首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Femtosecond absorption spectroscopy was applied to study for the first time excitation dynamics in isolated photosystem I trimers from Arthrospira platensis, which display extremely long-wavelength absorption peaks. Pump–probe spectra observed at 77 K in the timescale of dozens of picoseconds upon 70-fs excitation revealed two maxima near 710 and 730 nm, which correspond to red chlorophyll forms. Bleaching at 680 nm developed in ∼200 fs, whereas the bleaching kinetics at 710 and 730 nm exhibited two components with time constants of 1 and 5.5 ps. Comparison of the kinetics of bleaching development at 710 nm and 730 nm with that of bleaching decay at 680 nm indicated that both long-wavelength forms of trimers are populated mainly via direct energy transfer from bulk chlorophyll.  相似文献   

2.
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI–LHCI–LHCII supercomplex. The binding site(s) of the “additional” LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that “additional” LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.

The light-harvesting antennae of photosystem I facilitate energy transfer from trimeric light-harvesting complex II to photosystem I in the stroma lamellae membrane.  相似文献   

3.
The features of the two types of short-term light-adaptations of photosynthetic apparatus, State 1/State 2 transitions, and non-photochemical fluorescence quenching of phycobilisomes (PBS) by orange carotene-protein (OCP) were compared in the cyanobacterium Synechocystis sp. PCC 6803 wild type, CK pigment mutant lacking phycocyanin, and PAL mutant totally devoid of phycobiliproteins. The permanent presence of PBS-specific peaks in the in situ action spectra of photosystem I (PSI) and photosystem II (PSII), as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 690 nm (PSII) and 725 nm (PSI) showed that PBS are constitutive antenna complexes of both photosystems. The mutant strains compensated the lack of phycobiliproteins by higher PSII content and by intensification of photosynthetic linear electron transfer. The detectable changes of energy migration from PBS to the PSI and PSII in the Synechocystis wild type and the CK mutant in State 1 and State 2 according to the fluorescence excitation spectra measurements were not registered. The constant level of fluorescence emission of PSI during State 1/State 2 transitions and simultaneous increase of chlorophyll fluorescence emission of PSII in State 1 in Synechocystis PAL mutant allowed to propose that spillover is an unlikely mechanism of state transitions. Blue–green light absorbed by OCP diminished the rout of energy from PBS to PSI while energy migration from PBS to PSII was less influenced. Therefore, the main role of OCP-induced quenching of PBS is the limitation of PSI activity and cyclic electron transport under relatively high light conditions.  相似文献   

4.
Over the past several years, many crystal structures of photosynthetic pigment-protein complexes have been determined, and these have been used extensively to model spectroscopic results obtained on the same proteins in solution. However, the crystal structure is not necessarily identical to the structure of the protein in solution. Here, we studied picosecond fluorescence of photosystem I light-harvesting complex I (PSI-LHCI), a multisubunit pigment-protein complex that catalyzes the first steps of photosynthesis. The ultrafast fluorescence of PSI-LHCI crystals is identical to that of dissolved crystals, but differs considerably from most kinetics presented in the literature. In contrast to most studies, the data presented here can be modeled quantitatively with only two compartments: PSI core and LHCI. This yields the rate of charge separation from an equilibrated core (22.5 ± 2.5 ps) and rates of excitation energy transfer from LHCI to core (kLC) and vice versa (kCL). The ratio between these rates, R = kCL/kLC, appears to be wavelength-dependent and scales with the ratio of the absorption spectra of LHCI and core, indicating the validity of a detailed balance relation between both compartments. kLC depends slightly but nonsystematically on detection wavelength, averaging (9.4 ± 4.9 ps)−1. R ranges from 0.5 (<690 nm) to ∼1.3 above 720 nm.  相似文献   

5.
Time-resolved fluorescence measurements were performed on isolated core and intact Photosystem I (PS I) particles and stroma membranes from Arabidopsis thaliana to characterize the type of energy-trapping kinetics in higher plant PS I. Target analysis confirms the previously proposed “charge recombination” model. No bottleneck in the energy flow from the bulk antenna compartments to the reaction center has been found. For both particles a trap-limited kinetics is realized, with an apparent charge separation lifetime of ∼6 ps. No red chlorophylls (Chls) are found in the PS I-core complex from A. thaliana. Rather, the observed red-shifted fluorescence (700-710 nm range) originates from the reaction center. In contrast, two red Chl compartments, located in the peripheral light-harvesting complexes, are resolved in the intact PS I particles (decay lifetimes 33 and 95 ps, respectively). These two red states have been attributed to the two red states found in Lhca 3 and Lhca 4, respectively. The influence of the red Chls on the slowing of the overall trapping kinetics in the intact PS I complex is estimated to be approximately four times larger than the effect of the bulk antenna enlargement.  相似文献   

6.
Ma F  Kimura Y  Zhao XH  Wu YS  Wang P  Fu LM  Wang ZY  Zhang JP 《Biophysical journal》2008,95(7):3349-3357
The intact core antenna-reaction center (LH1-RC) core complex of thermophilic photosynthetic bacterium Thermochromatium (Tch.) tepidum is peculiar in its long-wavelength LH1-Qy absorption (915 nm). We have attempted comparative studies on the excitation dynamics of bacteriochlorophyll (BChl) and carotenoid (Car) between the intact core complex and the EDTA-treated one with the Qy absorption at 889 nm. For both spectral forms, the overall Car-to-BChl excitation energy transfer efficiency is determined to be ∼20%, which is considerably lower than the reported values, e.g., ∼35%, for other photosynthetic purple bacteria containing the same kind of Car (spirilloxanthin). The RC trapping time constants are found to be 50∼60 ps (170∼200 ps) for RC in open (closed) state irrespective to the spectral forms and the wavelengths of Qy excitation. Despite the low-energy LH1-Qy absorption, the RC trapping time are comparable to those reported for other photosynthetic bacteria with normal LH1-Qy absorption at 880 nm. Selective excitation to Car results in distinct differences in the Qy-bleaching dynamics between the two different spectral forms. This, together with the Car band-shift signals in response to Qy excitation, reveals the presence of two major groups of BChls in the LH1 of Tch. tepidum with a spectral heterogeneity of ∼240 cm−1, as well as an alteration in BChl-Car geometry in the 889-nm preparation with respect to the native one.  相似文献   

7.
Photosynthetic state transitions are a well-known phenomenon of short-term adaptation of the photosynthetic membrane to changes in spectral quality of light in low light environments. The principles of the monitoring and quantification of the process in higher plants are revised here. The use of the low-temperature excitation fluorescence spectroscopy for analysis of the photosystem I antenna cross-section dynamics is described. This cross section was found to increase by 20–25% exclusively due to the migration and attachment of LHCIIb complex in State 2. Analysis of the fine structure of the additional PSI cross-section spectrum revealed the 510 nm band, characteristic of Lutein 2 of LHCIIb and present only when the complex is in a trimeric state. The excitation fluorescence spectrum of the phospho-LHCII resembles the spectrum of aggregated and hence quenched LHCII. This novel observation could explain the fact that at no point in the course of the state transition high fluorescence and long lifetime components of detached trimeric LHCII have ever been observed. In the plants lacking Lhcb1 and 2 proteins and unable to perform state transitions, compensatory sustained adjustments of the photosystem I and II antennae have been revealed. Whilst the major part of the photosystem II antenna is built largely of CP26 trimers, possessing less chlorophyll b and more of the red-shifted chlorophyll a, photosystem I in these plants contains more than 20% of extra LHCI antenna enriched in chlorophyll b. Hence, both photosystems in the plants lacking state transitions have less spectrally distinct antennae, which enable to avoid energy imbalance due to the changes in the light quality. These alterations reveal remarkable plasticity of the higher plant photosynthetic antenna design providing the basis for a flexible adaptation to the light environment.  相似文献   

8.
A novel cryogenic optical-microscope system was developed in which the objective lens is set inside of the cryostat adiabatic vacuum space. Being isolated from the sample when it was cooled, the objective lens was maintained at room temperature during the cryogenic measurement. Therefore, the authors were able to use a color-aberration corrected objective lens with a numerical aperture of 0.9. The lens is equipped with an air vent for compatibility to the vacuum. The theoretically expected spatial resolutions of 0.39 μm along the lateral direction and 1.3 μm along the axial direction were achieved by the developed system. The system was applied to the observations of non-uniform distributions of the photosystems in the cells of a green alga, Chlamydomonas reinhardtii, at 94 K. Gaussian decomposition analysis of the fluorescence spectra at all the pixels clearly demonstrated a non-uniform distribution of the two photosystems, as reflected in the variable ratios of the fluorescence intensities assigned to photosystem II and to those assigned to photosystem I. The system was also applied to the fluorescence spectroscopy of single isolated photosystem I complexes at 90 K. The fluorescence, assigned to be emitted from a single photosystem I trimer, showed an intermittent fluctuation called blinking, which is typical for a fluorescence signal from a single molecule. The vibronic fluorescence bands at around 790 nm were observed for single photosystem I trimers, suggesting that the color aberration is not serious up to the 800 nm spectral region.  相似文献   

9.
State transitions in the green alga Chlamydomonas reinhardtii serve to balance excitation energy transfer to photosystem I (PSI) and to photosystem II (PSII) and possibly play a role as a photoprotective mechanism. Thus, light-harvesting complex II (LHCII) can switch between the photosystems consequently transferring more excitation energy to PSII (state 1) or to PSI (state 2) or can end up in LHCII-only domains. In this study, low-temperature (77 K) steady-state and time-resolved fluorescence measured on intact cells of Chlamydomonas reinhardtii shows that independently of the state excitation energy transfer from LHCII to PSI or to PSII occurs on two main timescales of <15 ps and ∼100 ps. Moreover, in state 1 almost all LHCIIs are functionally connected to PSII, whereas the transition from state 1 to a state 2 chemically locked by 0.1 M sodium fluoride leads to an almost complete functional release of LHCIIs from PSII. About 2/3 of the released LHCIIs transfer energy to PSI and ∼1/3 of the released LHCIIs form a component designated X-685 peaking at 685 nm that decays with time constants of 0.28 and 5.8 ns and does not transfer energy to PSI or to PSII. A less complete state 2 was obtained in cells incubated under anaerobic conditions without chemical locking. In this state about half of all LHCIIs remained functionally connected to PSII, whereas the remaining half became functionally connected to PSI or formed X-685 in similar amounts as with chemical locking. We demonstrate that X-685 originates from LHCII domains not connected to a photosystem and that its presence introduces a change in the interpretation of 77 K steady-state fluorescence emission measured upon state transitions in Chalamydomonas reinhardtii.  相似文献   

10.
Steady-state and femtosecond time-resolved optical methods have been used to study spectroscopic features and energy transfer dynamics in the soluble antenna protein phycocyanin 645 (PC645), isolated from a unicellular cryptophyte Chroomonas CCMP270. Absorption, emission and polarization measurements as well as one-colour pump-probe traces are reported in combination with complementary quantum chemical calculations of electronic transitions of the bilins. Estimation of bilin spectral positions and energy transfer rates aids in the development of a model for light harvesting by PC645. At higher photon energies light is absorbed by the centrally located dimer (DBV, beta50/beta61) and the excitation is subsequently funneled through a complex interference of pathways to four peripheral pigments (MBV alpha19, PCB beta158). Those chromophores transfer the excitation energy to the red-most bilins (PCB beta82). We suggest that the final resonance energy transfer step occurs between the PCB 82 bilins on a timescale estimated to be approximately 15 ps. Such a rapid final energy transfer step cannot be rationalized by calculations that combine experimental parameters and quantum chemical calculations, which predict the energy transfer time to be 40 ps.  相似文献   

11.
PSI-K is a subunit of photosystem I. The function of PSI-K was characterized in Arabidopsis plants transformed with a psaK cDNA in antisense orientation, and several lines without detectable PSI-K protein were identified. Plants without PSI-K have a 19% higher chlorophyll a/b ratio and 19% more P700 than wild-type plants. Thus, plants without PSI-K compensate by making more photosystem I. The photosystem I electron transport in vitro is unaffected in the absence of PSI-K. Light response curves for oxygen evolution indicated that the photosynthetic machinery of PSI-K-deficient plants have less capacity to utilize light energy. Plants without PSI-K have less state 1-state 2 transition. Thus, the redistribution of absorbed excitation energy between the two photosystems is reduced. Low temperature fluorescence emission spectra revealed a 2-nm blue shift in the long wavelength emission in plants lacking PSI-K. Furthermore, thylakoids and isolated PSI without PSI-K had 20-30% less Lhca2 and 30-40% less Lhca3, whereas Lhca1 and Lhca4 were unaffected. During electrophoresis under mildly denaturing conditions, all four Lhca subunits were partially dissociated from photosystem I lacking PSI-K. The observed effects demonstrate that PSI-K has a role in organizing the peripheral light-harvesting complexes on the core antenna of photosystem I.  相似文献   

12.
Cyanobacteria are oxygenic phototrophic prokaryotes and are considered to be the ancestors of chloroplasts. Their photosynthetic machinery is functionally equivalent in terms of primary photochemistry and photosynthetic electron transport. Fluorescence measurements and other techniques indicate that cyanobacteria, like plants, are capable of redirecting pathways of excitation energy transfer from light harvesting antennae to both photosystems. Cyanobacterial cells can reach two energetically different states, which are defined as “State 1” (obtained after preferential excitation of photosystem I) and “State 2” (preferential excitation of photosystem II). These states can be distinguished by static and time resolved fluorescence techniques. One of the most important conclusions reached so far is that the presence of both photosystems, as well as certain antenna components, are necessary for state transitions to occur. Spectroscopic evidence suggests that changes in the coupling state of the light harvesting antenna complexes (the phycobilisomes) to both photosystems occur during state transitions. The finding that the phycobilisome complexes are highly mobile on the surface of the thylakoid membrane (the mode of interaction with the thylakoid membrane is essentially unknown), has led to the proposal that they are in dynamic equilibrium with both photosystems and regulation of energy transfer is mediated by changes in affinity for either photosystem.  相似文献   

13.
We examined energy transfer dynamics in phycobilisomes (PBSs) of cyanobacteria in relation to the morphology and pigment compositions of PBSs. We used Gloeobacter violaceus PCC 7421 and measured time-resolved fluorescence spectra in three types of samples, i.e., intact cells, PBSs, and rod assemblies separated from cores. Fremyella diplosiphon, a cyanobacterial species well known for its complementary chromatic adaptation, was used for comparison after growing under red or green light. Spectral data were analyzed by the fluorescence decay-associated spectra with components common in lifetimes with a time resolution of 3 ps/channel and a spectral resolution of 2 nm/channel. This ensured a higher resolution of the energy transfer kinetics than those obtained by global analysis with fewer sampling intervals. We resolved four spectral components in phycoerythrin (PE), three in phycocyanin (PC), two in allophycocyanin, and two in photosystem II. The bundle-like PBSs of G. violaceus showed multiple energy transfer pathways; fast (≈ 10 ps) and slow (≈ 100 ps and ≈ 500 ps) pathways were found in rods consisting of PE and PC. Energy transfer time from PE to PC was two times slower in G. violaceus than in F. diplosiphon grown under green light.  相似文献   

14.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   

15.
As high-intensity solar radiation can lead to extensive damage of the photosynthetic apparatus, cyanobacteria have developed various protection mechanisms to reduce the effective excitation energy transfer (EET) from the antenna complexes to the reaction center. One of them is non-photochemical quenching (NPQ) of the phycobilisome (PB) fluorescence. In Synechocystis sp. PCC6803 this role is carried by the orange carotenoid protein (OCP), which reacts to high-intensity light by a series of conformational changes, enabling the binding of OCP to the PBs reducing the flow of energy into the photosystems. In this paper the mechanisms of energy migration in two mutant PB complexes of Synechocystis sp. were investigated and compared. The mutant CK is lacking phycocyanin in the PBs while the mutant ΔPSI/PSII does not contain both photosystems. Fluorescence decay spectra with picosecond time resolution were registered using a single photon counting technique. The studies were performed in a wide range of temperatures — from 4 to 300 K. The time course of NPQ and fluorescence recovery in darkness was studied at room temperature using both steady-state and time-resolved fluorescence measurements. The OCP induced NPQ has been shown to be due to EET from PB cores to the red form of OCP under photon flux densities up to 1000 μmol photons m− 2 s− 1. The gradual changes of the energy transfer rate from allophycocyanin to OCP were observed during the irradiation of the sample with blue light and consequent adaptation to darkness. This fact was interpreted as the revelation of intermolecular interaction between OCP and PB binding site. At low temperatures a significantly enhanced EET from allophycocyanin to terminal emitters has been shown, due to the decreased back transfer from terminal emitter to APC. The activation of OCP not only leads to fluorescence quenching, but also affects the rate constants of energy transfer as shown by model based analysis of the decay associated spectra. The results indicate that the ability of OCP to quench the fluorescence is strongly temperature dependent. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

16.
Cyanobacteria use chlorophyll and phycobiliproteins to harvest light. The resulting excitation energy is delivered to reaction centers (RCs), where photochemistry starts. The relative amounts of excitation energy arriving at the RCs of photosystem I (PSI) and II (PSII) depend on the spectral composition of the light. To balance the excitations in both photosystems, cyanobacteria perform state transitions to equilibrate the excitation energy. They go to state I if PSI is preferentially excited, for example after illumination with blue light (light I), and to state II after illumination with green-orange light (light II) or after dark adaptation. In this study, we performed 77-K time-resolved fluorescence spectroscopy on wild-type Synechococcus elongatus 7942 cells to measure how state transitions affect excitation energy transfer to PSI and PSII in different light conditions and to test the various models that have been proposed in literature. The time-resolved spectra show that the PSII core is quenched in state II and that this is not due to a change in excitation energy transfer from PSII to PSI (spill-over), either direct or indirect via phycobilisomes.  相似文献   

17.
Abstract The effect of desiccation on distribution of excitation energy between the two photosystems has been studied in the lichen Cladonia impexa Harm., in the green alga Trebouxia pyriformis Archibald, isolated from Cladonia squamosa; and in the non-lichen green alga Scenedesmus obliquus, strain D3. The method used was to compare the low temperature fluorescence emission of samples equilibrated with air with different humidity prior to freezing in liquid nitrogen. Desiccation of Cladonia and Trebouxia caused a pronounced increase of the height of the far red fluorescence emission band, F 715, over the short wave bands, F685 and F697; the ratio between the two short wave bands remained essentially constant. Upon rewetting, these species regained normal fluorescence emission properties, indicating that they are desiccation-tolerant. Scenedesmus, which was used as a desiccation intolerant species, also showed an increase of the far red fluorescence band over the two short wave bands upon desiccation, but the original fluorescence spectrum was not restored upon rewetting. These results are interpreted as showing that desiccation of tolerant species such as Cladonia and Trebouxia causes a preferential energy distribution into photosystem I. We tentatively believe that desiccation induces conformational changes within the chloroplast thylakoids, thereby controlling distribution of energy between the two photosystems. Furthermore, this change in energy distribution may be of ecological significance as the mechanism by which desiccated lichens or algae avoid photo-dynamic destruction of the photosynthetic apparatus when photosynthesis is inhibited under dry conditions. By a preferential distribution of absorbed energy into photosystem I, the organisms avoid the formation of strong, harmful oxidants in photosystem II when photosynthesis is inhibited. It is suggested that β-carotene associated with the far red-absorbing chlorophyll a fraction of the reaction center antenna of photosystem I is the final sink for excess excitation energy in dry, desiccation-tolerant lichens and algae.  相似文献   

18.
The energy equilibration and transfer processes in the isolated core antenna complexes CP43 and CP47 of photosystem II have been studied by steady-state and ultrafast (femto- to nanosecond) time-resolved spectroscopy at room temperature. The annihilation-free femtosecond absorption data can be described by surprisingly simple sequential kinetic models, in which the excitation energy transfer between blue and red states in both antenna complexes is dominated by sub-picosecond processes and is completed in less than 2 ps. The slowest energy transfer steps with lifetimes in the range of 1-2 ps are assigned to transfer steps between the chlorophyll layers located on the stromal and lumenal sides. We conclude that these ultrafast intra-antenna energy transfer steps do not represent a bottleneck in the rate of the primary processes in intact photosystem II. Since the experimental energy equilibration rates are up to a factor of 3-5 higher than concluded previously, our results challenge the conclusions drawn from theoretical modeling.  相似文献   

19.
The irradiance dependence of the efficiencies of photosystems I and II were measured for two pea (Pisum sativum [L.]) varieties grown under cold conditions and one pea variety grown under warm conditions. The efficiencies of both photosystems declined with increasing irradiance for all plants, and the quantum efficiency of photosystem I electron transport was closely correlated with the quantum efficiency of photosystem II electron transport. In contrast to the consistent pattern shown by efficiency of the photosystems, the redox state of photosystem II (as estimated from the photochemical quenching coefficient of chlorophyll fluorescence) exhibited relationships with both irradiance and the reduction of P-700 that varied with growth environment and genotype. This variability is considered in the context of the modulation of photosystem II quantum efficiency by both photochemical and nonphotochemical quenching of excitation energy.  相似文献   

20.
Weis E 《Plant physiology》1984,74(2):402-407
Using intact leaves of Spinacia oleracea (L.), reversible temperature-induced changes in chlorophyll fluorescence emitted at room temperature and at 77K were studied. Interpretation of fluorescence at 77K was largely facilitated by developing a new method to minimize reabsorption artifacts (`diluted leaf-powder'). Leaves of plants grown at 15 to 20°C were exposed for several hours to different temperatures. Upon incubation at 35°C in the dark or in the light, the following changes in 77K fluorescence occurred with a half-time of less than 1 hour: (a) the initial fluorescence (F0) of photosystem I increased by 15%, while that one of photosystem II somewhat decreased; (b) although variable fluorescence declined in both photosystems, the decrease in photosystem II (40%) was more severe; (c) the changes were less significant after 480-nanometer excitation light was replaced by 430-nanometer light. The data were interpreted in terms of a reversible, temperature-induced change in thylakoid structure and related change in the distribution of the absorbed energy in favor of photosystem I, at the expense of photosystem II excitation, probably accompanied by an increase in the rate of thermal deactivation of excited states. The considerable decrease in the variable part of room temperature fluorescence gives rise to the suggestion that this transition has lowered the reduction level of plastoquinone, i.e. has increased electron flow through photosystem I, relative to photosystem II. Possible physiological and mechanistic analogies between this temperature-induced state transition and the light-dependent state 1-state 2 regulation has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号