首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systematic studies of cardiac structure-function relationships to date have been hindered by the intrinsic complexity and variability of in vivo and ex vivo model systems. Thus, we set out to develop a reproducible cell culture system that can accurately replicate the realistic microstructure of native cardiac tissues. Using cell micropatterning techniques, we aligned cultured cardiomyocytes at micro- and macroscopic spatial scales to follow local directions of cardiac fibers in murine ventricular cross sections, as measured by high-resolution diffusion tensor magnetic resonance imaging. To elucidate the roles of ventricular tissue microstructure in macroscopic impulse conduction, we optically mapped membrane potentials in micropatterned cardiac cultures with realistic tissue boundaries and natural cell orientation, cardiac cultures with realistic tissue boundaries but random cell orientation, and standard isotropic monolayers. At 2 Hz pacing, both microscopic changes in cell orientation and ventricular tissue boundaries independently and synergistically increased the spatial dispersion of conduction velocity, but not the action potential duration. The realistic variations in intramural microstructure created unique spatial signatures in micro- and macroscopic impulse propagation within ventricular cross-section cultures. This novel in vitro model system is expected to help bridge the existing gap between experimental structure-function studies in standard cardiac monolayers and intact heart tissues.  相似文献   

2.
脑白质疏松症发病率逐渐增高,其相关的神经功能障碍严重影响生活质量,因此早期发现LA患者存在的隐匿性损伤对早期治疗及预防有重要临床意义。LA的病理生理学特点为血管内皮细胞的受损引起血管通透性的改变,从而使周围组织的弥散程度发生改变,细胞外水分子运动对信号的改变起主导作用。DTI是目前检测脑白质唯一的无创性方法,可从量和方向上反映成像的体素内水分子扩散的变化,可以测量组织中扩散的各向异性。DTI较传统的MR能更好的反应神经系统白质的超微结构的改变,为影像学与其病理生理的相关性研究提供新的方法。目前对脑白质疏松的研究主要集中在与神经功能相关区域DTI量化指标的改变,因此本文对脑白质疏松的DTI技术的应用及发展趋势进行综述。  相似文献   

3.
MR diffusion tensor spectroscopy and imaging.   总被引:42,自引:0,他引:42       下载免费PDF全文
This paper describes a new NMR imaging modality--MR diffusion tensor imaging. It consists of estimating an effective diffusion tensor, Deff, within a voxel, and then displaying useful quantities derived from it. We show how the phenomenon of anisotropic diffusion of water (or metabolites) in anisotropic tissues, measured noninvasively by these NMR methods, is exploited to determine fiber tract orientation and mean particle displacements. Once Deff is estimated from a series of NMR pulsed-gradient, spin-echo experiments, a tissue's three orthotropic axes can be determined. They coincide with the eigenvectors of Deff, while the effective diffusivities along these orthotropic directions are the eigenvalues of Deff. Diffusion ellipsoids, constructed in each voxel from Deff, depict both these orthotropic axes and the mean diffusion distances in these directions. Moreover, the three scalar invariants of Deff, which are independent of the tissue's orientation in the laboratory frame of reference, reveal useful information about molecular mobility reflective of local microstructure and anatomy. Inherently tensors (like Deff) describing transport processes in anisotropic media contain new information within a macroscopic voxel that scalars (such as the apparent diffusivity, proton density, T1, and T2) do not.  相似文献   

4.
A model for diffusion in white matter in the brain   总被引:1,自引:0,他引:1       下载免费PDF全文
Sen PN  Basser PJ 《Biophysical journal》2005,89(5):2927-2938
Diffusion of molecules in brain and other tissues is important in a wide range of biological processes and measurements ranging from the delivery of drugs to diffusion-weighted magnetic resonance imaging. Diffusion tensor imaging is a powerful noninvasive method to characterize neuronal tissue in the human brain in vivo. As a first step toward understanding the relationship between the measured macroscopic apparent diffusion tensor and underlying microscopic compartmental geometry and physical properties, we treat a white matter fascicle as an array of identical thick-walled cylindrical tubes arranged periodically in a regular lattice and immersed in an outer medium. Both square and hexagonal arrays are considered. The diffusing molecules may have different diffusion coefficients and concentrations (or densities) in different domains, namely within the tubes' inner core, membrane, myelin sheath, and within the outer medium. Analytical results are used to explore the effects of a large range of microstructural and compositional parameters on the apparent diffusion tensor and the degree of diffusion anisotropy, allowing the characterization of diffusion in normal physiological conditions as well as changes occurring in development, disease, and aging. Implications for diffusion tensor imaging and for the possible in situ estimation of microstructural parameters from diffusion-weighted MR data are discussed in the context of this modeling framework.  相似文献   

5.
The ability to resolve complex fiber populations in muscular tissues is important for relating tissue structure with mechanical function. To address this issue in the case of tongue, we employed diffusion spectrum imaging (DSI), an MRI method for determining three-dimensional myoarchitecture where myofiber populations are variably aligned. By specifically varying gradient field strength, molecular displacement in a tissue can be determined by Fourier-transforming the echo intensity against gradient strength at fixed gradient pulse spacing. The displacement profiles are visualized by graphing three-dimensional isocontour icons for each voxel, with the isocontour shape and size representing the magnitude and direction of the constituting fiber populations. To validate this method, we simulated a DSI experiment within the constraints of arbitrary crossing fibers, and determined that DSI accurately depicts the angular relationships between these fibers. Considering the fiber relationships in the whole bovine tongue, we compared the images obtained by DSI with those obtained by diffusion tensor imaging in an anterior slice of the lingual core, a region known to possess extensive fiber crossing. In contrast to diffusion tensor imaging, which depicts the anterior core solely as a region with low anisotropy due to the presence of mixed-orientation fiber populations, DSI shows two distinct fiber populations, with an explicit orthogonal relationship to each other. In imaging the whole lingual tissue, we discerned arrays of crossing and noncrossing fibers involving the intrinsic and extrinsic muscles, which merged at regions of interface. We conclude that DSI has the capacity to determine three-dimensional fiber orientation in structurally complex muscular tissues.  相似文献   

6.
Diffusion tensor magnetic resonance imaging (MRI) was used to study the microstructural integrity of white matter in adults with poor or normal reading ability. Subjects with reading difficulty exhibited decreased diffusion anisotropy bilaterally in temporoparietal white matter. Axons in these regions were predominantly anterior-posterior in direction. No differences in T1-weighted MRI signal were found between poor readers and control subjects, demonstrating specificity of the group difference to the microstructural characteristics measured by diffusion tensor imaging (DTI). White matter diffusion anisotropy in the temporo-parietal region of the left hemisphere was significantly correlated with reading scores within the reading-impaired adults and within the control group. The anisotropy reflects microstructure of white matter tracts, which may contribute to reading ability by determining the strength of communication between cortical areas involved in visual, auditory, and language processing.  相似文献   

7.
Quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides estimates of physiologically relevant parameters related to tissue blood flow, vascular permeability, and tissue volume fractions which can then be used for prognostic and diagnostic reasons. However, standard techniques for DCE-MRI analysis ignore intra-voxel diffusion, which may play an important role in contrast agent distribution and voxel signal intensity and, thus, will affect quantification of the aforementioned parameters. To investigate the effect of intra-voxel diffusion on quantitative DCE-MRI, we developed a finite element model of contrast enhancement at the voxel level. For diffusion in the range of that expected for gadolinium chelates in tissue (i.e., 1×10−4 to 4×10−4 mm2/s), parameterization errors range from −58% to 12% for Ktrans, −9% to 8% for ve, and −60% to 213% for vp over the range of Ktrans, ve, vp, and temporal resolutions investigated. Thus the results show that diffusion has a significant effect on parameterization using standard techniques.  相似文献   

8.
It recently has been demonstrated that magnetic resonance imaging can be used to map changes in brain hemodynamics produced by human mental operations. One method under development relies on blood oxygenation level-dependent (BOLD) contrast: a change in the signal strength of brain water protons produced by the paramagnetic effects of venous blood deoxyhemoglobin. Here we discuss the basic quantitative features of the observed BOLD-based signal changes, including the signal amplitude and its magnetic field dependence and dynamic effects such as a pronounced oscillatory pattern that is induced in the signal from primary visual cortex during photic stimulation experiments. The observed features are compared with the results of Monte Carlo simulations of water proton intravoxel phase dispersion produced by local field gradients generated by paramagnetic deoxyhemoglobin in nearby venous blood vessels. The simulations suggest that the effect of water molecule diffusion is strong for the case of blood capillaries, but, for larger venous blood vessels, water diffusion is not an important determinant of deoxyhemoglobin-induced signal dephasing. We provide an expression for the apparent in-plane relaxation rate constant (R2*) in terms of the main magnetic field strength, the degree of the oxygenation of the venous blood, the venous blood volume fraction in the tissue, and the size of the blood vessel.  相似文献   

9.
Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric “shells” when computing three distinct anisotropy maps–fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.  相似文献   

10.
Abnormal electrical activity from the boundaries of ischemic cardiac tissue is recognized as one of the major causes in generation of ischemia-reperfusion arrhythmias. Here we present theoretical analysis of the waves of electrical activity that can rise on the boundary of cardiac cell network upon its recovery from ischaemia-like conditions. The main factors included in our analysis are macroscopic gradients of the cell-to-cell coupling and cell excitability and microscopic heterogeneity of individual cells. The interplay between these factors allows one to explain how spirals form, drift together with the moving boundary, get transiently pinned to local inhomogeneities, and finally penetrate into the bulk of the well-coupled tissue where they reach macroscopic scale. The asymptotic theory of the drift of spiral and scroll waves based on response functions provides explanation of the drifts involved in this mechanism, with the exception of effects due to the discreteness of cardiac tissue. In particular, this asymptotic theory allows an extrapolation of 2D events into 3D, which has shown that cells within the border zone can give rise to 3D analogues of spirals, the scroll waves. When and if such scroll waves escape into a better coupled tissue, they are likely to collapse due to the positive filament tension. However, our simulations have shown that such collapse of newly generated scrolls is not inevitable and that under certain conditions filament tension becomes negative, leading to scroll filaments to expand and multiply leading to a fibrillation-like state within small areas of cardiac tissue.  相似文献   

11.
A physical theory explaining the anisotropic dispersion of water and solutes in biological tissues is introduced based on the phenomena of Taylor dispersion, in which highly diffusive solutes cycle between flowing and stagnant regions in the tissue, enhancing dispersion in the direction of microvascular flow. An effective diffusion equation is derived, for which the coefficient of dispersion in the axial direction (direction of capillary orientation) depends on the molecular diffusion coefficient, tissue perfusion, and vessel density. This analysis provides a homogenization that represents three-dimensional transport in capillary beds as an effectively one-dimensional phenomenon. The derived dispersion equation may be used to simulate the transport of solutes in tissues, such as in pharmacokinetic modeling. In addition, the analysis provides a physically based hypothesis for explaining dispersion anisotropy observed in diffusion-weighted imaging (DWI) and diffusion-tensor magnetic resonance imaging (DTMRI) and suggests the means of obtaining quantitative functional information on capillary vessel density from measurements of dispersion coefficients. It is shown that a failure to account for flow-mediated dispersion in vascular tissues may lead to misinterpretations of imaging data and significant overestimates of directional bias in molecular diffusivity in biological tissues. Measurement of the ratio of axial to transverse diffusivity may be combined with an independent measurement of perfusion to provide an estimate of capillary vessel density in the tissue.  相似文献   

12.
In order to determine the three-dimensional (3D) resolved muscular anatomy of the mammalian esophagus, we have examined its myoarchitecture with diffusion spectrum magnetic resonance imaging (DSI) and tractography. DSI measures diffusion displacement as a function of magnetic gradients of varied direction and intensity and displays the displacement profile as a 3D contour per voxel. In tractography, the orientation vectors of maximum diffusion/voxel are identified, and intervoxel associations are constructed by a streamline algorithm based on angular similarity in order to generate mesoscale myofiber tracts. We demonstrate that the proximal body of the esophagus consists of helically aligned crossing fiber populations that overlap between layers in the form of a “zipper” region along the length of the tissue. With increasingly distal position along the length of the tissue, helix angle and skeletal muscle prevalence are reduced such that fibers align themselves in the most distal location into distinct inner circular and outer longitudinal smooth muscle layers. We conclude that esophageal myoanatomy consists of crossing myofibers exhibiting a decreasing degree of helicity as a function of axial position and propose that this unique geometric construct provides a mechanism to resist distension and promote aboral flow. This work was supported by the National Institutes of Health (grants RO1-DC05604 to Richard J. Gilbert and RO1- MH64044 to Van J. Wedeen.  相似文献   

13.
Magnetic resonance (MR) diffusion imaging provides a valuable tool used for inferring structural anisotropy of brain white matter connectivity from diffusion tensor imaging. Recently, several high angular resolution diffusion models were introduced in order to overcome the inadequacy of the tensor model for describing fibre crossing within a single voxel. Among them, q-ball imaging (QBI), inherited from the q-space method, relies on a spherical Radon transform providing a direct relationship between the diffusion-weighted MR signal and the orientation distribution function (ODF). Experimental validation of these methods in a model system is necessary to determine the accuracy of the methods and to optimize them. A diffusion phantom made up of two textile rayon fibre (comparable in diameter to axons) bundles, crossing at 90 degrees , was designed and dedicated to ex vivo q-ball validation on a clinical scanner. Normalized ODFs were calculated inside regions of interest corresponding to monomodal and bimodal configurations of underlying structures. Three-dimensional renderings of ODFs revealed monomodal shapes for voxels containing single-fibre population and bimodal patterns for voxels located within the crossing area. Principal orientations were estimated from ODFs and were compared with a priori structural fibre directions, validating efficiency of QBI for depicting fibre crossing. In the homogeneous regions, QBI detected the fibre angle with an accuracy of 19 degrees and in the fibre-crossing region with an accuracy of 30 degrees .  相似文献   

14.
Psychopathic offenders show a persistent pattern of emotional unresponsivity to the often horrendous crimes they perpetrate. Recent studies have related psychopathy to alterations in white matter. Therefore, diffusion tensor imaging followed by tract-based spatial statistics (TBSS) analysis in 11 psychopathic offenders matched to 11 healthy controls was completed. Fractional anisotropy was calculated within each voxel and comparisons were made between groups using a permutation test. Any clusters of white matter voxels different between groups were submitted to probabilistic tractography. Significant differences in fractional anisotropy were found between psychopathic offenders and healthy controls in three main white matter clusters. These three clusters represented two major networks: an amygdalo-prefrontal network, and a striato-thalamo-frontal network. The interpersonal/affective component of the PCL-R correlated with white matter deficits in the orbitofrontal cortex and frontal pole whereas the antisocial component correlated with deficits in the striato-thalamo-frontal network. In addition to replicating earlier work concerning disruption of an amygdala-prefrontal network, we show for the first time that white matter integrity in a striato-thalamo-frontal network is disrupted in psychopathic offenders. The novelty of our findings lies in the two dissociable white matter networks that map directly onto the two major factors of psychopathy.  相似文献   

15.
The present study examined how competitive interactions and environmental conditions generate species boundaries and determine species distributions. A spatially explicit, quantitative genetic, two-species competition model was used to manipulate the strengths of competition, gene flow and local adaptation along environmental gradients. This allowed us to assess the long-term persistence of each species and whether the ranges they inhabited had boundaries in space or were unlimited. We found that a species boundary arises along less steep environmental gradients when the strength of stabilizing selection and diversifying selection are similar. We also found that a species boundary may arise along shallow environmental gradients if interspecific competition is more intense than intraspecific, which relaxes previous requirements for steep gradients for generating range limits. We determined an analytical form for the critical environmental gradient as a function of ecological and genetic parameters at which a species boundary is expected to arise by competition. Results suggest an alternative to resource competition as an explanation for phenotypic divergence between sympatric competitors. Competitors sharing a trait that is under stabilizing selection along an environmental gradient may segregate spatially and evolve in different regions, with phenotypic sympatric divergence reflecting the resulting clines. Along various types of environmental gradients, variation in stabilizing selection intensities could lead to contrasting patterns in the distribution of species. For stabilizing selection strengths in accord with field data estimates, this study predicts that the level of sympatric character divergence would be limited along environmental gradients.  相似文献   

16.
The quantification of bolus-tracking MRI techniques remains challenging. The acquisition usually relies on one contrast and the analysis on a simplified model of the various phenomena that arise within a voxel, leading to inaccurate perfusion estimates. To evaluate how simplifications in the interstitial model impact perfusion estimates, we propose a numerical tool to simulate the MR signal provided by a dynamic contrast enhanced (DCE) MRI experiment. Our model encompasses the intrinsic and relaxations, the magnetic field perturbations induced by susceptibility interfaces (vessels and cells), the diffusion of the water protons, the blood flow, the permeability of the vessel wall to the the contrast agent (CA) and the constrained diffusion of the CA within the voxel. The blood compartment is modeled as a uniform compartment. The different blocks of the simulation are validated and compared to classical models. The impact of the CA diffusivity on the permeability and blood volume estimates is evaluated. Simulations demonstrate that the CA diffusivity slightly impacts the permeability estimates ( for classical blood flow and CA diffusion). The effect of long echo times is investigated. Simulations show that DCE-MRI performed with an echo time may already lead to significant underestimation of the blood volume (up to 30% lower for brain tumor permeability values). The potential and the versatility of the proposed implementation are evaluated by running the simulation with realistic vascular geometry obtained from two photons microscopy and with impermeable cells in the extravascular environment. In conclusion, the proposed simulation tool describes DCE-MRI experiments and may be used to evaluate and optimize acquisition and processing strategies.  相似文献   

17.
Recent null models that place species ranges randomly within a bounded domain have produced controversial results. Many such geometric constraint models predict a peak in species richness in the centre of domains in the absence of underlying environmental gradients or interspecific interactions. We used two-dimensional simulation models to explore different ways that species ranges could interact with the domain boundary. In the rejection model, a randomly generated range that overlaps a domain boundary is removed from the simulation. In the reshaping model, a range that overlaps the domain boundary is reshaped so that the entire range is placed within the domain. The truncation model allows potential ranges to extend across the boundary, but only that portion of the range within the domain is included in the realized range. Both rejection and reshaping models produced a drop in species richness near domain boundaries, though the effect was less pronounced in the reshaping model. Our truncation model did not produce any spatial pattern in species richness. Thus the random placement of species ranges within a bounded domain does not necessarily lead to a mid-domain effect.
  Range truncation is consistent with bioclimate envelope models, which can successfully predict a species range in response to the availability of appropriate climate conditions. We argue that such flexible range sizes are more realistic than the assumption that range size is an unvarying characteristic of a species. Other range characteristics, including size and shape, can change near domain boundaries in the null models, including the truncation model. A broader consideration of range characteristics near domain boundaries could be productive.  相似文献   

18.
Because fibroblasts deposit the collagen matrix that determines the mechanical integrity of scar tissue, altering fibroblast invasion could alter wound healing outcomes. Anisotropic mechanical boundary conditions (restraint, stretch, or tension) could affect the rate of fibroblast invasion, but their importance relative to the prototypical drivers of fibroblast infiltration during wound healing—cell and chemokine concentration gradients—is unknown. We tested whether anisotropic mechanical boundary conditions affected the directionality and speed of fibroblasts migrating into a three-dimensional model wound, which could simultaneously expose fibroblasts to mechanical, structural, steric, and chemical guidance cues. We created fibrin-filled slits in fibroblast-populated collagen gels and applied uniaxial mechanical restraint along the short or long axis of the fibrin wounds. Anisotropic mechanical conditions increased the efficiency of fibroblast invasion by guiding fibroblasts without increasing their migration speed. The migration behavior could be modeled as a biased random walk, where the bias due to multiple guidance cues was accounted for in the shape of a displacement orientation probability distribution. Taken together, modeling and experiments suggested an effect of strain anisotropy, rather than strain-induced fiber alignment, on fibroblast invasion.  相似文献   

19.
Contractile function of cardiac cells is driven by the sliding displacement of myofilaments powered by the cycling myosin crossbridges. Critical to this process is the availability of ATP, which myosin hydrolyzes during the cross-bridge cycle. The diffusion of adenine nucleotides through the myofilament lattice has been shown to be anisotropic, with slower radial diffusion perpendicular to the filament axis relative to parallel, and is attributed to the periodic hexagonal arrangement of the thin (actin) and thick (myosin) filaments. We investigated whether atomistic-resolution details of myofilament proteins can refine coarse-grain estimates of diffusional anisotropy for adenine nucleotides in the cardiac myofibril, using homogenization theory and atomistic thin filament models from the Protein Data Bank. Our results demonstrate considerable anisotropy in ATP and ADP diffusion constants that is consistent with experimental measurements and dependent on lattice spacing and myofilament overlap. A reaction-diffusion model of the half-sarcomere further suggests that diffusional anisotropy may lead to modest adenine nucleotide gradients in the myoplasm under physiological conditions.  相似文献   

20.
Contractile function of cardiac cells is driven by the sliding displacement of myofilaments powered by the cycling myosin crossbridges. Critical to this process is the availability of ATP, which myosin hydrolyzes during the cross-bridge cycle. The diffusion of adenine nucleotides through the myofilament lattice has been shown to be anisotropic, with slower radial diffusion perpendicular to the filament axis relative to parallel, and is attributed to the periodic hexagonal arrangement of the thin (actin) and thick (myosin) filaments. We investigated whether atomistic-resolution details of myofilament proteins can refine coarse-grain estimates of diffusional anisotropy for adenine nucleotides in the cardiac myofibril, using homogenization theory and atomistic thin filament models from the Protein Data Bank. Our results demonstrate considerable anisotropy in ATP and ADP diffusion constants that is consistent with experimental measurements and dependent on lattice spacing and myofilament overlap. A reaction-diffusion model of the half-sarcomere further suggests that diffusional anisotropy may lead to modest adenine nucleotide gradients in the myoplasm under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号