首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholesterol efflux from the plasma membrane to HDLs is essential for cell cholesterol homeostasis. Recently, cholesterol-enriched ordered membrane domains, i.e. lipid rafts have been proposed to play an important role in this process. Here we introduce a new method to investigate the role of HDL interactions with the raft lipid phase and to directly visualize the effects of HDL-induced cholesterol efflux on rafts in model membranes. Addition of HDLs to giant lipid vesicles containing raft-type domains promoted decrease in size and disappearance of such domains as visualized by fluorescence microscopy. This was interpreted as resulting from cholesterol efflux from the vesicles to the HDLs. The raft vanishing rate was directly related to the HDL concentration. Evidence for a direct interaction of HDLs with the membrane was obtained by observing mutual adhesion of vesicles. It is suggested that the present method can be used to study the selective role of the bilayer lipid phase (raft and non-raft) in cholesterol efflux and membrane-HDL interaction and their underlying mechanisms. Such mechanisms may contribute to cholesterol efflux in vivo.  相似文献   

2.
Although the functional significance of caveolae/lipid rafts in cellular signaling and cholesterol transfer is increasingly recognized, almost nothing is known regarding the lipids, cholesterol dynamics, and factors regulating these properties in caveolae/lipid rafts as opposed to nonlipid raft domains of the plasma membrane. The present findings demonstrate the utility of con-A affinity chromatography for simultaneous isolation of caveolae/lipid raft and nonlipid raft domains from plasma membranes of L-cell fibroblasts. These domains differed markedly in both protein and lipid constituents. Although caveolae/lipid rafts were enriched in total lipid, cholesterol, and phospholipid as well as other markers for these domains, the cholesterol/phospholipid ratio of caveolae/lipid rafts did not differ from that of nonlipid rafts. Nevertheless, spontaneous sterol transfer was 7-12-fold faster from caveolae/lipid raft than nonlipid raft domains of the plasma membrane. This was largely due to the near absence of exchangeable sterol in the nonlipid rafts. SCP-2 dramatically and selectively enhanced sterol transfer from caveolae/lipid rafts, but not from nonlipid rafts. Finally, overexpression of SCP-2 significantly altered the sterol dynamics of caveolae/lipid rafts to facilitate retention of cholesterol within the cell. These results established for the first time that (i) caveolae/lipid rafts, rather than the nonlipid raft domains, contain significant levels of rapidly transferable sterol, consistent with their role in spontaneous sterol transfer from and through the plasma membrane, and (ii) SCP-2 selectively regulates how caveolae/lipid rafts, but not nonlipid raft domains, mediate cholesterol trafficking through the plasma membrane.  相似文献   

3.
The ternary lipid system palmitoylsphingomyelin (PSM)/palmitoyloleoylphosphatidylcholine (POPC)/cholesterol is a model for lipid rafts. Previously the phase diagram for that mixture was obtained, establishing the composition and boundaries for lipid rafts. In the present work, this system is further studied in order to characterize the size of the rafts. For this purpose, a time-resolved fluorescence resonance energy transfer (FRET) methodology, previously applied with success to a well-characterized phosphatidylcholine/cholesterol binary system, is used. It is concluded that: (1) the rafts on the low raft fraction of the raft region are small (below 20 nm), whereas on the other side the domains are larger; (2) on the large domain region, the domains reach larger sizes in the ternary system (> approximately 75-100 nm) than in binary systems phosphatidylcholine/cholesterol (between approximately 20 and approximately 75-100 nm); (3) the raft marker ganglioside G(M1) in small amounts (and excess cholera toxin subunit B) does not affect the general phase behaviour of the lipid system, but can increase the size of the rafts on the small to intermediate domain region. In summary, lipid-lipid interactions alone can originate lipid rafts on very different length scales. The conclusions presented here are consistent with the literature concerning both model systems and cell membrane studies.  相似文献   

4.
Chemically simplified lipid mixtures are used here as models of the cell plasma membrane exoplasmic leaflet. In such models, phase separation and morphology transitions controlled by line tension in the liquid-disordered (Ld)?+?liquid-ordered (Lo) coexistence regime have been described [1]. Here, we study two four-component lipid mixtures at different cholesterol fractions: brain sphingomyelin (BSM) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). On giant unilamellar vesicles (GUVs) display a nanoscopic-to-macroscopic transition of Ld?+?Lo phase domains as POPC is replaced by DOPC, and this transition also depends on the cholesterol fraction. Line tension decreases with increasing cholesterol mole fractions in both lipid mixtures. For the ternary BSM/DOPC/Chol mixture, the published phase diagram [19] requires a modification to show that when cholesterol mole fraction is >~0.33, coexisting phase domains become nanoscopic.  相似文献   

5.
A commonly-used method for analysing raft membrane domains is based on their resistance to extraction by non-ionic detergents at 4 °C. However, the selectivity of different detergents in defining raft membrane domains has been questioned. We have compared the lipid composition of detergent-resistant membranes (DRMs) obtained after Triton X-100 or Lubrol WX extraction in MDCK cells in order to understand the differential effect of these detergents on membranes and their selectivity in solubilizing or not proteins. Both Lubrol and Triton DRMs were enriched with cholesterol over the lysate, thus exhibiting characteristics consistent with the properties of membrane rafts. However, the two DRM fractions differed considerably in the ratio between lipids of the inner and outer membrane leaflets. Lubrol DRMs were especially enriched with phosphatidylethanolamine, including polyunsaturated species with long fatty acyl chains. Lubrol and Triton DRMs also differed in the amount of raft transmembrane proteins and raft proteins anchored to the cytoplasmic leaflet. Our results suggest that the inner side of rafts is enriched with phosphatidylethanolamine and cholesterol, and is more solubilized by Triton X-100 than by Lubrol WX.  相似文献   

6.
A commonly-used method for analysing raft membrane domains is based on their resistance to extraction by non-ionic detergents at 4 degrees C. However, the selectivity of different detergents in defining raft membrane domains has been questioned. We have compared the lipid composition of detergent-resistant membranes (DRMs) obtained after Triton X-100 or Lubrol WX extraction in MDCK cells in order to understand the differential effect of these detergents on membranes and their selectivity in solubilizing or not proteins. Both Lubrol and Triton DRMs were enriched with cholesterol over the lysate, thus exhibiting characteristics consistent with the properties of membrane rafts. However, the two DRM fractions differed considerably in the ratio between lipids of the inner and outer membrane leaflets. Lubrol DRMs were especially enriched with phosphatidylethanolamine, including polyunsaturated species with long fatty acyl chains. Lubrol and Triton DRMs also differed in the amount of raft transmembrane proteins and raft proteins anchored to the cytoplasmic leaflet. Our results suggest that the inner side of rafts is enriched with phosphatidylethanolamine and cholesterol, and is more solubilized by Triton X-100 than by Lubrol WX.  相似文献   

7.
Philip F  Scarlata S 《Biochemistry》2004,43(37):11691-11700
We have quantified the enhancement of membrane binding of activated and deactivated Galpha(s) and Galpha(q) subunits, Gbetagamma subunits, and phospholipase Cbeta(2) by lipid rafts and by the presence of membrane-associated protein partners. Membrane binding studies show that lipid rafts do not affect the intrinsic membrane affinity of Galpha(q)(GDP) and Galpha(s)(GDP), supporting the idea that these proteins partition evenly between the domains. Visualization of lipid rafts on monolayers by use of a probe that does not enter raft domains shows that neither activated nor deactivated Galpha(q)(GDP) subunits distribute evenly between the raft and nonraft domains, contrary to previous suggestions. Membrane binding of deactivated Galpha(q) and Galpha(s)(GDP) became weaker when Gbetagamma subunits were present, in contrast with the behavior predicted by thermodynamics. However, activated Galpha subunits and phospholipase Cbeta(2) were recruited to membrane surfaces by protein partners by predicted amounts. Our studies suggest that the anomalous behavior seen for deactivated Galpha subunits in the presence of Gbetagamma subunits may be due to conformational changes in the N-terminus and/or occlusion of a portion of its membrane interaction region by Gbetagamma. Even though membrane recruitment was clearly observed for one protein partner, the presence of a second partner of lower affinity did not further promote membrane binding. For these proteins, the formation of larger protein complexes with very high membrane affinities is unlikely.  相似文献   

8.
Lipid rafts are glycosphingolipid/cholesterol-enriched membrane microdomains that have been extensively studied during the past two decades. Our aim was to isolate and perform biochemical characterization of lipid rafts from the intestinal brush border membrane (BBM) of Atlantic cod (Gadus morhua) to confirm their existence in a cold-water species and compare their characteristics with lipid rafts from other species in terms of lipid and protein content. To validate the isolation process, we assayed marker enzymes for subcellular organelles, including alkaline phosphatase (AP) and leucine aminopeptidase (LAP), both well-known marker enzymes for BBM and lipid rafts. All biochemical methods showed enrichment of AP in both the BBM and lipid raft fractions. Proteomic studies were performed by MALDI-TOF mass spectrometry using trypsin digested SDS-PAGE samples. Various proteins were associated with the cod intestinal lipid raft preparation such as aminopeptidase-N, prohibitin, and beta-actin. Lipid analysis with 31P NMR and thin layer chromatography on BBMs and lipid rafts samples gave higher content of sphingomyelin than previously reported in the BBM and lower content of phosphatidylcholine. Furthermore, sphingomyelin was highly dominant in the lipid rafts together with cholesterol. The existence of lipid rafts containing previously reported lipid raft characteristics from the cod intestine has, therefore, been confirmed in a ray-finned fish for the first time to the best of our knowledge.  相似文献   

9.
Although low-density lipoprotein (LDL) receptor-mediated cholesterol uptake through clathrin-coated pits is now well understood, the molecular details and organizing principles for selective cholesterol uptake/efflux (reverse cholesterol transport, RCT) from peripheral cells remain to be resolved. It is not yet completely clear whether RCT between serum lipoproteins and the plasma membrane occurs primarily through lipid rafts/caveolae or from non-raft domains. To begin to address these issues, lipid raft/caveolae-, caveolae-, and non-raft-enriched fractions were resolved from purified plasma membranes isolated from L-cell fibroblasts and MDCK cells by detergent-free affinity chromatography and compared with detergent-resistant membranes isolated from the same cells. Fluorescent sterol exchange assays between lipoproteins (VLDL, LDL, HDL, apoA1) and these enriched domains provided new insights into supporting the role of lipid rafts/caveolae and caveolae in plasma membrane/lipoprotein cholesterol dynamics: (i) lipids known to be translocated through caveolae were detected (cholesteryl ester, triacylglycerol) and/or enriched (cholesterol, phospholipid) in lipid raft/caveolae fractions; (ii) lipoprotein-mediated sterol uptake/efflux from lipid rafts/caveolae and caveolae was rapid and lipoprotein specific, whereas that from non-rafts was very slow and independent of lipoprotein class; and (iii) the rate and lipoprotein specificity of sterol efflux from lipid rafts/caveolae or caveolae to lipoprotein acceptors in vitro was slower and differed in specificity from that in intact cells-consistent with intracellular factors contributing significantly to cholesterol dynamics between the plasma membrane and lipoproteins.  相似文献   

10.
Increasing evidence supports the idea that the initial events of Aβ oligomerization and cytotoxicity in Alzheimer's disease involve the interaction of amyloid Aβ-derived diffusible ligands (ADDLs) with the cell membrane. This also indicates lipid rafts, ordered membrane microdomains enriched in cholesterol, sphingolipids and gangliosides, as likely primary interaction sites of ADDLs. To shed further light on the relation between ADDL-cell membrane interaction and oligomer cytotoxicity, we investigated the dependence of ADDLs binding to lipid rafts on membrane cholesterol content in human SH-SY5Y neuroblastoma cells. Confocal laser microscopy showed that Aβ1-42 oligomers markedly interact with membrane rafts and that a moderate enrichment of membrane cholesterol prevents their association with the monosialoganglioside GM1. Moreover, anisotropy fluorescence measurements of flotillin-1-positive rafts purified by sucrose density gradient suggested that the content of membrane cholesterol and membrane perturbation by ADDLs are inversely correlated. Finally, contact mode atomic force microscope images of lipid rafts in liquid showed that ADDLs induce changes in raft morphology with the appearance of large cavities whose size and depth were significantly reduced in similarly treated cholesterol-enriched rafts. Our data suggest that cholesterol reduces amyloid-induced membrane modifications at the lipid raft level by altering raft physicochemical features.  相似文献   

11.
Lipid rafts, defined as cholesterol- and sphingolipid-rich domains, provide specialized lipid environments understood to regulate the organization and function of many plasma membrane proteins. Growing evidence of their existence, protein cargo, and regulation is based largely on the study of isolated lipid rafts; however, the consistency and validity of common isolation methods is controversial. Here, we provide a detailed and direct comparison of the lipid and protein composition of plasma membrane "rafts" prepared from human macrophages by different methods, including several detergent-based isolations and a detergent-free method. We find that detergent-based and detergent-free methods can generate raft fractions with similar lipid contents and a biophysical structure close to that previously found on living cells, even in cells not expressing caveolin-1, such as primary human macrophages. However, important differences between isolation methods are demonstrated. Triton X-100-resistant rafts are less sensitive to cholesterol or sphingomyelin depletion than those prepared by detergent-free methods. Moreover, we show that detergent-based methods can scramble membrane lipids during the isolation process, reorganizing lipids previously in sonication-derived nonraft domains to generate new detergent-resistant rafts. The role of rafts in regulating the biological activities of macrophage plasma membrane proteins may require careful reevaluation using multiple isolation procedures, analyses of lipids, and microscopic techniques.  相似文献   

12.
Ceramide is a membrane lipid involved in a number of crucial biological processes. Recent evidence suggests that ceramide is likely to reside and function within lipid rafts; ordered sphingolipid and cholesterol-rich lipid domains believed to exist within many eukaryotic cell membranes. Using lipid vesicles containing co-existing raft domains and disordered fluid domains, we find that natural and saturated synthetic ceramides displace sterols from rafts. Other raft lipids remain raft-associated in the presence of ceramide, showing displacement is relatively specific for sterols. Like cholesterol-containing rafts, ceramide-rich "rafts" remain in a highly ordered state. Comparison of the sterol-displacing abilities of natural ceramides with those of saturated diglycerides and an unsaturated ceramide demonstrates that tight lipid packing is critical for sterol displacement by ceramide. Based on these results, and the fact that cholesterol and ceramides both have small polar headgroups, we propose that ceramides and cholesterol compete for association with rafts because of a limited capacity of raft lipids with large headgroups to accommodate small headgroup lipids in a manner that prevents unfavorable contact between the hydrocarbon groups of the small headgroup lipids and the surrounding aqueous environment. Minimizing the exposure of cholesterol and ceramide to water may be a strong driving force for the association of other molecules with rafts. Furthermore, displacement of sterol from rafts by ceramide is very likely to have marked effects upon raft structure and function, altering liquid ordered properties as well as molecular composition. In this regard, certain previously observed physiological processes may be a result of displacement. In particular, a direct connection to the previously observed sphingomyelinase-induced displacement of cholesterol from plasma membranes in cells is proposed.  相似文献   

13.
The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid–protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the “lipid raft” concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms “membrane raft” or “membrane nanodomain” are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.  相似文献   

14.
We suggest a novel approach for direct optical microscopy observation of DNA interaction with the bilayers of giant cationic liposomes. Giant unilamellar vesicles, about 100 μm in diameter, made of phosphatidylcholines and up to 33 mol% of the natural bioactive cationic amphiphile sphingosine, were obtained by electroformation. “Short” DNAs (oligonucleotide 21b and calf thymus 250 bp) were locally injected by micropipette to a part of the giant unilamellar vesicle (GUV) membrane. DNAs were injected native, as well as marked with a fluorescent dye. The resulting membrane topology transformations were monitored in phase contrast, while DNA distribution was followed in fluorescence. We observed DNA-induced endocytosis due to the DNA/lipid membrane local interactions and complex formation. A characteristic minimum concentration (C endo) of d-erythro-sphingosine (Sph+) in the GUV membrane was necessary for the endocytic phenomenon to occur. Below C endo, only lateral adhesions between neighboring vesicles were observed upon DNA local addition. C endo depends on the type of zwitterionic (phosphocholine) lipid used, being about 10 mol% for DPhPC/Sph+ GUVs and about 20 mol% for SOPC/Sph+ or eggPC/Sph+ GUVs. The characteristic sizes and shapes of the resulting endosomes depend on the kind of DNA, and initial GUV membrane tension. When the fluorescent DNA marker dye was injected after the DNA/lipid local interaction and complex formation, no fluorescence was detected. This observation could be explained if one assumes that the DNA is protected by lipids in the DNA/lipid complex, thereby inaccessible for the dye molecules. We suggest a possible mechanism for DNA/lipid membrane interaction involving DNA encapsulation within an inverted micelle included in the lipid membrane. Our model observations could help in understanding events associated with the interaction of DNA with biological membranes, as well as cationic liposomes/DNA complex formation in gene transfer processes. Received: 18 April 1998 / Revised version: 6 August 1998 / Accepted: 7 August 1998  相似文献   

15.
16.
Lipid rafts are plasma membrane microdomains that are highly enriched with cholesterol and sphingolipids and in which various receptors and other proteins involved in signal transduction reside. In the present work, we analyzed the effect of cholesterol biosynthesis inhibition on lipid raft/caveolae composition and functionality and assessed whether sterol precursors of cholesterol could substitute for cholesterol in lipid rafts/caveolae. 3T3-L1 preadipocytes were treated with distal inhibitors of cholesterol biosynthesis or vehicle (control) and then membrane rafts were isolated by sucrose density gradient centrifugation. Inhibition of cholesterol biosynthesis with either SKF 104976, AY 9944, 5,22-cholestadien-3β-ol or triparanol, which inhibit different enzymes on the pathway, led to a marked reduction in cholesterol content and accumulation of different sterol intermediates in both lipid rafts and non-raft domains. These changes in sterol composition were accompanied by disruption of lipid rafts, with redistribution of caveolin-1 and Fyn, impairment of insulin-Akt signaling and the inhibition of insulin-stimulated glucose transport. Cholesterol repletion abrogated the effects of cholesterol biosynthesis inhibitors, reflecting they were specific. Our results show that cholesterol is required for functional raft-dependent insulin signaling.  相似文献   

17.
Sulfogalactosylglycerolipid (SGG) is found in detergent-resistant lipid raft fractions isolated from sperm plasma membranes and has been shown to be important in sperm-egg adhesion. In order to provide more direct evidence for the association of sulfoglycolipids with lipid raft domains, we have examined the distribution of two sulfoglycolipids in supported membranes prepared from artificial lipid mixtures and cellular lipid extracts. Atomic force microscopy has been used to visualize the localization of SGG and sulfogalactosylceramide (SGC) in liquid-ordered domains in supported bilayers of ternary lipid mixtures comprised of dipalmitoylphosphatidylcholine, cholesterol and palmitoyldocosahexaenoylphosphatidylcholine. The localization of SGC/SGG in the liquid-ordered raft domains is demonstrated by changes in bilayer morphology in the presence of sulfoglycolipid, by selective antibody labeling of the domains with anti-SGC/SGG and by the effects of the cholesterol-sequestering agent, methyl-β-cyclodextrin, on the supported membranes. In addition, we use a combination of atomic force microscopy and immunofluorescence to show that supported bilayers made from lipids extracted from sperm anterior head plasma membranes (APM) and isolated APM vesicles exhibit small SGG-rich domains that are similar to those observed in bilayers of artificial lipid mixtures. The possible implications of these results for the involvement of SGG-rich lipid rafts in modulating sperm-egg interactions in vivo and the utility of model membranes for studying the behavior of lipid rafts are discussed.  相似文献   

18.
生物膜结构研究的一些进展   总被引:15,自引:1,他引:14  
膜蛋白三维结构的解析存在很多困难.最近几年由于一些通道(如K+通道,Cl-通道,水通道Aquaporin 1等)和泵(如Ca2+泵)的结晶获得成功,这些膜蛋白具有原子分辨率三维结构的解析才得以完成,从而基本阐明一些极性分子和离子选择性通过生物膜的分子机理.在膜脂结构方面,动物细胞质膜膜脂的分布是不均匀的.近年来已多方面证明,质膜具有一些被命名为“脂筏(lipid rafts)”和“质膜微囊(Caveolae)”的微区.它们富含鞘脂和胆固醇。简单介绍了这些脂质微区的大小、组分以及动态变化.根据研究结果,这类脂质微区含有大量信号分子,很可能具有信号传递中心的作用.此外,对脂筏在膜运送过程中的作用也进行一些评述.  相似文献   

19.
The epidermal growth factor (EGF) receptor partitions into lipid rafts made using a detergent-free method, but is extracted from low density fractions by Triton X-100. By screening several detergents, we identified Brij 98 as a detergent in which the EGF receptor is retained in detergent-resistant membrane fractions. To identify the difference in lipid composition between those rafts that harbored the EGF receptor (detergent-free and Brij 98-resistant) and those that did not (Triton X-100-resistant), we used multidimensional electrospray ionization mass spectrometry to perform a lipidomics study on these three raft preparations. Although all three raft preparations were similarly enriched in cholesterol, the EGF receptor-containing rafts contained more ethanolamine glycerophospholipids and less sphingomyelin than did the non-EGF receptor-containing Triton X-100 rafts. As a result, the detergent-free and Brij 98-resistant rafts exhibited a balance of inner and outer leaflet lipids, whereas the Triton X-100 rafts contained a preponderance of outer leaflet lipids. Furthermore, in all raft preparations, the outer leaflet phospholipid species were significantly different from those in the bulk membrane, whereas the inner leaflet lipids were quite similar to those found in the bulk membrane. These findings indicate that the EGF receptor is retained only in rafts that exhibit a lipid distribution compatible with a bilayer structure and that the selection of phospholipids for inclusion into rafts occurs mainly on the outer leaflet lipids.  相似文献   

20.
Abstract

2-Hydroxyoleic acid (2OHOA) is a synthetic fatty acid with antihypertensive properties that is able to alter structural membranes properties. The main purpose of this study was to analyze the effect of 2OHOA on the membrane architecture in cholesterol (Cho)-rich domains. For this purpose, model membranes mimicking the composition of lipid rafts and PC- or PE-Cho-rich domains were examined in the absence and presence of 2OHOA by synchrotron X-ray diffraction, atomic force microscopy (AFM) and microcalorimetry (DSC) techniques. Our results demonstrate that 2OHOA phase separates from lipid raft domains and affects the lateral organization of lipids in the membrane. In model raft membranes, 2OHOA interacted with the sphingomyelin (SM) gel phase increasing the thickness of the water layer, which should lead to increased bilayer fluidity. The hydrogen binding competition between 2OHOA and Cho could favour the enrichment of 2OHOA in SM domains separated from the SM-Cho domains, resulting in an enhanced phase separation into SM-2OHOA-rich liquid-disordered (non-raft) and SM-Cho-rich liquid-ordered (raft) domains. The segregation into 2OHOA-rich/Cho-poor and 2OHOA-poor/Cho-rich domains was also observed in PC bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号