首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acidic conditions within the endosomal lumen induce the T domain of receptor-bound diphtheria toxin (DT) to insert into the endosomal membrane and mediate translocation of the toxin's catalytic domain to the cytosol. A conformational rearrangement in the toxin occurring near pH5 allows a buried apolar helical hairpin of the native T domain (helices TH8 and TH9) to undergo membrane insertion. If the inserted hairpin spans the bilayer, as hypothesized, then the two acidic residues within the TL5 interhelical loop, Glu 349 and Asp 352, should become exposed at the neutral cytosolic face of the membrane and reionize. To investigate the roles of these residues in toxin action, we characterized mutant toxins in which one or both acidic residues had been replaced with nonionizable ones. Each of two double mutants examined showed a several-fold reduction in cytotoxicity in 24-h Vero cell assays (sixfold for E349A + D352A and fourfold for E349Q + D352N), whereas the individual E349Q and D352N mutations caused smaller reductions in toxicity. The single and double mutations also attenuated the toxin's ability to permeabilize Vero cells to Rb+ at low pH and decreased channel formation by the toxin in artificial planar bilayers. Neither of the double mutations affected the pH-dependence profile of the toxin's conformational rearrangement in solution, as measured by binding of the hydrophobic fluorophore, 2-p-toluidinyl-naphthalene 6-sulfonate. The results demonstrate that, although there is no absolute requirement for an acidic residue within the TL5 loop for toxicity, Glu 349 and Asp 352 do significantly enhance the biological activity of the protein. The data are consistent with a model in which ionization of these residues at the cytosolic face of the endosomal membrane stabilizes the TH8/TH9 hairpin in a transmembrane configuration, thereby facilitating channel formation and translocation of the toxin's catalytic chain.  相似文献   

2.
Diphtheria toxin (DT)* is the paradigm of the powerful A-B toxins. These bacterial poisons bind to cells, are endocytosed, and inject their catalytic domain into the cytosol causing the irreversible modification of a key component of the the host cellular machinery. The mechanism by which the hydrophilic enzymatic fragment of DT crosses the endosomal membrane and is released into the cytosol remains controversial. In this issue, Ratts et al. (2003) demonstrate that delivery of the DT catalytic domain from the lumen of purified early endosomes to the external medium requires the addition of a cytosolic translocation factor complex composed in part of Hsp90 and thioredoxin reductase.  相似文献   

3.
Botulinum neurotoxin (BoNT) belongs to a large class of toxic proteins that act by enzymatically modifying cytosolic substrates within eukaryotic cells. The process by which a catalytic moiety is transferred across a membrane to enter the cytosol is not understood for any such toxin. BoNT is known to form pH-dependent pores important for the translocation of the catalytic domain into the cytosol. As a first step toward understanding this process, we investigated the mechanism by which the translocation domain of BoNT associates with a model liposome membrane. We report conditions that allow pH-dependent proteoliposome formation and identify a sequence at the translocation domain C terminus that is protected from proteolytic degradation in the context of the proteoliposome. Fluorescence quenching experiments suggest that residues within this sequence move to a hydrophobic environment upon association with liposomes. EPR analyses of spin-labeled mutants reveal major conformational changes in a distinct region of the structure upon association and indicate the formation of an oligomeric membrane-associated intermediate. Together, these data support a model of how BoNT orients with membranes in response to low pH.  相似文献   

4.
After reaching early endosomes by receptor-mediated endocytosis, diphtheria toxin (DT) molecules have two possible fates. A large pool enters the degradative pathway whereas a few molecules become cytotoxic by translocating their catalytic fragment A (DTA) into the cytosol. Impairment of DT degradation by microtubule depolymerization does not block DT cytotoxicity. Therefore, DTA membrane translocation into the cytosol occurs from an endocytic compartment located upstream of late endosomes. Comparisons between early endosomes and endocytic carrier vesicles in a cell-free translocation assay have demonstrated that early endosomes are the earliest endocytic compartment from which DTA translocates. DTA translocation is ATP-dependent, requires early endosomal acidification, and is increased by the addition of cytosol. Cytosol-dependent DTA translocation is GTPγS-insensitive but is blocked by anti-βCOP antibodies.  相似文献   

5.
Tetanus neurotoxin (TeNT) causes neuroparalytic disease by entering the neuronal soma to block the release of neurotransmitters. However, the mechanism by which TeNT translocates its enzymatic domain (light chain) across endosomal membranes remains unclear. We found that TeNT and a truncated protein devoid of the receptor binding domain (TeNT-LHN) associated with membranes enriched in acidic phospholipids in a pH-dependent manner. Thus, in contrast to diphtheria toxin, the formation of a membrane-competent state of TeNT requires the membrane interface and is modulated by the bilayer composition. Channel formation is further enhanced by tethering of TeNT to the membrane through ganglioside co-receptors prior to acidification. Thus, TeNT channel formation can be resolved into two sequential steps: 1) interaction of the receptor binding domain (heavy chain receptor binding domain) with ganglioside co-receptors orients the translocation domain (heavy chain translocation domain) as the lumen of the endosome is acidified and 2) low pH, in conjunction with acidic lipids within the membrane drives the conformational changes in TeNT necessary for channel formation.  相似文献   

6.
Bacillus thuringiensis produces insecticidal Cry proteins that are active against different insect species. The primary action of Cry toxins is to lyse midgut epithelial cells in the target insect by forming lytic pores on the apical membrane. After interaction with cadherin receptor, Cry proteins undergo conformational changes from a monomeric structure to a pre-pore-oligomeric form that is able to interact with a second GPI-anchored aminopeptidase-N receptor and then insert into lipid membranes. Here, we review the recent advances in the understanding of the structural changes presented by Cry1Ab toxin upon membrane insertion. Based on analysis of the Trp fluorescence of pure monomeric and oligomeric Cry1Ab structures in solution and in membrane-bound state we reported that oligomerization caused 27% reduction of Trp exposed to the solvent. After membrane insertion there is another conformational change that allows an additional rearrangement of the Trp residues resulting in a total protection of these residues from exposure to the solvent. The oligomeric structure is membrane insertion competent since more than 96% of the Cry1Ab oligomer inserts into the membrane as a function of lipid:protein ratio, in contrast to the monomer of which only 5-10%, inserts into the membrane. Finally, analysis of the stability of monomeric, pre-pore and pore structures of Cry1Ab toxin after urea and thermal denaturation suggested that a more flexible conformation could be necessary for membrane insertion and this flexible structure is obtained by toxin oligomerization and by alkaline pH. Domain I is involved in the intermolecular interaction within the oligomeric Cry1Ab and this domain is inserted into the membrane in the membrane-inserted state.  相似文献   

7.
The translocation (T) domain plays a key role in the action of diphtheria toxin and is responsible for transferring the N-terminus-attached catalytic domain across the endosomal membrane into the cytosol in response to acidification. The T-domain undergoes a series of pH-triggered conformational changes that take place in solution and on the membrane interface, and ultimately result in transbilayer insertion and N-terminus translocation. Structure-function studies along this pathway have been hindered because the protein population occupies multiple conformations at the same time. Here we report that replacement of the three C-terminal histidine residues, H322, H323, and H372, in triple-R or triple-Q mutants prevents effective translocation of the N-terminus. Introduction of these mutations in the full-length toxin results in decrease of its potency. In the context of isolated T-domain, these mutations cause loss of characteristic conductance in planar bilayers. Surprisingly, these mutations do not affect general folding in solution, protein interaction with the membranes, insertion of the consensus transmembrane helical hairpin TH8-9, or the ability of the T-domain to destabilize vesicles to cause leakage of fluorescent markers. Thus, the C-terminal histidine residues are critical for the transition from the inserted intermediate state to the open-channel state in the insertion/translocation pathway of the T-domain.  相似文献   

8.
Insertion and translocation of soluble proteins into and across biological membranes are involved in many physiological and pathological processes, but remain poorly understood. Here, we describe the pH-dependent membrane insertion of the diphtheria toxin T domain in lipid bilayers by specular neutron reflectometry and solid-state NMR spectroscopy. We gained unprecedented structural resolution using contrast-variation techniques that allow us to propose a sequential model of the membrane-insertion process at angstrom resolution along the perpendicular axis of the membrane. At pH 6, the native tertiary structure of the T domain unfolds, allowing its binding to the membrane. The membrane-bound state is characterized by a localization of the C-terminal hydrophobic helices within the outer third of the cis fatty acyl-chain region, and these helices are oriented predominantly parallel to the plane of the membrane. In contrast, the amphiphilic N-terminal helices remain in the buffer, above the polar headgroups due to repulsive electrostatic interactions. At pH 4, repulsive interactions vanish; the N-terminal helices penetrate the headgroup region and are oriented parallel to the plane of the membrane. The C-terminal helices penetrate deeper into the bilayer and occupy about two thirds of the acyl-chain region. These helices do not adopt a transmembrane orientation. Interestingly, the T domain induces disorder in the surrounding phospholipids and creates a continuum of water molecules spanning the membrane. We propose that this local destabilization permeabilizes the lipid bilayer and facilitates the translocation of the catalytic domain across the membrane.  相似文献   

9.
A detailed proteolysis study of internalized diphtheria toxin (DT) within rat liver endosomes was undertaken to determine whether DT-resistant species exhibit defects in toxin endocytosis, toxin activation by cellular enzymes or toxin translocation to its cytosolic target. Following administration of a saturating dose of wild-type DT or nontoxic mutant DT (mDT) to rats, rapid endocytosis of the intact 62-kDa toxin was observed coincident with the endosomal association of DT-A (low association) and DT-B (high association) subunits. Assessment of the subsequent post-endosomal fate of internalized mDT revealed a sustained endo-lysosomal transfer of the mDT-B subunit accompanied by a net decrease in intact mDT and mDT-A subunit throughout the endo-lysosomal apparatus. In vitro proteolysis of DT, using an endosomal lysate, was observed at both neutral and acidic pH, with the subsequent generation of DT-A and DT-B subunits (pH 7) or DT fragments with low ADP-ribosyltransferase activity (pH 4). Biochemical characterization revealed that the neutral endosomal DT-degrading activity was due to a novel luminal 70-kDa furin enzyme, whereas the aspartic acid protease cathepsin D (EC 3.4.23.5) was identified as being responsible for toxin degradation at acidic pH. Moreover, an absence of in vivo association of the DT-A subunit with cytosolic fractions was identified, as well as an absence of in vitro translocation of the DT-A subunit from cell-free endosomes into the external milieu. Based on these findings, we propose that, in rat, resistance to DT may originate from two different mechanisms: the ability of free DT-A subunits to be rapidly proteolyzed by acidic cathepsin D within the endosomal lumen, and/or the absence of DT translocation across the endosomal membrane, which may arise from the absence of a functional cytosolic translocation factor previously reported to participate in the export of DT from human endosomes.  相似文献   

10.
Diphtheria toxin (DT) is a disulfide linked AB-toxin consisting of a catalytic domain (C), a membrane-inserting domain (T), and a receptor-binding domain (R). It gains entry into cells by receptor-mediated endocytosis. The low pH ( approximately 5.5) inside the endosomes induces a conformational change in the toxin leading to insertion of the toxin in the membrane and subsequent translocation of the C domain into the cell, where it inactivates protein synthesis ultimately leading to cell death. We have used a highly reactive hydrophobic photoactivable reagent, DAF, to identify the segments of DT that interact with the membrane at pH 5.2. This reagent readily partitions into membranes and, on photolysis, indiscriminately inserts into lipids and membrane-inserted domains of proteins. Subsequent chemical and/or enzymatic fragmentation followed by peptide sequencing allows for identification of the modified residues. Using this approach it was observed that T domain helices, TH1, TH8, and TH9 insert into the membrane. Furthermore, the disulfide link was found on the trans side leaving part of the C domain on the trans side. This domain then comes out to the cis side via a highly hydrophobic patch corresponding to residues 134-141, originally corresponding to a beta-strand in the solution structure of DT. It appears that the three helices of the T domain could participate in the formation of a channel from a DT-oligomer, thus providing the transport route to the C domain after the disulfide reductase separates the two chains.  相似文献   

11.
The Rho-GTPases-activating toxin CNF1 (cytotoxic necrotizing factor 1) delivers its catalytic activity into the cytosol of eukaryotic cells by a low pH membrane translocation mechanism reminiscent of that used by diphtheria toxin (DT). As DT, CNF1 exhibits a translocation domain (T) containing two predicted hydrophobic helices (H1-2) (aa 350-412) separated by a short peptidic loop (CNF1-TL) (aa 373-386) with acidic residues. In the DT loop, the loss of charge of acidic amino acids, as a result of protonation at low pH, is a critical step in the transfer of the DT catalytic activity into the cytosol. To determine whether the CNF1 T domain operates similarly to the DT T domain, we mutated several ionizable amino acids of CNF1-TL to lysine. Single substitutions such as D373K or D379K strongly decreased the cytotoxic effect of CNF1 on HEp-2 cells, whereas the double substitution D373K/D379K induced a nearly complete loss of cytotoxic activity. These single or double substitutions did not modify the cell-binding, enzymatic or endocytic activities of the mutant toxins. Unlike the wild-type toxin, single- or double-substituted CNF1 molecules bound to the HEp-2 plasma membrane could not translocate their enzymatic activity directly into the cytosol following a low pH pulse.  相似文献   

12.
Refined structure of dimeric diphtheria toxin at 2.0 A resolution.   总被引:5,自引:4,他引:1       下载免费PDF全文
The refined structure of dimeric diphtheria toxin (DT) at 2.0 A resolution, based on 37,727 unique reflections (F > 1 sigma (F)), yields a final R factor of 19.5% with a model obeying standard geometry. The refined model consists of 523 amino acid residues, 1 molecule of the bound dinucleotide inhibitor adenylyl 3'-5' uridine 3' monophosphate (ApUp), and 405 well-ordered water molecules. The 2.0-A refined model reveals that the binding motif for ApUp includes residues in the catalytic and receptor-binding domains and is different from the Rossmann dinucleotide-binding fold. ApUp is bound in part by a long loop (residues 34-52) that crosses the active site. Several residues in the active site were previously identified as NAD-binding residues. Glu 148, previously identified as playing a catalytic role in ADP-ribosylation of elongation factor 2 by DT, is about 5 A from uracil in ApUp. The trigger for insertion of the transmembrane domain of DT into the endosomal membrane at low pH may involve 3 intradomain and 4 interdomain salt bridges that will be weakened at low pH by protonation of their acidic residues. The refined model also reveals that each molecule in dimeric DT has an "open" structure unlike most globular proteins, which we call an open monomer. Two open monomers interact by "domain swapping" to form a compact, globular dimeric DT structure. The possibility that the open monomer resembles a membrane insertion intermediate is discussed.  相似文献   

13.
The translocation of the diphtheria toxin catalytic domain from the lumen of early endosomes into the cytosol of eukaryotic cells is an essential step in the intoxication process. We have previously shown that the in vitro translocation of the catalytic domain from the lumen of toxin pre‐loaded endosomal vesicles to the external medium requires the addition of cytosolic proteins including coatomer protein complex I (COPI) to the reaction mixture. Further, we have shown that transmembrane helix 1 plays an essential, but as yet undefined role in the entry process. We have used both site‐directed mutagenesis and a COPI complex precipitation assay to demonstrate that interaction(s) between at least three lysine residues in transmembrane helix 1 are essential for both COPI complex binding and the delivery of the catalytic domain into the target cell cytosol. Finally, a COPI binding domain swap was used to demonstrate that substitution of the lysine‐rich transmembrane helix 1 with the COPI binding portion of the p23 adaptor cytoplasmic tail results in a mutant that displays full wild‐type activity. Thus, irrespective of sequence, the ability of transmembrane helix 1 to bind to COPI complex appears to be the essential feature for catalytic domain delivery to the cytosol.  相似文献   

14.
The structure of toxic monomeric diphtheria toxin (DT) was determined at 2.3 A resolution by molecular replacement based on the domain structures in dimeric DT and refined to an R factor of 20.7%. The model consists of 2 monomers in the asymmetric unit (1,046 amino acid residues), including 2 bound adenylyl 3'-5' uridine 3' monophosphate molecules and 396 water molecules. The structures of the 3 domains are virtually identical in monomeric and dimeric DT; however, monomeric DT is compact and globular as compared to the "open" monomer within dimeric DT (Bennett MJ, Choe S, Eisenberg D, 1994b, Protein Sci 3:0000-0000). Detailed differences between monomeric and dimeric DT are described, particularly (1) changes in main-chain conformations of 8 residues acting as a hinge to "open" or "close" the receptor-binding (R) domain, and (2) a possible receptor-docking site, a beta-hairpin loop protruding from the R domain containing residues that bind the cell-surface DT receptor. Based on the monomeric and dimeric DT crystal structures we have determined and the solution studies of others, we present a 5-step structure-based mechanism of intoxication: (1) proteolysis of a disulfide-linked surface loop (residues 186-201) between the catalytic (C) and transmembrane (T) domains; (2) binding of a beta-hairpin loop protruding from the R domain to the DT receptor, leading to receptor-mediated endocytosis; (3) low pH-triggered open monomer formation and exposure of apolar surfaces in the T domain, which insert into the endosomal membrane; (4) translocation of the C domain into the cytosol; and (5) catalysis by the C domain of ADP-ribosylation of elongation factor 2.  相似文献   

15.
Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging cytolytic toxin that belongs to the family of β barrel pore-forming protein toxins. VCC induces lysis of its target eukaryotic cells by forming transmembrane oligomeric β barrel pores. The mechanism of membrane pore formation by VCC follows the overall scheme of the archetypical β barrel pore-forming protein toxin mode of action, in which the water-soluble monomeric form of the toxin first binds to the target cell membrane, then assembles into a prepore oligomeric intermediate, and finally converts into the functional transmembrane oligomeric β barrel pore. However, there exists a vast knowledge gap in our understanding regarding the intricate details of the membrane pore formation process employed by VCC. In particular, the membrane oligomerization and membrane insertion steps of the process have only been described to a limited extent. In this study, we determined the key residues in VCC that are critical to trigger membrane oligomerization of the toxin. Alteration of such key residues traps the toxin in its membrane-bound monomeric state and abrogates subsequent oligomerization, membrane insertion, and functional transmembrane pore-formation events. The results obtained from our study also suggest that the membrane insertion of VCC depends critically on the oligomerization process and that it cannot be initiated in the membrane-bound monomeric form of the toxin. In sum, our study, for the first time, dissects membrane binding from the subsequent oligomerization and membrane insertion steps and, thus, defines the exact sequence of events in the membrane pore formation process by VCC.  相似文献   

16.
The catalytic domain of diphtheria toxin (DT) is translocated across endosomal membranes by the T-domain (DTT) in response to acidification. Understanding the energetics of translocation, besides clarifying the mechanism of translocation, should provide insights into general principles of membrane protein stability and assembly. As a first step, we have evaluated the energetics of DTT binding to lipid vesicles using three single-cysteine mutants (L350C, Q369C, and Y280C) labeled with a 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) fluorophore sensitive to polarity changes. Remarkably strong association with the vesicles was detected for all mutants, even at pH 7 at which DTT is believed to be in a fully folded membrane-incompetent state. Lowering the pH in the presence of anionic membranes resulted in a strong but reversible increase in emission of NBD-labeled mutants, consistent with reversible membrane insertion. This reversibility permitted free energies of DTT interactions with vesicles to be determined for the first time. Free energy values for the three mutants ranged from -8 to -10 kcal mol(-1) at pH 4.3 and from -7 to -8 kcal mol(-1) at pH 7. Insights into the disposition of DTT on membranes were obtained using a novel hydropathy analysis that considers the relative free energies of transmembrane and interfacial interactions as a function of pH. This analysis suggests that interactions at the membrane interface dominate pH-triggered insertion of DTT, implying that the folding pathway involves interfacial intermediates.  相似文献   

17.
Diphtheria toxin (DT) binds to the EGF-like domain of the DT receptor (DTR), followed by internalization and translocation of the enzymatically active fragment A into the cytosol. The juxtamembrane domain (JM) of the DTR is the linker domain connecting the transmembrane and EGF-like domains. We constructed mutants of DTRs with altered JMs and studied their abilities for DT intoxication. Although DTR mutants with extended JMs showed normal DT binding activity, the cells expressing the mutants showed both reduced translocation of DT fragment A into the cytosol and reduced sensitivity to DT, when compared with cells expressing wild-type DTR. These results indicate that the JM contributes to DT intoxication by providing a space appropriate for the interaction of DT with the cell membrane. The present study also indicates that consideration of epitopes of an immunotoxins would be an important factor in the design of potent immunotoxins.  相似文献   

18.
We report here on the ability of tetanus toxin to induce, at low pH, fusion and aggregation of lipid vesicles containing phosphatidylinositol. It has been shown that diphtheria toxin is internalized in acidic vacuoles (endosomes) and that the low endosomal pH could induce a protein conformational change responsible for the interaction with the endosomal membranes and the toxin translocation into the cytoplasm. The data here reported indicate that tetanus toxin might interact with lipid membrane in a similar way as diphtheria toxin suggesting for the two proteins an identical mechanism of entry into cells.  相似文献   

19.
During cell intoxication by diphtheria toxin, endosome acidification triggers the translocation of the catalytic (C) domain into the cytoplasm. This event is mediated by the translocation (T) domain of the toxin. Previous work suggested that the T domain acts as a chaperone for the C domain during membrane penetration of the toxin. Using partitioning experiments with lipid vesicles, fluorescence spectroscopy, and a lipid vesicle leakage assay, we characterized the dominant behavior of the T domain over the C domain during the successive steps by which these domains interact with a membrane upon acidification: partial unfolding in solution and during membrane binding, and then structural rearrangement during penetration into the membrane. To this end, we compared, for each domain, isolated or linked together in a CT protein (the toxin lacking the receptor-binding domain), each of these steps. The behavior of the T domain is marginally modified by the presence or absence of the C domain, whereas that of the C domain is greatly affected by the presence of the T domain . All of the steps leading to membrane penetration of the C domain are triggered at higher pH by the T domain , by 0.5-1.6 pH units. The T domain stabilizes the partially folded states of the C domain corresponding to each step of the process. The results unambiguously demonstrate that the T domain acts as a specialized pH-dependent chaperone for the C domain. Interestingly, this chaperone activity acts on very different states of the protein: in solution, membrane-bound, and membrane-inserted.  相似文献   

20.
Diphtheria toxin (DT) is a soluble protein that translocates across hydrophobic lipid bilayers in response to low pH. The translocation activity of DT has been localized to the 40-kDa toxin B chain and can be expressed independently of the C-terminal receptor binding site. Buried hydrophobic domains in DT are thought to participate in the membrane translocation process. We have identified a mutant form of DT, CRM 102, that has a point mutation at position 308 (Pro----Ser) within one of these hydrophobic domains. CRM 102 conjugated to a monoclonal antibody against the T cell receptor, the transferrin receptor, or transferrin itself is approximately 10-fold less toxic than native DT or a control DT mutant, CRM 103, linked to the same binding moieties. Direct measurement of membrane translocation activity by exposure of cells to low extracellular pH demonstrates that CRM 102 conjugates express only 10% of the translocation activity of the control toxin conjugates. However, when CRM 102 or 102 conjugates bind and kill cells via the DT receptor, no reduction in membrane translocation activity is observed. The defect in CRM 102 is not evident in the presence of 20 mM NH4Cl. The defect in translocation also has no effect on the ratio of the lag time before protein synthesis inhibition begins to the rate of protein synthesis inhibition. Thus, the proline-serine substitution at position 308 disrupts the membrane translocation process and distinguishes between two routes of DT entry: DT receptor-mediated entry and entry mediated by alternate receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号