首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the mechanically active proteins are organized into tandems of identical repeats, (D)N, or heterogeneous tandems, D1-D2-...-DN. In current atomic force microscopy experiments, conformational transitions of protein tandems can be accessed by employing constant stretching force f (force-clamp) and by analyzing the recorded unfolding times of individual domains. Analysis of unfolding data for homogeneous tandems relies on the assumption that unfolding times are independent and identically distributed, and involves inference of the (parent) probability density of unfolding times from the histogram of the combined unfolding times. This procedure cannot be used to describe tandems characterized by interdomain interactions, or heteregoneous tandems. In this article, we introduce an alternative approach that is based on recognizing that the observed data are ordered, i.e., first, second, third, etc., unfolding times. The approach is exemplified through the analysis of unfolding times for a computer model of the homogeneous and heterogeneous tandems, subjected to constant force. We show that, in the experimentally accessible range of stretching forces, the independent and identically distributed assumption may not hold. Specifically, the uncorrelated unfolding transitions of individual domains at lower force may become correlated (dependent) at elevated force levels. The proposed formalism can be used in atomic force microscopy experiments to infer the unfolding time distributions of individual domains from experimental histograms of ordered unfolding times, and it can be extended to analyzing protein tandems that exhibit interdomain interactions.  相似文献   

2.
Using the recently developed single molecule force-clamp technique we quantitatively measure the kinetics of conformational changes of polyprotein molecules at a constant force. In response to an applied force of 110 pN, we measure the dwell times of 1647 unfolding events of individual ubiquitin modules within each protein chain. We then establish a rigorous method for analyzing force-clamp data using order statistics. This allows us to test the success of a history-independent, two-state model in describing the kinetics of the unfolding process. We find that the average unfolding trajectory is independent of the number of protein modules N in each trajectory, which varies between 3 and 12 (the engineered protein length), suggesting that the unfolding events in each chain are uncorrelated. We then derive a binomial distribution of dwell times to describe the stochastic dynamics of protein unfolding. This distribution successfully describes 81% of the data with a single rate constant of alpha = 0.6 s(-1) for all N. The remainder of the data that cannot be accounted for suggests alternative unfolding barriers in the energy landscape of the protein. This method investigates the statistical features of unfolding beyond the average measurement of a single rate constant, thus providing an attractive alternative for measuring kinetics by force-clamp spectroscopy.  相似文献   

3.
Single-protein force experiments have relied on a molecular fingerprint based on tethering multiple single-protein domains in a polyprotein chain. However, correlations between these domains remain an issue in interpreting force spectroscopy data, particularly during protein folding. Here we first show that force-clamp spectroscopy is a sensitive technique that provides a molecular fingerprint based on the unfolding step size of four single-monomer proteins. We then measure the force-dependent unfolding rate kinetics of ubiquitin and I27 monomers and find a good agreement with the data obtained for the respective polyproteins over a wide range of forces, in support of the Markovian hypothesis. Moreover, with a large statistical ensemble at a single force, we show that ubiquitin monomers also exhibit a broad distribution of unfolding times as a signature of disorder in the folded protein landscape. Furthermore, we readily capture the folding trajectories of monomers that exhibit the same stages in folding observed for polyproteins, thus eliminating the possibility of entropic masking by other unfolded modules in the chain or domain-domain interactions. On average, the time to reach the I27 folded length increases with increasing quenching force at a rate similar to that of the polyproteins. Force-clamp spectroscopy at the single-monomer level reproduces the kinetics of unfolding and refolding measured using polyproteins, which proves that there is no mechanical effect of tethering proteins to one another in the case of ubiquitin and I27.  相似文献   

4.
Spectrin is a multidomain cytoskeletal protein, the component three-helix bundle domains are expected to experience mechanical force in vivo. In thermodynamic and kinetic studies, neighboring domains of chicken brain alpha-spectrin R16 and R17 have been shown to behave cooperatively. Is this cooperativity maintained under force? The effect of force on these spectrin domains was investigated using atomic force microscopy. The response of the individual domains to force was compared to that of the tandem repeat R1617. Importantly, nonhelical linkers (all-beta immunoglobulin domains) were used to avoid formation of nonnative helical linkers. We show that, in contrast to previous studies on spectrin repeats, only 3% of R1617 unfolding events gave an increase in contour length consistent with cooperative two-domain unfolding events. Furthermore, the unfolding forces for R1617 were the same as those for the unfolding of R16 or R17 alone. This is a strong indication that the cooperative unfolding behavior observed in the stopped-flow studies is absent between these spectrin domains when force is acting as a denaturant. Our evidence suggests that the rare double unfolding events result from misfolding between adjacent repeats. We suggest that this switch from cooperative to independent behavior allows multidomain proteins to maintain integrity under applied force.  相似文献   

5.
Titin, an important constituent of vertebrate muscles, is a protein of the order of a micrometer in length in the folded state. Atomic force microscopy and laser tweezer experiments have been used to stretch titin molecules to more than ten times their folded lengths. To explain the observed relation between force and extension, it has been suggested that the immunoglobulin and fibronectin domains unfold one at a time in an all-or-none fashion. We use molecular dynamics simulations to study the forced unfolding of two different fibronectin type 3 domains (the ninth, 9Fn3, and the tenth, 10Fn3, from human fibronectin) and of their heterodimer of known structure. An external biasing potential on the N to C distance is employed and the protein is treated in the polar hydrogen representation with an implicit solvation model. The latter provides an adiabatic solvent response, which is important for the nanosecond unfolding simulation method used here. A series of simulations is performed for each system to obtain meaningful results. The two different fibronectin domains are shown to unfold in the same way along two possible pathways. These involve the partial separation of the "beta-sandwich", an essential structural element, and the unfolding of the individual sheets in a stepwise fashion. The biasing potential results are confirmed by constant force unfolding simulations. For the two connected domains, there is complete unfolding of one domain (9Fn3) before major unfolding of the second domain (10Fn3). Comparison of different models for the potential energy function demonstrates that the dominant cohesive element in both proteins is due to the attractive van der Waals interactions; electrostatic interactions play a structural role but appear to make only a small contribution to the stabilization of the domains, in agreement with other studies of beta-sheet stability. The unfolding forces found in the simulations are of the order of those observed experimentally, even though the speed of the former is more than six orders of magnitude greater than that used in the latter.  相似文献   

6.
Force-driven conformational changes provide a broad basis for protein extensibility, and multidomain proteins broaden the possibilities further by allowing for a multiplicity of forcibly extended states. Red cell spectrin is prototypical in being an extensible, multidomain protein widely recognized for its contribution to erythrocyte flexibility. Atomic force microscopy has already shown that single repeats of various spectrin family proteins can be forced to unfold reversibly under extension. Recent structural data indicates, however, that the linker between triple-helical spectrin repeats is often a contiguous helix, thus raising questions as to what the linker contributes and what defines a domain mechanically. We have examined the extensible unfolding of red cell spectrins as monomeric constructs of just two, three, or four repeats from the actin-binding ends of both alpha- and beta-chains, i.e., alpha(18-21) and beta(1-4) or their subfragments. In addition to single repeat unfolding evident in sawtooth patterns peaked at relatively low forces (<50 pN at 1 nm/ms extension rates), tandem repeat unfolding is also demonstrated in ensemble-scale analyses of thousands of atomic force microscopy contacts. Evidence for extending two chains and loops is provided by force versus length scatterplots which also indicate that tandem repeat unfolding occurs at a significant frequency relative to single repeat unfolding. Cooperativity in forced unfolding of spectrin is also clearly demonstrated by a common force scale for the unfolding of both single and tandem repeats.  相似文献   

7.
Cao Y  Kuske R  Li H 《Biophysical journal》2008,95(2):782-788
Single-molecule force-clamp spectroscopy is a valuable tool to analyze unfolding kinetics of proteins. Previous force-clamp spectroscopy experiments have demonstrated that the mechanical unfolding of ubiquitin deviates from the generally assumed Markovian behavior and involves the features of glassy dynamics. Here we use single molecule force-clamp spectroscopy to study the unfolding kinetics of a computationally designed fast-folding mutant of the small protein GB1, which shares a similar β-grasp fold as ubiquitin. By treating the mechanical unfolding of polyproteins as the superposition of multiple identical Poisson processes, we developed a simple stochastic analysis approach to analyze the dwell time distribution of individual unfolding events in polyprotein unfolding trajectories. Our results unambiguously demonstrate that the mechanical unfolding of NuG2 fulfills all criteria of a memoryless Markovian process. This result, in contrast with the complex mechanical unfolding behaviors observed for ubiquitin, serves as a direct experimental demonstration of the Markovian behavior for the mechanical unfolding of a protein and reveals the complexity of the unfolding dynamics among structurally similar proteins. Furthermore, we extended our method into a robust and efficient pseudo-dwell-time analysis method, which allows one to make full use of all the unfolding events obtained in force-clamp experiments without categorizing the unfolding events. This method enabled us to measure the key parameters characterizing the mechanical unfolding energy landscape of NuG2 with improved precision. We anticipate that the methods demonstrated here will find broad applications in single-molecule force-clamp spectroscopy studies for a wide range of proteins.  相似文献   

8.
Single-molecule manipulation techniques have enabled the characterization of the unfolding and refolding process of individual protein molecules, using mechanical forces to initiate the unfolding transition. Experimental and computational results following this approach have shed new light on the mechanisms of the mechanical functions of proteins involved in several cellular processes, as well as revealed new information on the protein folding/unfolding free-energy landscapes. To investigate how protein molecules of different folds respond to a stretching force, and to elucidate the effects of solution conditions on the mechanical stability of a protein, we synthesized polymers of the protein ubiquitin and characterized the force-induced unfolding and refolding of individual ubiquitin molecules using an atomic-force-microscope-based single-molecule manipulation technique. The ubiquitin molecule was highly resistant to a stretching force, and the mechanical unfolding process was reversible. A model calculation based on the hydrogen-bonding pattern in the native structure was performed to explain the origin of this high mechanical stability. Furthermore, pH effects were studied and it was found that the forces required to unfold the protein remained constant within a pH range around the neutral value, and forces decreased as the solution pH was lowered to more acidic values.  相似文献   

9.
Pathways of unfolding a protein depend in principle on the perturbation-whether it is temperature, denaturant, or even forced extension. Widely-shared, helical-bundle spectrin repeats are known to melt at temperatures as low as 40-45 degrees C and are also known to unfold via multiple pathways as single molecules in atomic force microscopy. Given the varied roles of spectrin family proteins in cell deformability, we sought to determine the coupled effects of temperature on forced unfolding. Bimodal distributions of unfolding intervals are seen at all temperatures for the four-repeat beta(1-4) spectrin-an alpha-actinin homolog. The major unfolding length corresponds to unfolding of a single repeat, and a minor peak at twice the length corresponds to tandem repeats. Increasing temperature shows fewer tandem events but has no effect on unfolding intervals. As T approaches T(m), however, mean unfolding forces in atomic force microscopy also decrease; and circular dichroism studies demonstrate a nearly proportional decrease of helical content in solution. The results imply a thermal softening of a helical linker between repeats which otherwise propagates a helix-to-coil transition to adjacent repeats. In sum, structural changes with temperature correlate with both single-molecule unfolding forces and shifts in unfolding pathways.  相似文献   

10.
Proteins of many types experience tensile forces in their normal function, and vascular cell adhesion molecule-1 (VCAM-1) is typical in this. VCAM has seven Ig domains, and each has a disulfide bond (-S-S-) buried in its core that covalently stabilizes about half of each domain against unfolding. VCAM is extended here by single molecule atomic force microscopy in the presence or absence of reducing agents. In the absence of reducing agent, a sawtooth pattern of forced unfolding reveals an average period and total length consistent with disulfide locations in VCAM. With increasing reducing agent, accessible disulfides are specifically reduced (to SH); the average period for unfolding increases up to saturation together with additional metrics of unfolding. Steered molecular dynamics simulations of unfolding indeed show that the core disulfide bond is solvent-exposed in the very earliest stages of protein extension. Michaelis-Menten kinetics emerge with reduction catalyzed by force (tau(reduction) approximately 10(-4) s). The results establish single molecule reduction, one bond at a time, and show that mechanical forces can play a key role in modulating the redox state of cell adhesion proteins that are invariably stressed in cell adhesion.  相似文献   

11.
Many F-actin crosslinking proteins consist of two actin-binding domains separated by a rod domain that can vary considerably in length and structure. In this study, we used single-molecule force spectroscopy to investigate the mechanics of the immunoglobulin (Ig) rod domains of filamin from Dictyostelium discoideum (ddFLN). We find that one of the six Ig domains unfolds at lower forces than do those of all other domains and exhibits a stable unfolding intermediate on its mechanical unfolding pathway. Amino acid inserts into various loops of this domain lead to contour length changes in the single-molecule unfolding pattern. These changes allowed us to map the stable core of approximately 60 amino acids that constitutes the unfolding intermediate. Fast refolding in combination with low unfolding forces suggest a potential in vivo role for this domain as a mechanically extensible element within the ddFLN rod.  相似文献   

12.
Protein engineering Phi-value analysis combined with single molecule atomic force microscopy (AFM) was used to probe the molecular basis for the mechanical stability of TNfn3, the third fibronectin type III domain from human tenascin. This approach has been adopted previously to solve the forced unfolding pathway of a titin immunoglobulin domain, TI I27. TNfn3 and TI I27 are members of different protein superfamilies and have no sequence identity but they have the same beta-sandwich structure consisting of two antiparallel beta-sheets. TNfn3, however, unfolds at significantly lower forces than TI I27. We compare the response of these proteins to mechanical force. Mutational analysis shows that, as is the case with TI I27, TNfn3 unfolds via a force-stabilised intermediate. The key event in forced unfolding in TI I27 is largely the breaking of hydrogen bonds and hydrophobic interactions between the A' and G-strands. The mechanical Phi-value analysis and molecular dynamics simulations reported here reveal that significantly more of the TNfn3 molecule contributes to its resistance to force. Both AFM experimental data and molecular dynamics simulations suggest that the rate-limiting step of TNfn3 forced unfolding reflects a transition from the extended early intermediate to an aligned intermediate state. As well as losses of interactions of the A and G-strands and associated loops there are rearrangements throughout the core. As was the case for TI I27, the forced unfolding pathway of TNfn3 is different from that observed in denaturant studies in the absence of force.  相似文献   

13.
Spectrin is a vital and abundant protein of the cytoskeleton. It has an elongated structure that is made by a chain of so-called spectrin repeats. Each repeat contains three antiparallel alpha-helices that form a coiled-coil structure. Spectrin forms an oligomeric structure that is able to cross-link actin filaments. In red cells, the spectrin/actin meshwork underlying cell membrane is thought to be responsible for special elastic properties of the cell. In order to determine mechanical unfolding properties of the spectrin repeat, we have used single molecule force spectroscopy to study the states of unfolding of an engineered polymeric protein consisting of identical spectrin domains. We demonstrate that the unfolding of spectrin domains can occur in a stepwise fashion during stretching. The force-extension patterns exhibit features that are compatible with the existence of at least one intermediate between the folded and the completely unfolded conformation. Only those polypeptides that still contain multiple intact repeats display intermediates, indicating a stabilisation effect. Precise force spectroscopy measurements on single molecules using engineered protein constructs reveal states and transitions during the mechanical unfolding of spectrin. Single molecule force spectroscopy appears to open a new window for the analysis of transition probabilities between different conformational states.  相似文献   

14.
We introduce and discuss a novel approach called back-calculation for analyzing force spectroscopy experiments on multimodular proteins. The relationship between the histograms of the unfolding forces for different peaks, corresponding to a different number of not-yet-unfolded protein modules, is exploited in such a manner that the sole distribution of the forces for one unfolding peak can be used to predict the unfolding forces for other peaks. The scheme is based on a bootstrap prediction method and does not rely on any specific kinetic model for multimodular unfolding. It is tested and validated in both theoretical/computational contexts (based on stochastic simulations) and atomic force microscopy experiments on (GB1)8 multimodular protein constructs. The prediction accuracy is so high that the predicted average unfolding forces corresponding to each peak for the GB1 construct are within only 5 pN of the averaged directly-measured values. Experimental data are also used to illustrate how the limitations of standard kinetic models can be aptly circumvented by the proposed approach.  相似文献   

15.
Mechanical unfolding of RNA structures, ranging from hairpins to ribozymes, using laser optical tweezer experiments have begun to reveal the features of the energy landscape that cannot be easily explored using conventional experiments. Upon application of constant force (f), RNA hairpins undergo cooperative transitions from folded to unfolded states whereas subdomains of ribozymes unravel one at a time. Here, we use a self-organized polymer model and Brownian dynamics simulations to probe mechanical unfolding at constant force and constant-loading rate of four RNA structures of varying complexity. For simple hairpins, such as P5GA, application of constant force or constant loading rate results in bistable cooperative transitions between folded and unfolded states without populating any intermediates. The transition state location (DeltaxFTS) changes dramatically as the loading rate is varied. At loading rates comparable to those used in laser optical tweezer experiments, the hairpin is plastic, with DeltaxFTS being midway between folded and unfolded states; whereas at high loading rates, DeltaxFTS moves close to the folded state, i.e., RNA is brittle. For the 29-nucleotide TAR RNA with the three-nucleotide bulge, unfolding occurs in a nearly two-state manner with an occasional pause in a high free energy metastable state. Forced unfolding of the 55 nucleotides of the Hepatitis IRES domain IIa, which has a distorted L-shaped structure, results in well-populated stable intermediates. The most stable force-stabilized intermediate represents straightening of the L-shaped structure. For these structures, the unfolding pathways can be predicted using the contact map of the native structures. Unfolding of a RNA motif with internal multiloop, namely, the 109-nucleotide prohead RNA that is part of the 29 DNA packaging motor, at constant value of rf occurs with three distinct rips that represent unraveling of the paired helices. The rips represent kinetic barriers to unfolding. Our work shows 1), the response of RNA to force is largely determined by the native structure; and 2), only by probing mechanical unfolding over a wide range of forces can the underlying energy landscape be fully explored.  相似文献   

16.
Dynamic force spectroscopy has become indispensable for the exploration of the mechanical properties of proteins. In force-ramp experiments, performed by utilizing a time-dependent pulling force, the peak forces for unfolding transitions in a multimeric protein (D)N are used to map the free energy landscape for unfolding for a protein domain D. We show that theoretical modeling of unfolding transitions based on combining the observed first (f1), second (f2), …, Nth (fN) unfolding forces for a protein tandem of fixed length N, and pooling the force data for tandems of different length, n1 < n2 < … < N, leads to an inaccurate estimation of the distribution of unfolding forces for the protein D, ψD(f). This problem can be overcome by using Order statistics theory, which, in conjunction with analytically tractable models, can be used to resolve the molecular characteristics that determine the unfolding micromechanics. We present a simple method of estimation of the parent distribution, ψD(f), based on analyzing the force data for a tandem (D)n of arbitrary length n. Order statistics theory is exemplified through a detailed analysis and modeling of the unfolding forces obtained from pulling simulations of the monomer and oligomers of the all-β-sheet WW domain.  相似文献   

17.
In the last decade atomic force microscopy has been used to measure the mechanical stability of single proteins. These force spectroscopy experiments have shown that many water-soluble and membrane proteins unfold via one or more intermediates. Recently, Li and co-workers found a linear correlation between the unfolding force of the native state and the intermediate in fibronectin, which they suggested indicated the presence of a molecular memory or multiple unfolding pathways (1). Here, we apply two independent methods in combination with Monte Carlo simulations to analyze the unfolding of alpha-helices E and D of bacteriorhodopsin (BR). We show that correlation analysis of unfolding forces is very sensitive to errors in force calibration of the instrument. In contrast, a comparison of relative forces provides a robust measure for the stability of unfolding intermediates. The proposed approach detects three energetically different states of alpha-helices E and D in trimeric BR. These states are not observed for monomeric BR and indicate that substantial information is hidden in forced unfolding experiments of single proteins.  相似文献   

18.
Titin is a giant filamentous protein of the muscle sarcomere in which stretch induces the unfolding of its globular domains. However, the mechanisms of how domains are progressively selected for unfolding and which domains eventually unfold have for long been elusive. Based on force-clamp optical tweezers experiments we report here that, in a paradoxical violation of mechanically driven activation kinetics, neither the global domain unfolding rate, nor the folded-state lifetime distributions of full-length titin are sensitive to force. This paradox is reconciled by a gradient of mechanical stability so that domains are gradually selected for unfolding as the magnitude of the force field increases. Atomic force microscopic screening of extended titin molecules revealed that the unfolded domains are distributed homogenously along the entire length of titin, and this homogeneity is maintained with increasing overstretch. Although the unfolding of domains with progressively increasing mechanical stability makes titin a variable viscosity damper, the spatially randomized variation of domain stability ensures that the induced structural changes are not localized but are distributed along the molecule''s length. Titin may thereby provide complex safety mechanims for protecting the sarcomere against structural disintegration under excessive mechanical conditions.  相似文献   

19.
B Zhang  G Xu    J S Evans 《Biophysical journal》1999,77(3):1306-1315
Molecular elasticity is a physicomechanical property that is associated with a select number of polypeptides and proteins, such as the giant muscle protein, titin, and the extracellular matrix protein, tenascin. Both proteins have been the subject of atomic force microscopy (AFM), laser tweezer, and other in vitro methods for examining the effects of force extension on the globular (FNIII/Ig-like) domains that comprise each protein. In this report we present a time-dependent method for simulating AFM force extension and its effect on FNIII/Ig domain unfolding and refolding. This method treats the unfolding and refolding process as a standard three-state protein folding model (U right arrow over left arrow T right arrow over left arrow F, where U is the unfolded state, T is the transition or intermediate state, and F is the fully folded state), and integrates this approach within the wormlike chain (WLC) concept. We simulated the effect of AFM tip extension on a hypothetical titin molecule comprised of 30 globular domains (Ig or FNIII) and 25% Pro-Glu-Val-Lys (PEVK) content, and analyzed the unfolding and refolding processes as a function of AFM tip extension, extension rate, and variation in PEVK content. In general, we find that the use of a three-state protein-folding kinetic-based model and the implicit inclusion of PEVK domains can accurately reproduce the experimental force-extension curves observed for both titin and tenascin proteins. Furthermore, our simulation data indicate that PEVK domains exhibit extensibility behavior, assist in the unfolding and refolding of FNIII/Ig domains in the titin molecule, and act as a force "buffer" for the FNIII/Ig domains, particularly at low and moderate extension forces.  相似文献   

20.
The integral membrane protein complex between phospholamban (PLN) and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) regulates cardiac contractility. In the unphosphorylated form, PLN binds SERCA and inhibits Ca(2+) flux. Upon phosphorylation of PLN at Ser16, the inhibitory effect is reversed. Although structural details on both proteins are emerging from X-ray crystallography, cryo-electron microscopy, and NMR studies, the molecular mechanisms of their interactions and regulatory process are still lacking. It has been speculated that SERCA regulation depends on PLN structural transitions (order to disorder, i.e., folding/unfolding). Here, we investigated PLN conformational changes upon chemical unfolding by a combination of electron paramagnetic resonance and NMR spectroscopies, revealing that the conformational transitions involve mostly the cytoplasmic regions, with two concomitant phenomena: (1) membrane binding and folding of the amphipathic domain Ia and (2) folding/unfolding of the juxtamembrane domain Ib of PLN. Analysis of phosphorylated and unphosphorylated PLN with two phosphomimetic mutants of PLN (S16E and S16D) shows that the population of an unfolded state in domains Ia and Ib (T' state) is linearly correlated to the extent of SERCA inhibition measured by activity assays. Inhibition of SERCA is carried out by the folded ground state (T state) of the protein (PLN), while the relief of inhibition involves promotion of PLN to excited conformational states (Ser16 phosphorylated PLN). We propose that PLN population shifts (folding/unfolding) are a key regulatory mechanism for SERCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号