein interactions by combining optical tweezers with a high-throughput DNA curtains technique. Here we determine the forces required to remove the individual lipid-anchored DNA molecules from the bilayer. We demonstrate that DNA anchored to the bilayer through a single biotin-streptavidin linkage withstands ∼20 pN before being pulled free from the bilayer, whereas molecules anchored to the bilayer through multiple attachment points can withstand ?65 pN; access to this higher force regime is sufficient to probe the responses of protein-DNA interactions to force changes. As a proof-of-principle, we concurrently visualized DNA-bound fluorescently-tagged RNA polymerase while simultaneously stretching the DNA molecules. This work presents a step towards a powerful experimental platform that will enable concurrent visualization of DNA curtains while applying defined forces through optical tweezers.  相似文献   

7.
B-S transition in short oligonucleotides   总被引:2,自引:0,他引:2  
Stretching experiments with long double-stranded DNA molecules in physiological ambient revealed a force-induced transition at a force of 65 pN. During this transition between B-DNA and highly overstretched S-DNA the DNA lengthens by a factor of 1.7 of its B-form contour length. Here, we report the occurrence of this so-called B-S transition in short duplexes consisting of 30 basepairs. We employed atomic-force-microscope-based single molecule force spectroscopy to explore the unbinding mechanism of two short duplexes containing 30 or 20 basepairs by pulling at the opposite 5' termini. For a 30-basepair-long DNA duplex the B-S transition is expected to cause a length increase of 6.3 nm and should therefore be detectable. Indeed 30% of the measured force-extension curves exhibit a region of constant force (plateau) at 65 pN, which corresponds to the B-S transition. The observed plateaus show a length between 3 and 7 nm. This plateau length distribution indicates that the dissociation of a 30-basepair duplex mainly occurs during the B-S transition. In contrast, the measured force-extension curves for a 20-basepair DNA duplex exhibited rupture forces below 65 pN and did not show any evidence of a B-S transition.  相似文献   

8.
The tightly packaged double-stranded DNA (dsDNA) genome in the mature particles of many tailed bacteriophages has been shown to form multiple concentric rings when reconstructed from cryo-electron micrographs. However, recent single-particle DNA packaging force measurements have suggested that incompletely packaged DNA (ipDNA) is less ordered when it is shorter than ∼ 25% of the full genome length. The study presented here initially achieves both the isolation and the ipDNA length-based fractionation of ipDNA-containing T3 phage capsids (ipDNA-capsids) produced by DNA packaging in vivo; some ipDNA has quantized lengths, as judged by high-resolution gel electrophoresis of expelled DNA. This is the first isolation of such particles among the tailed dsDNA bacteriophages. The ipDNA-capsids are a minor component (containing ∼ 10− 4 of packaged DNA in all particles) and are initially detected by nondenaturing gel electrophoresis after partial purification by buoyant density centrifugation. The primary contaminants are aggregates of phage particles and empty capsids. This study then investigates ipDNA conformations by the first cryo-electron microscopy of ipDNA-capsids produced in vivo. The 3-D structures of DNA-free capsids, ipDNA-capsids with various lengths of ipDNA, and mature bacteriophage are reconstructed, which reveals the typical T = 7l icosahedral shell of many tailed dsDNA bacteriophages. Though the icosahedral shell structures of these capsids are indistinguishable at the current resolution for the protein shell (∼ 15 Å), the conformations of the DNA inside the shell are drastically different. T3 ipDNA-capsids with 10.6 kb or shorter dsDNA (< 28% of total genome) have an ipDNA conformation indistinguishable from random. However, T3 ipDNA-capsids with 22 kb DNA (58% of total genome) form a single DNA ring next to the inner surface of the capsid shell. In contrast, dsDNA fully packaged (38.2 kb) in mature T3 phage particles forms multiple concentric rings such as those seen in other tailed dsDNA bacteriophages. The distance between the icosahedral shell and the outermost DNA ring decreases in the mature, fully packaged phage structure. These results suggest that, in the early stage of DNA packaging, the dsDNA genome is randomly distributed inside the capsid, not preferentially packaged against the inner surface of the capsid shell, and that the multiple concentric dsDNA rings seen later are the results of pressure-driven close-packing.  相似文献   

9.
Sharp bending of double-stranded DNA (dsDNA) plays an essential role in genome structure and function. However, the elastic limit of dsDNA bending remains controversial. Here, we measured the opening rates of small dsDNA loops with contour lengths ranging between 40 and 200 bp using single-molecule Fluorescence Resonance Energy Transfer. The relationship of loop lifetime to loop size revealed a critical transition in bending stress. Above the critical loop size, the loop lifetime changed with loop size in a manner consistent with elastic bending stress, but below it, became less sensitive to loop size, indicative of softened dsDNA. The critical loop size increased from ∼60 bp to ∼100 bp with the addition of 5 mM magnesium. We show that our result is in quantitative agreement with the kinkable worm-like chain model, and furthermore, can reproduce previously reported looping probabilities of dsDNA over the range between 50 and 200 bp. Our findings shed new light on the energetics of sharply bent dsDNA.  相似文献   

10.
Single-molecule tweezers measurements of double-stranded nucleic acids (dsDNA and dsRNA) provide unprecedented opportunities to dissect how these fundamental molecules respond to forces and torques analogous to those applied by topoisomerases, viral capsids, and other biological partners. However, tweezers data are still most commonly interpreted post facto in the framework of simple analytical models. Testing falsifiable predictions of state-of-the-art nucleic acid models would be more illuminating but has not been performed. Here we describe a blind challenge in which numerical predictions of nucleic acid mechanical properties were compared to experimental data obtained recently for dsRNA under applied force and torque. The predictions were enabled by the HelixMC package, first presented in this paper. HelixMC advances crystallography-derived base-pair level models (BPLMs) to simulate kilobase-length dsDNAs and dsRNAs under external forces and torques, including their global linking numbers. These calculations recovered the experimental bending persistence length of dsRNA within the error of the simulations and accurately predicted that dsRNA''s “spring-like” conformation would give a two-fold decrease of stretch modulus relative to dsDNA. Further blind predictions of helix torsional properties, however, exposed inaccuracies in current BPLM theory, including three-fold discrepancies in torsional persistence length at the high force limit and the incorrect sign of dsRNA link-extension (twist-stretch) coupling. Beyond these experiments, HelixMC predicted that ‘nucleosome-excluding’ poly(A)/poly(T) is at least two-fold stiffer than random-sequence dsDNA in bending, stretching, and torsional behaviors; Z-DNA to be at least three-fold stiffer than random-sequence dsDNA, with a near-zero link-extension coupling; and non-negligible effects from base pair step correlations. We propose that experimentally testing these predictions should be powerful next steps for understanding the flexibility of dsDNA and dsRNA in sequence contexts and under mechanical stresses relevant to their biology.  相似文献   

11.
A molecular system of a nanometer-sized reel was developed from F1–ATPase, a rotary motor protein. By combination with magnetic tweezers and optical tweezers, single-molecule double-stranded DNA (dsDNA) was wound around the molecular reel. The bending stiffness of dsDNA was determined from the winding tension (0.9–6.0 pN) and the diameter of the wound loop (21.4–8.5 nm). Our results were in good agreement with the conventional worm-like chain model and a persistence length of 54 ± 9 nm was estimated. This molecular reel system offers a new platform for single-molecule study of micromechanics of sharply bent DNA molecules and is expected to be applicable to the elucidation of the molecular mechanism of DNA-associating proteins on sharply bent DNA strands.  相似文献   

12.
Under a tension of ∼65 pN, double-stranded DNA undergoes an overstretching transition from its basic (B-form) conformation to a 1.7 times longer conformation whose nature is only recently starting to be understood. Here we provide a structural and thermodynamic characterization of the transition by recording the length transient following force steps imposed on the λ-phage DNA with different melting degrees and temperatures (10–25°C). The shortening transient following a 20–35 pN force drop from the overstretching force shows a sequence of fast shortenings of double-stranded extended (S-form) segments and pauses owing to reannealing of melted segments. The lengthening transients following a 2–35 pN stretch to the overstretching force show the kinetics of a two-state reaction and indicate that the whole 70% extension is a B-S transition that precedes and is independent of melting. The temperature dependence of the lengthening transient shows that the entropic contribution to the B-S transition is one-third of the entropy change of thermal melting, reinforcing the evidence for a double-stranded S-form that maintains a significant fraction of the interstrand bonds. The cooperativity of the unitary elongation (22 bp) is independent of temperature, suggesting that structural factors, such as the nucleic acid sequence, control the transition.  相似文献   

13.
The force-extension curve of single myosin subfragment-1 molecules, interacting in the rigor state with an actin filament, has been investigated at low [ATP] by applying a slow triangle-wave movement to the optical traps holding a bead-actin-bead dumbbell. In combination with a measurement of the overall stiffness of the dumbbell, this allowed characterization of the three extensible elements, the actin-bead links and the myosin. Simultaneously, another method, based on an analysis of bead position covariance, gave satisfactory agreement. The mean covariance-based estimate for the myosin stiffness was 1.79 pN/nm (SD = 0.7 pN/nm; SE = 0.06 pN/nm (n = 166 myosin molecules)), consistent with a recent report (1.7 pN/nm) from rabbit muscle fibers. In the triangle-wave protocol, the motion of the trapped beads during interactions was linear within experimental error over the physiological range of force applied to myosin (±10 pN), consistent with a Hookean model; any nonlinear terms could not be characterized. Bound states subjected to forces that resisted the working stroke (i.e., positive forces) detached at a significantly lower force than when subjected to negative forces, which is indicative of a strain-dependent dissociation rate.  相似文献   

14.
Atomic force microscopy has been used to investigate the binding between a double-stranded DNA and bilayers of cationic lipids and zwitterionic lipids in low ionic-strength solutions. The binding of a DNA molecule to freshly cleaved mica surface in solution has also been measured. The binding of DNA molecules to cationic lipid bilayers has a minimal strength of ∼45 pN. On zwitterionic lipid bilayers and mica surface, the minimal binding strength is approximately twice that value. The binding also has a dynamic nature, with only a certain percentage of recorded force curves containing the binding characteristics. Divalent Mg2+ ions enhance the binding by increasing that percentage without any effect on the binding strength. We have also observed a long-range attraction between DNA molecules and cationic lipid bilayers with a strength much larger than the minimum force and a range well over 50 nm, possibly related to the driving force responsible for the two-dimensional condensation of DNA.  相似文献   

15.
The condensin SMC protein complex organizes chromosomal structure by extruding loops of DNA. Its ATP-dependent motor mechanism remains unclear but likely involves steps associated with large conformational changes within the ∼50 nm protein complex. Here, using high-resolution magnetic tweezers, we resolve single steps in the loop extrusion process by individual yeast condensins. The measured median step sizes range between 20–40 nm at forces of 1.0–0.2 pN, respectively, comparable with the holocomplex size. These large steps show that, strikingly, condensin typically reels in DNA in very sizeable amounts with ∼200 bp on average per single extrusion step at low force, and occasionally even much larger, exceeding 500 bp per step. Using Molecular Dynamics simulations, we demonstrate that this is due to the structural flexibility of the DNA polymer at these low forces. Using ATP-binding-impaired and ATP-hydrolysis-deficient mutants, we find that ATP binding is the primary step-generating stage underlying DNA loop extrusion. We discuss our findings in terms of a scrunching model where a stepwise DNA loop extrusion is generated by an ATP-binding-induced engagement of the hinge and the globular domain of the SMC complex.  相似文献   

16.
The bending stiffness of double-stranded DNA (dsDNA) at high curvatures is fundamental to its biological activity, yet this regime has been difficult to probe experimentally, and literature results have not been consistent. We created a ‘molecular vise’ in which base-pairing interactions generated a compressive force on sub-persistence length segments of dsDNA. Short dsDNA strands (<41 base pairs) resisted this force and remained straight; longer strands became bent, a phenomenon called ‘Euler buckling’. We monitored the buckling transition via Förster Resonance Energy Transfer (FRET) between appended fluorophores. For low-to-moderate concentrations of monovalent salt (up to ∼150 mM), our results are in quantitative agreement with the worm-like chain (WLC) model of DNA elasticity, without the need to invoke any ‘kinked’ states. Greater concentrations of monovalent salts or 1 mM Mg2+ induced an apparent softening of the dsDNA, which was best accounted for by a kink in the region of highest curvature. We tested the effects of all single-nucleotide mismatches on the DNA bending. Remarkably, the propensity to kink correlated with the thermodynamic destabilization of the mismatched DNA relative the perfectly complementary strand, suggesting that the kinked state is locally melted. The molecular vise is exquisitely sensitive to the sequence-dependent linear and nonlinear elastic properties of dsDNA.  相似文献   

17.
2,6-diaminopurine (DAP) is a nucleobase analog of adenine. When incorporated into double-stranded DNA (dsDNA), it forms three hydrogen bonds with thymine. Rare in nature, DAP substitution alters the physical characteristics of a DNA molecule without sacrificing sequence specificity. Here, we show that in addition to stabilizing double-strand hybridization, DAP substitution also changes the mechanical and conformational properties of dsDNA. Thermal melting experiments reveal that DAP substitution raises melting temperatures without diminishing sequence-dependent effects. Using a combination of atomic force microscopy (AFM), magnetic tweezer (MT) nanomechanical assays, and circular dichroism spectroscopy, we demonstrate that DAP substitution increases the flexural rigidity of dsDNA yet also facilitates conformational shifts, which manifest as changes in molecule length. DAP substitution increases both the static and dynamic persistence length of DNA (measured by AFM and MT, respectively). In the static case (AFM), in which tension is not applied to the molecule, the contour length of DAP-DNA appears shorter than wild-type (WT)-DNA; under tension (MT), they have similar dynamic contour lengths. At tensions above 60 pN, WT-DNA undergoes characteristic overstretching because of strand separation (tension-induced melting) and spontaneous adoption of a conformation termed S-DNA. Cyclic overstretching and relaxation of WT-DNA at near-zero loading rates typically yields hysteresis, indicative of tension-induced melting; conversely, cyclic stretching of DAP-DNA showed little or no hysteresis, consistent with the adoption of the S-form, similar to what has been reported for GC-rich sequences. However, DAP-DNA overstretching is distinct from GC-rich overstretching in that it happens at a significantly lower tension. In physiological salt conditions, evenly mixed AT/GC DNA typically overstretches around 60 pN. GC-rich sequences overstretch at similar if not slightly higher tensions. Here, we show that DAP-DNA overstretches at 52 pN. In summary, DAP substitution decreases the overall stability of the B-form double helix, biasing toward non-B-form DNA helix conformations at zero tension and facilitating the B-to-S transition at high tension.  相似文献   

18.
The enzymatic transfer of ADP-ribose from NAD to histone H1 (defined as trans-poly(ADP-ribosylation)) or to PARP I (defined as auto-poly(ADP-ribosylation)) was studied with respect to the nature of the DNA required as a coenzyme. Linear double-stranded DNA (dsDNA) containing the MCAT core motif was compared with DNA containing random nicks (discontinuous or dcDNA). The dsDNAs activated trans-poly(ADP-ribosylation) about 5 times more effectively than dcDNA as measured by V(max). Activation of auto-poly(ADP-ribosylation) by dcDNA was 10 times greater than by dsDNA. The affinity of PARP I toward dcDNA or dsDNA in the auto-poly(ADP-ribosylation) was at least 100-fold lower than in trans-poly(ADP-ribosylation) (K(a) = 1400 versus 3-15, respectively). Mg2+ inhibited trans-poly(ADP-ribosylation) and so did dcDNA at concentrations required to maximally activate auto-poly(ADP-ribosylation). Mg2+ activated auto-poly(ADP-ribosylation) of PARP I. These results for the first time demonstrate that physiologically occurring dsDNAs can serve as coenzymes for PARP I and catalyze preferentially trans-poly(ADP- ribosylation), thereby opening the possibility to study the physiologic function of PARP I.  相似文献   

19.
The highly cooperative elongation of a single B-DNA molecule to almost twice its contour length upon application of a stretching force is interpreted as force-induced DNA melting. This interpretation is based on the similarity between experimental and calculated stretching profiles, when the force-dependent free energy of melting is obtained directly from the experimental force versus extension curves of double- and single-stranded DNA. The high cooperativity of the overstretching transition is consistent with a melting interpretation. The ability of nicked DNA to withstand forces greater than that at the transition midpoint is explained as a result of the one-dimensional nature of the melting transition, which leads to alternating zones of melted and unmelted DNA even substantially above the melting midpoint. We discuss the relationship between force-induced melting and the B-to-S transition suggested by other authors. The recently measured effect on T7 DNA polymerase activity of the force applied to a ssDNA template is interpreted in terms of preferential stabilization of dsDNA by weak forces approximately equal to 7 pN.  相似文献   

20.
Inspired by novel single-molecule and bulk solution measurements, the physics underlying the forces and pressures involved in DNA packaging into bacteriophage capsids became the focus of numerous recent theoretical models. These fall into two general categories: Continuum-elastic theories (CT), and simulation studies—mostly of the molecular dynamics (MD) genre. Both types of models account for the dependence of the force, and hence the packaging free energy (ΔF), on the loaded DNA length, but differ markedly in interpreting their origin. While DNA confinement entropy is a dominant contribution to ΔF in the MD simulations, in the CT theories this role is fulfilled by interstrand repulsion, and there is no explicit entropy term. The goal of this letter is to resolve this apparent contradiction, elucidate the origin of the entropic term in the MD simulations, and point out its tacit presence in the CT treatments.The genomic double-stranded (ds) DNA inside bacteriophage heads is highly stressed, leading to internal pressures of up to ∼50 atmospheres, reflecting the tight packing and extreme bending of this highly charged and rigid molecule (1). The interaxial distance (d) between neighboring (nonbonded) dsDNA segments in the fully packaged virus is typically ≈2.5 nm (2,3), just slightly larger than the hardcore diameter of dsDNA (b = 2.0 nm) and well into the repulsive regime (d ≤ 2.8 nm) of DNA-DNA interaction in ionic solutions (4–6). Moreover, free dsDNA in (physiological) solution is a fluctuating, semiflexible, wormlike chain (WLC), with persistence length ξ ≈ 50 nm, larger than the radius of most viral capsids. Thus, on a molecular scale, packaging the long (e.g., the 330-ξ long λ-phage genome) viral DNA into its tiny capsid requires enormous mechanical work.The force needed to package the DNA is provided by an ATP-driven motor protein situated at the capsid portal. Recent single molecule measurements reveal that this force, f(Lint), increases sharply with the loaded genome length, Lint, rising to ∼30–100 pN, depending on the virus in question (7,8). These studies inspired the formulation of many theoretical models of DNA packaging in viral capsids, which fall roughly into two categories:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号