首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analysis of the intensity fluctuation of a fluorescence signal from a relatively small volume and from a few molecules contains information about the distribution of different species present in the solution and about kinetic parameters of the system. The same information is generally averaged out when the fluorescence experiment is performed in a much larger volume, typically a cuvette experiment. The fundamental reason for this difference is that the fluctuations of the fluorescence signal from a few molecules directly reflect the molecular nature of the matter. Only recently, with the advent of confocal microscopy and two-photon excitation, it has become practical to achieve small excitation volumes in which only a few fluorescent molecules are present. We introduce the concept of fluctuation spectroscopy and highlight some of the technical aspects. We discuss different analysis methods used in fluctuation spectroscopy and evaluate their use for studying protein-protein interactions.  相似文献   

2.
Wu B  Chao JA  Singer RH 《Biophysical journal》2012,102(12):2936-2944
Imaging mRNA with single-molecule sensitivity in live cells has become an indispensable tool for quantitatively studying RNA biology. The MS2 system has been extensively used due to its unique simplicity and sensitivity. However, the levels of the coat protein needed for consistent labeling of mRNAs limits the sensitivity and quantitation of this technology. Here, we applied fluorescence fluctuation spectroscopy to quantitatively characterize and enhance the MS2 system. Surprisingly, we found that a high fluorescence background resulted from inefficient dimerization of fluorescent protein (FP)-labeled MS2 coat protein (MCP). To mitigate this problem, we used a single-chain tandem dimer of MCP (tdMCP) that significantly increased the uniformity and sensitivity of mRNA labeling. Furthermore, we characterized the PP7 coat protein and the binding to its respective RNA stem loop. We conclude that the PP7 system performs better for RNA labeling. Finally, we used these improvements to study endogenous β-actin mRNA, which has 24xMS2 binding sites inserted into the 3' untranslated region. The tdMCP-FP allowed uniform RNA labeling and provided quantitative measurements of endogenous mRNA concentration and diffusion. This work provides a foundation for quantitative spectroscopy and imaging of single mRNAs directly in live cells.  相似文献   

3.
Originally developed for applications in physics and physical chemistry, fluorescence fluctuation spectroscopy is becoming widely used in cell biology. This review traces the development of the method and describes some of the more important applications. Specifically, the methods discussed include fluorescence correlation spectroscopy (FCS), scanning FCS, dual color cross-correlation FCS, the photon counting histogram and fluorescence intensity distribution analysis approaches, the raster scanning image correlation spectroscopy method, and the Number and Brightness technique. The physical principles underlying these approaches will be delineated, and each of the methods will be illustrated using examples from the literature.  相似文献   

4.
Fluorescence fluctuation methods such as fluorescence correlation spectroscopy and fluorescence intensity distribution analysis (FIDA) have proven to be versatile tools for studying molecular interactions with single molecule sensitivity. Another well-known fluorescence technique is the measurement of the fluorescence lifetime. Here, we introduce a method that combines the benefits of both FIDA and fluorescence lifetime analysis. It is based on fitting the two-dimensional histogram of the number of photons detected in counting time intervals of given width and the sum of excitation to detection delay times of these photons. Referred to as fluorescence intensity and lifetime distribution analysis (FILDA), the technique distinguishes fluorescence species on the basis of both their specific molecular brightness and the lifetime of the excited state and is also able to determine absolute fluorophore concentrations. The combined information yielded by FILDA results in significantly increased accuracy compared to that of FIDA or fluorescence lifetime analysis alone. In this paper, the theory of FILDA is elaborated and applied to both simulated and experimental data. The outstanding power of this technique in resolving different species is shown by quantifying the binding of calmodulin to a peptide ligand, thus indicating the potential for application of FILDA to similar problems in the life sciences.  相似文献   

5.
Fluorescence detection typically enhances sensitivity and selectivity for fluorescent analytes. The potential for combining fluorescence detection with flow orientation of the sample in the normal configuration of linear dichroism experiments is explored in this work by measuring the fluorescence emitted from flow‐orientated DNA‐bound ligands and M13 bacteriophage. Data for ethidium bromide, Hoechst 33258, and 4,6‐diamidino‐2‐phenyindole are presented. The theoretical basis of the technique is also presented for instruments running in both the fixed direct‐current mode, which is the normal operation mode of circular dichroism spectropolarimeters, and also in fixed high‐tension voltage mode. The role of the stray light reaching the detector that results in a spectral shape in fixed direct current mode that resembles the shape of a linear dichroism spectrum, rather than the expected reduced linear dichroism, is also explored.  相似文献   

6.
The effect of several surfactants on peroxyoxalate chemiluminescence (PO‐CL) using oligophenylenevinylene fluorophores was investigated. Among several oligophenylenevinylenes consisting of stilbene units, linearly conjugated ones, such as distyrylbenzene and distyrylstilbene, effectively enhanced PO‐CL efficiency. Various effects of anionic, cationic, amphoteric and non‐ionic surfactants on the CL efficiency of PO‐CL were determined using three oxalates and the distyrylbenzene fluorophore. Anionic and non‐ionic surfactants effectively enhanced CL efficiency, in contrast to the negative effect of cationic and amphoteric surfactants. Non‐ionic surfactants were also effective in CL reactions of oxalates bearing dodecyl ester groups by the hydrophobic interaction between their alkyl chains. Considering these results, the surfactants not only increase the concentrations of water‐insoluble interacting species in the hydrophobic micelle cores, but also control rapid degradation of the oxalates by alkaline hydrolysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Some practical aspects of the use of spectrophotofluorometers as applied to the organic analyses of returned lunar samples and other geological materials have been discussed. Because of the single beam nature of spectrophotofluorometers many instrumental artifacts such as grating anomalies, irregular spectral output of light sources and response characteristics of photodetectors are apparent in sample spectra. In order to avoid some of these instrumental artifacts from influencing sample spectra, the performance characteristics of each optical component have been described and the necessity of instrumental calibration has been emphasized.  相似文献   

8.
A novel technique for the analysis of fluorescence fluctuation experiments is introduced. Fluorescence cumulant analysis (FCA) exploits the factorial cumulants of the photon counts and resolves heterogeneous samples based on differences in brightness. A simple analytical model connects the cumulants of the photon counts with the brightness epsilon and the number of molecules N in the optical observation volume for each fluorescent species. To provide the tools for a rigorous error analysis of FCA, expressions for the variance of factorial cumulants are developed and tested. We compare theory with experiment by analyzing dye mixtures and simple fluorophore solutions with FCA. A comparison of FCA with photon-counting histogram (PCH) analysis, a related technique, shows that both methods give identical results within experimental uncertainty. Both FCA and PCH are restricted to data sampling times that are short compared to the diffusion time of molecules through the observation volume of the instrument. But FCA theory, in contrast to PCH, can be extended to treat arbitrary sampling times. Here, we derive analytical expressions for the second factorial cumulant as a function of the sampling time and demonstrate that the theory successfully models fluorescence fluctuation data.  相似文献   

9.
10.
11.
Fluorescence correlation spectroscopy (FCS) is a powerful technique to measure concentrations, mobilities, and interactions of fluorescent biomolecules. It can be applied to various biological systems such as simple homogeneous solutions, cells, artificial, or cellular membranes and whole organisms. Here, we introduce the basic principle of FCS, discuss its application to biological questions as well as its limitations and challenges, present an overview of novel technical developments to overcome those challenges, and conclude with speculations about the future applications of fluorescence fluctuation spectroscopy.  相似文献   

12.
We have developed a program for the simulation of the fluorescence fluctuations as detected from highly diluted samples of (bio)molecules. The model is applied to translational diffusion and takes into account the hydrodynamic interactions. The solution concentration is kept constant by assuming periodic boundary conditions and spans here the range 0.5< C < 10 nM. We show that the fluorescence correlation functions can be accurately computed on systems of limited size (a few molecules per simulation box) by simulating for a total time approximately 100-300 times the diffusion relaxation time of the fluorescence autocorrelation function. The model is applied also to the simulation of the scanning fluorescence correlation spectroscopy (FCS) and of the photon counting histograms for the confocal collection configuration. Scanning FCS simulations of highly diluted samples (C approximately equals 0.5 nM) show anticorrelation effects in the autocorrelation functions of the fluorescence signal that are less evident for higher concentrations. We suggest here that this effect may be due to the non-uniform occupancy of the scanning area by the fluorophores.  相似文献   

13.
M D Yeager  G W Feigenson 《Biochemistry》1990,29(18):4380-4392
Fluorescence quenching in lipid bilayers is treated by a new approach based on calculation of the probability distribution of quenching and nonquenching acyl chains around a fluorophore. The effect of acyl lattice site dependence (i.e., correlations of phospholipid sister chain occupancy of neighbor sites) was modeled by use of Monte Carlo simulations of acyl chain occupancy. This explicit accounting of site occupancy correlation was found to fit observed quenching behavior better than did a model wherein phospholipid quenchers are considered to be independent. A key aspect of this approach is to evaluate the rate for quenching in a bilayer composed of pure quenching lipid. In order to evaluate this quenching rate, and also to provide a strong test of the calculated probability distributions, we synthesized lipids with both acyl chains labeled with a quenching moiety (Br or nitroxide), as well as the more usual single-chain quenchers. The fluorescence of tryptophan octyl ester (TOE), and of the 1,6-diphenyl-1,3,5-hexatriene (DPH) derivatives trimethylammonium-DPH (TMA-DPH) and 1-lauroyl-2-(DPH-propionyl)phosphatidylcholine (DPH-PC), was examined. We obtained consistent results with all the fluorophores and quenchers indicating that up to 18 neighboring acyl sites can contribute to quenching, corresponding to two shells of acyl sites on a hexagonal lattice. Calculated discrete distributions of fluorescence intensities were converted into fluorescence lifetimes and compared with Gaussian and Lorentzian continuous lifetime distributions. The fluorescence quenching theory presented here may be used to explain quantitatively the heterogeneity of fluorophore environments in multicomponent membranes.  相似文献   

14.
15.
Fluorescence micrographs of the plasma membrane of cells expressing fluorescently labeled G protein-coupled receptors (GPCRs) often exhibit small clusters of pixels (or puncta) with intensities that are higher than those of the surrounding pixels. Although studies of GPCR interactions in uniform membrane areas abound, understanding the details of the GPCR interactions within such puncta as well as the nature of the membrane formations underlying the puncta is hampered by the lack of adequate experimental techniques. Here, we introduce an enhancement of a recently developed method termed fluorescence intensity fluctuation spectrometry, which permits analysis of protein-protein interactions within the puncta in live cell membranes. We applied the novel fluorescence intensity fluctuation data analysis protocol to previously published data from cells expressing human secretin receptors and determined that the oligomer size increases with receptor concentration and duration of treatment with cognate ligand, not only within uniform regions of the membrane (in agreement with previous publications) but also within the puncta. In addition, we found that the number density and fractional area of the puncta increased after treatment with ligand. This method could be applied for probing the evolution in the time of the chain of events that begins with ligand binding and continues with coated pits formation and receptor internalization for other GPCRs and, indeed, other membrane receptors in living cells.  相似文献   

16.
We have developed the technique of thermal fluctuation spectroscopy to measure the thermal fluctuations in a system. This technique is particularly useful to study the denaturation dynamics of biomolecules like DNA. Here we present a study of the thermal fluctuations during the thermal denaturation (or melting) of double-stranded DNA. We find that the thermal denaturation of heteropolymeric DNA is accompanied by large, non-Gaussian thermal fluctuations. The thermal fluctuations show a two-peak structure as a function of temperature. Calculations of enthalpy exchanged show that the first peak comes from the denaturation of AT rich regions and the second peak from denaturation of GC rich regions. The large fluctuations are almost absent in homopolymeric DNA. We suggest that bubble formation and cooperative opening and closing dynamics of basepairs causes the additional fluctuation at the first peak and a large cooperative transition from a partially molten DNA to a completely denatured state causes the additional fluctuation at the second peak.  相似文献   

17.
A random-walk model of motility is used to predict the dynamics of fluctuations in the number of particles in a small observation volume. The results show that number fluctuations provide a measure of the mean swimming speed as well as the persistence length. Experimental light-scattering results are presented for three strains of Escherichia coli whose motion appears random-walk in nature. For the strain with th elongest persistence length, excellent agreement is found that theoretical predictions. For the more erratic strains, however, the shape of the measured scattered light intensity correlation functions indicates the presence of a contribution due to orientational fluctuations.  相似文献   

18.
Wu B  Müller JD 《Biophysical journal》2005,89(4):2721-2735
We introduce a new analysis technique for fluorescence fluctuation data. Time-integrated fluorescence cumulant analysis (TIFCA) extracts information from the cumulants of the integrated fluorescence intensity. TIFCA builds on our earlier FCA theory, but in contrast to FCA or photon counting histogram (PCH) analysis is valid for arbitrary sampling times. The motivation for long sampling times lies in the improvement of the signal/noise ratio of the data. Because FCA and PCH theory are not valid in this regime, we first derive a theoretical model of cumulant functions for arbitrary sampling times. TIFCA is the first exact theory that describes the effects of sampling time on fluorescence fluctuation experiments. We calculate factorial cumulants of the photon counts for various sampling times by rebinning of the original data. Fits of the data to models determine the brightness, the occupation number, and the diffusion time of each species. To provide the tools for a rigorous error analysis of TIFCA, expressions for the variance of cumulants are developed and tested. We demonstrate that over a limited range rebinning reduces the relative error of higher order cumulants, and therefore improves the signal/noise ratio. The first four cumulant functions are explicitly calculated and are applied to simple dye systems to test the validity of TIFCA and demonstrate its ability to resolve species.  相似文献   

19.
Cell biologists strive to characterize molecular interactions directly in the intracellular environment. The intrinsic resolution of optical microscopy, however, allows visualization of only coarse subcellular localization. By extracting information from molecular dynamics, fluorescence cross-correlation spectroscopy (FCCS) grants access to processes on a molecular scale, such as diffusion, binding, enzymatic reactions and codiffusion, and has become a valuable tool for studies in living cells. Here we review basic principles of FCCS and focus on seminal applications, including examples of intracellular signaling and trafficking. We consider FCCS in the context of fluorescence resonance energy transfer and multicolor imaging techniques and discuss application strategies and recent technical advances.  相似文献   

20.
Fluorescence correlation spectroscopy (FCS) is an ideal analytical tool for studying concentrations, propagation, interactions and internal dynamics of molecules at nanomolar concentrations in living cells. FCS analyzes minute fluorescence-intensity fluctuations about the equilibrium of a small ensemble (<10(3)) of molecules. These fluctuations act like a 'fingerprint' of a molecular species detected when entering and leaving a femtoliter-sized optically defined observation volume created by a focused laser beam. In FCS the fluorescence fluctuations are recorded as a function of time and then statistically analyzed by autocorrelation analysis. The resulting autocorrelation curve yields a measure of self-similarity of the system after a certain time delay, and its amplitude describes the normalized variance of the fluorescence fluctuations. By fitting the curves to an appropriate physical model, this method provides precise information about a multitude of measurement parameters, including diffusion coefficients, local concentration, states of aggregation and molecular interactions. FCS operates in real time with diffraction-limited spatial and sub-microsecond temporal resolution. Assessing diverse molecular dynamics within the living cell is a challenge well met by FCS because of its single-molecule sensitivity and high dynamic resolution. For these same reasons, however, intracellular FCS measurements also harbor the large risk of collecting artifacts and thus producing erroneous data. Here we provide a step-by-step guide to the application of FCS to cellular systems, including methods for minimizing artifacts, optimizing measurement conditions and obtaining parameter values in the face of diverse and complex conditions of the living cell. A discussion of advantages and disadvantages of one-photon versus two-photon excitation for FCS is available in Supplementary Methods online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号