首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同农业景观结构对麦蚜种群动态的影响   总被引:4,自引:0,他引:4  
赵紫华  石云  贺达汉  杭佳  赵映书  王颖 《生态学报》2010,30(23):6380-6388
研究表明农业景观结构的复杂性与害虫种群发生强度关系密切,然而在不同农业景观结构下研究麦蚜的发生、种群及寄生蜂的变化还不多。设计了不同的麦田景观结构,调查研究了不同麦田景观结构对麦蚜种群的影响。在简单与复杂两种农业景观结构下,分析了不同种类麦蚜的入田时间、入田量、种群增长率、种群密度及寄生性天敌的多样性与寄生率。结果表明:景观结构对不同种类麦蚜影响不同,但复杂农业景观下麦蚜迁飞入田时间都要晚于简单农业景观(连片种植)下的入田时间,复杂农业景观下有翅蚜的迁入量显著低于简单景观下有翅蚜的迁入量,并且复杂农业景观下麦蚜种群增长速率高于简单农业景观下的增长速率。不同种类麦蚜对景观结构的不同反应可能与形态学与生活史特征有关,两种不同农业景观结构下寄生性天敌的多样性与寄生率无显著差异。复杂景观结构下的麦蚜有翅蚜低的迁入量、高的增长速率可能与生境高度破碎化有关,其中与温室大棚塑料白色反光有的很大的影响。生境破碎化影响了麦蚜对寄主植物寻找以及天敌对猎物的寻找效应。  相似文献   

2.
Brevicoryne brassicae (L), Lipaphis erysimi (Kalt) and Myzus persicae (Sultzer) (Homoptera: Aphididae) form the aphid complex that causes great losses in Brassicaceae in tropical and subtropical regions. Knowledge of their population dynamics is important for the development of integrated pest management programmes. This study aimed to investigate the effects of cabbage phenology, climatic factors and natural enemies populations on the dynamics of these organisms, and the factors regulating their predators’ occurrence. The densities of aphids and their natural enemies and the climate were monitored for two years in 16 cabbage crops. The highest densities of the aphids occurred during periods of relative humidity (RH) drop, a condition that affects them positively. Regarding the predators, the factors affecting their abundance varied but RH was positively related to most of them. This study provides relevant insights into the factors that regulate the aphids in cabbage and for the decision‐making process of control of these severe pests.  相似文献   

3.
Understanding the interactions between herbivores and natural enemies in fragmented landscapes is essential for conservation biological control. Studies including multiple enemies affecting multiple herbivores, plant damage and growth are needed. Here, we separated independent effects of (1) isolation of cherry trees from woody habitat and (2) the amount of woody habitat in the surrounding landscape (500 m buffers) on interactions between different groups of herbivores with their natural enemies and resulting changes in the growth of young cherry trees. Most predatory arthropods declined with habitat isolation, except some aphid predators (ladybeetles and hoverflies). Herbivores either increased with isolation (herbivorous beetles) or showed no significant response (aphids). In contrast, the amount of woody habitat in the landscape was not relevant for herbivore–enemy interactions at the investigated scale. Plant growth was affected by bottom-up (nutrient availability) and top-down (aphid density) forces but did not change significantly with habitat amount or isolation. We conclude that herbivores can be released from natural enemies at isolated sites, in accordance with the hypothesis that habitat connectivity improves pest control. However, each herbivore group responded differently to the landscape context and had contrasting effects on the same host plant, demonstrating the difficulty to predict landscape effects on plant growth.  相似文献   

4.
Tatyana A. Rand  Teja Tscharntke 《Oikos》2007,116(8):1353-1362
The greater susceptibility of higher trophic levels to habitat loss has been demonstrated to disrupt important trophic interactions such as consumer control of prey populations. This pattern is predicted to break down for generalist species that can use matrix habitats, yet empirical studies comparing generalist and specialist enemy pressure in response to natural habitat loss are lacking. Here we examined the effects of landscape simplification resulting from habitat conversion to agriculture on nettles, Urtica dioica , their specialized aphid herbivore, Microlophium carnosum , and associated natural enemies that varied broadly in their degree of specialization. Both nettles and their specialized aphid herbivore were significantly more abundant in complex than simple landscapes. Different enemy groups showed contrasting responses. Aphid specialists (parasitic wasps and cecidomyiid midges) reached higher densities in complex than simple landscapes, and this effect was primarily related to shifts in local resource abundance (i.e. nettle aphid densities). In contrast, densities of generalists (coccinellid beetles and spiders) were significantly higher in simple landscapes, presumably due to spillover of generalists from surrounding cropland habitats. Natural enemy-prey ratios did not differ significantly across landscape types for specialist groups but were significantly higher in simple than complex landscapes for generalist groups, suggesting that enemy pressure on nettle aphids likely increases with landscape simplification. This was supported by our finding that aphid population growth rates were lower in simple than complex landscapes, and declined significantly with increasing coccinellid densities. Thus, in marked contrast to previous work, our results suggest that natural habitat loss may augment rather than disrupt consumer–prey interactions, and this will depend greatly on the degree of specialization of functionally dominant natural enemies.  相似文献   

5.
How aphid alarm pheromone can control aphids: a review   总被引:1,自引:0,他引:1  
Aphids are the major pests of arable crops, mostly in temperate regions. They are monophagous as well as polyphagous. They inflict damage in brassica, potato, cotton, vegetable and fruit crops. They damage their host plant directly by feeding upon their phloem sap, or indirectly by transmitting pathogens to them. Their life cycle can be autoecious as well as heteroecious. Aphids use semiochemicals for various purposes, in gathering information from their environment and for communication among themselves. They protect themselves from predators and parasitoids by escape response which is arbitrated by use of alarm pheromone signalling. When alarm pheromone, (E)-ß-farnesene, is released, nearby aphids exhibit a variety of behaviours like moving away, running, dropping off the plant and even attacking the predator. Previous studies of integrated pest management strategies have been aimed at the usage of alarm pheromone. However, scientists require complete knowledge of aphid ecology as well as aphid interaction with its natural enemies to establish efficient and viable biological control. This review presents analysis of the existing aphid pest management methodologies and effectiveness of alarm pheromone on aphids and their natural enemies.  相似文献   

6.
The cotton aphid Aphis gossypii Glover is the main aphid pest in cotton fields in the Yangtze River Valley Cotton-planting Zone (YRZ) in central China. Various natural enemies may attack the cotton aphid in Bt cotton fields but no studies have identified potential specific top-down forces that could help manage this pest in the YRZ in China. In order to identify possibilities for managing the cotton aphid, we monitored cotton aphid population dynamics and identified the effect of natural enemies on cotton aphid population growth using various exclusion cages in transgenic Cry1Ac (Bt)+CpTI (Cowpea trypsin inhibitor) cotton field in 2011. The aphid population growth in the open field (control) was significantly lower than those protected or restricted from exposure to natural enemies in the various exclusion cage types tested. The ladybird predator Propylaea japonica Thunberg represented 65% of Coccinellidae predators, and other predators consisted mainly of syrphids (2.1%) and spiders (1.5%). The aphid parasitoids Aphidiines represented 76.7% of the total count of the natural enemy guild (mainly Lysiphlebia japonica Ashmead and Binodoxys indicus Subba Rao & Sharma). Our results showed that P. japonica can effectively delay the establishment and subsequent population growth of aphids during the cotton growing season. Aphidiines could also reduce aphid density although their impact may be shadowed by the presence of coccinellids in the open field (likely both owing to resource competition and intraguild predation). The implications of these results are discussed in a framework of the compatibility of transgenic crops and top-down forces exerted by natural enemy guild.  相似文献   

7.
The differential loss of higher trophic levels in the face of natural habitat loss can result in the disruption of important trophic interactions, such as biological control. Natural enemies of herbivorous pests in cropping systems often benefit from the presence of natural habitats in surrounding landscapes, as they provide key resources such as alternative hosts. However, any benefits from a biological control perspective may be dampened if this also enhances enemies at the fourth trophic level. Remarkably, studies of the influence of landscape structure on diversity and interactions of fourth trophic‐level natural enemies are largely lacking. We carried out a large‐scale sampling study to investigate the effects of landscape complexity (i.e. the proportion of non‐crop habitat in the landscapes surrounding focal study areas) on the parasitoid communities of aphids in wheat and on an abundant extra‐field plant, stinging nettle. Primary parasitoid communities (3rd trophic level) attacking the cereal aphid, Sitobion avenae, had little overlap with the communities attacking the nettle aphid, Microlophium carnosum, while secondary parasitoids (4th trophic level) showed high levels of species overlap across these two aphids (25 vs 73% shared species respectively), resulting in significantly higher linkage density and lower specialization for secondary than primary parasitoid webs. In wheat, parasitoid diversity was not related to landscape complexity for either primary or secondary parasitoids. Rates of primary parasitism were generally low, while secondary parasitism rates were high (37–94%) and increased significantly with increasing landscape complexity, although this pattern was driven by a single secondary parasitoid species. Overall, our results demonstrate that extra‐field habitats and landscape complexity can differentially benefit fourth, over third, trophic level natural enemies, and thereby, could dampen biological control. Our results further suggest that fourth trophic‐level enemies may play an important, yet understudied, role in linking insect population dynamics across habitat types.  相似文献   

8.
【目的】研究大豆蚜发生为害及大豆与多种作物间邻作种植对大豆蚜的控制作用,为大豆蚜的可持续综合治理提供理论依据。【方法】采用系统调查的方法,研究大豆蚜和天敌田间种群动态;通过田间罩笼、人工接蚜和释放天敌的方法,研究捕食性天敌对大豆蚜种群的控制作用;在佳木斯地区进行大豆与早熟马铃薯间作,牡丹江地区进行黄瓜-大豆-玉米、甜葫芦-大豆-玉米、烟草-大豆-香瓜、甜菜-大豆-玉米等多作物带状穿插种植模式,以单作大豆田为对照,对不同种植模式的大豆田大豆蚜与天敌进行调查,研究作物多样性对大豆蚜的控制作用。【结果】2009年6月中下旬大豆蚜开始侵入大豆田,3~5周后田间有蚜株率达到100%,大豆蚜种群发生高峰期在7月下旬至8月上旬,9月上旬在田间逐渐消失。草蛉、瓢虫和寄生蜂等为蚜虫天敌优势种;按大豆蚜与天敌数量之比700︰1,释放异色瓢虫和叶色草蛉成虫7 d后,蚜虫种群减退率分别为54.78%和78.79%;大豆与早熟马铃薯间作,在大豆蚜种群迅速增长期早熟马铃薯收获(7月20日)后第5天,豆田蚜虫天敌总数是收获前的2.6倍,与同期单作大豆田相比,间作田大豆蚜种群数量降低了51.3%。大豆与甜葫芦、香瓜、烟草和玉米等作物进行多样性间作种植,在大豆蚜田间发生高峰期,单作豆田益害比为1︰65.2,多样性种植区的大豆田益害比为1︰26~1︰42,与单作大豆田相比,间作田大豆蚜种群数量降低40.7%~83.5%。【结论】2009年大豆蚜的种群高峰期为8月3日,田间的天敌优势种类为草蛉、瓢虫和寄生蜂。早熟马铃薯与大豆间作,在大豆蚜种群迅速增长期间收获早熟马铃薯,大量蚜虫天敌转移至间作的大豆田,从而形成对大豆蚜的控制。大豆与其它经济作物间邻作,大豆田天敌昆虫与蚜虫的益害比明显提高,表明利用农田作物多样性能充分发挥自然天敌的生物控害作用。  相似文献   

9.
Crop rotations alter the soil environment and physiology of the subsequent crop in ways that may affect the abundance of herbivores and their natural enemies. Soybean aphids are a consistent pest of soybean throughout North America, but little work has focused on how preceding crops may affect pest–predator dynamics. In a replicated experiment over three years, we examined how two preceding crops (spring wheat or an oat/pea mixture) affected seasonal soybean aphid pressure and the ratio of aphids to their predator community. Peak aphid populations were reduced by 40% and 75% in years 1 and 2 by planting spring wheat before soybeans (relative to the oat–pea mixture). Aphid densities were unaffected by preceding crop in the third year of study (aphids were at threshold in this year). Predators responded positively to aphid population increases and were unaffected by preceding crops. Additional research on how crop rotations can be used as a tool to manage soybean aphids warrants further attention.  相似文献   

10.
1. Insect population size is regulated by both intrinsic traits of organisms and extrinsic factors. The impacts of natural enemies are typically considered to be extrinsic factors, however insects have traits that affect their vulnerability to attack by natural enemies, and thus intrinsic and extrinsic factors can interact in their effects on population size. 2. Pea aphids Acyrthosiphon pisum Harris (Hemiptera: Aphididae) in New York and Maryland that are specialised on alfalfa are approximately two times more physiologically resistant to parasitism by Aphidius ervi Haliday (Hymenoptera: Braconidae) than pea aphids specialised on clover. To assess the potential influence of this genetically based difference in resistance to parasitism on pea aphid population dynamics, pea aphids, A. ervi, and other natural enemies of aphids in clover and alfalfa fields were sampled. 3. Rates of successful parasitism by A. ervi were higher and pea aphid population sizes were lower in clover, where the aphids are less resistant to parasitism. In contrast, mortality due to a fungal pathogen of pea aphids was higher in alfalfa. Generalist aphid predators did not differ significantly in density between the crops. 4. To explore whether intrinsic resistance to parasitism influences field dynamics, the relationship between resistance and successful field parasitism in 12 populations was analysed. The average level of resistance of a population strongly predicts rates of successful parasitism in the field. The ability of the parasitoid to regulate the aphid may vary among pea aphid populations of different levels of resistance.  相似文献   

11.
12.
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a serious pest of soybean, Glycine max (L.) Merr., in the North Central United States. Current management recommendations rely on the application of insecticides based on an economic threshold (ET) of 250 aphids per plant. Natural enemies are important in slowing the increase of aphid populations and can prevent them from reaching levels that can cause economic losses. However, biological control of A. glycines is inconsistent and can be affected negatively by the intensity of agricultural activity. We measured the impact of a natural-enemy-free environment on the capacity of the current ET to limit yield loss. In 2008 and 2009, caged microplots were assigned to one of three treatments: plants kept aphid-free (referred to as the control), plants that experienced a population of 250 aphids per plant (integrated pest management [IPM]), and plants that experienced unlimited aphid population growth (unlimited). The population growth rate of aphids in the unlimited treatment for the 10 d after the application of insecticides to the IPM treatment was calculated using linear regression. The linear equation was solved to determine the mean number of days between the ET and the EIL for an aphid population in absence of predators. The number of days was determined to be 6.97 +/- 1.11 d. The 2-yr average yield for the IPM treatment was 99.93% of the control treatment. Our study suggests the current soybean aphid ET of 250 aphids per plant can effectively protect yield even if the impact of natural enemies is reduced.  相似文献   

13.
自然天敌对苗蚜和伏蚜控制作用的定量分析   总被引:1,自引:0,他引:1  
【目的】为了合理利用自然天敌,定量评价棉田自然天敌对苗蚜和伏蚜的控制作用。【方法】采用接虫罩笼法结合系统调查。【结果】发现苗蚜的主要自然天敌是龟纹瓢虫Propylaea japonica Thunberg和异色瓢虫Harmonia axyridis Pallas,大部分时间能够有效的控制苗蚜种群在防治指标以下,控害指数高达91%;伏蚜主要自然天敌是蜘蛛、草蛉和龟纹瓢虫,由于其种群数量太少,益害比低,对伏蚜控害指数始终低于20%,无法有效的控制伏蚜种群。【结论】结果提示,应根据苗蚜和伏蚜自然天敌控制作用不同,制定合理的保护利用自然天敌的策略。  相似文献   

14.
Generalist predators are often used in biological control programs, although they can be detrimental for pest control through interference with other natural enemies. Here, we assess the effects of generalist natural enemies on the control of two major pest species in sweet pepper: the green peach aphid Myzus persicae (Sulzer) and the western flower thrips Frankliniella occidentalis (Pergande). In greenhouses, two commonly used specialist natural enemies of aphids, the parasitoid Aphidius colemani Viereck and the predatory midge Aphidoletes aphidimyza (Rondani), were released together with either Neoseiulus cucumeris Oudemans, a predator of thrips and a hyperpredator of A. aphidimyza, or Orius majusculus (Reuter), a predator of thrips and aphids and intraguild predator of both specialist natural enemies. The combined use of O. majusculus, predatory midges and parasitoids clearly enhanced the suppression of aphids and consequently decreased the number of honeydew-contaminated fruits. Although intraguild predation by O. majusculus on predatory midges and parasitoids will have affected control of aphids negatively, this was apparently offset by the consumption of aphids by O. majusculus. In contrast, the hyperpredator N. cucumeris does not prey upon aphids, but seemed to release aphids from control by consuming eggs of the midge. Both N. cucumeris and O. majusculus did not affect rates of aphid parasitism by A. colemani. Thrips were also controlled effectively by O. majusculus. A laboratory experiment showed that adult predatory bugs feed on thrips as well as aphids and have no clear preference. Thus, the presence of thrips probably promoted the establishment of the predatory bugs and thereby the control of aphids. Our study shows that intraguild predation, which is potentially negative for biological control, may be more than compensated by positive effects of generalist predators, such as the control of multiple pests, and the establishment of natural enemies prior to pest invasions. Future work on biological control should focus on the impact of species interactions in communities of herbivorous arthropods and their enemies.  相似文献   

15.
Conservation biological control and enemy diversity on a landscape scale   总被引:8,自引:1,他引:7  
Conservation biological control in agroecosystems requires a landscape management perspective, because most arthropod species experience their habitat at spatial scales beyond the plot level, and there is spillover of natural enemies across the crop–noncrop interface. The species pool in the surrounding landscape and the distance of crop from natural habitat are important for the conservation of enemy diversity and, in particular, the conservation of poorly-dispersing and specialized enemies. Hence, structurally complex landscapes with high habitat connectivity may enhance the probability of pest regulation. In contrast, generalist and highly vagile enemies may even profit from the high primary productivity of crops at a landscape scale and their abundance may partly compensate for losses in enemy diversity. Conservation biological control also needs a multitrophic perspective. For example, entomopathogenic fungi, plant pathogens and endophytes as well as below- and above-ground microorganisms are known to influence pest-enemy interactions in ways that vary across spatiotemporal scales. Enemy distribution in agricultural landscapes is determined by beta diversity among patches. The diversity needed for conservation biological control may occur where patch heterogeneity at larger spatial scales is high. However, enemy communities in managed systems are more similar across space and time than those in natural systems, emphasizing the importance of natural habitat for a spillover of diverse enemies. According to the insurance hypothesis, species richness can buffer against spatiotemporal disturbances, thereby insuring functioning in changing environments. Seemingly redundant enemy species may become important under global change. Complex landscapes characterized by highly connected crop–noncrop mosaics may be best for long-term conservation biological control and sustainable crop production, but experimental evidence for detailed recommendations to design the composition and configuration of agricultural landscapes that maintain a diversity of generalist and specialist natural enemies is still needed.  相似文献   

16.
The landscape context of cereal aphid-parasitoid interactions   总被引:10,自引:0,他引:10  
Analyses at multiple spatial scales may show how important ecosystem services such as biological control are determined by processes acting on the landscape scale. We examined cereal aphid-parasitoid interactions in wheat fields in agricultural landscapes differing in structural complexity (32-100% arable land). Complex landscapes were associated with increased aphid mortality resulting from parasitism, but also with higher aphid colonization, thereby counterbalancing possible biological control by parasitoids and lastly resulting in similar aphid densities across landscapes. Thus, undisturbed perennial habitats appeared to enhance both pests and natural enemies. Analyses at multiple spatial scales (landscape sectors of 0.5-6 km diameter) showed that correlations between parasitism and percentage of arable land were significant at scales of 0.5-2 km, whereas aphid densities responded to percentage of arable land at scales of 1-6 km diameter. Hence, the higher trophic level populations appeared to be determined by smaller landscape sectors owing to dispersal limitation, showing the 'functional spatial scale' for species-specific landscape management.  相似文献   

17.
Population dynamics of pest insect-natural enemy systems on annual crops is quite different from those seen in classic biological control programes. On an annual crop, for example, the persistence of populations of pest insects is forced to terminate when crops are harvested. Pest control on annual crops aims to suppress the maximum density of the pest below a certain level, and a low level equilibrium is not always the aim. It is important to determine the initial impact just after release of a natural enemy in order to determine the success of a biological control program. Therefore, effectiveness of natural enemies should be evaluated by prediction of such short-term population dynamics. This paper presents a new and simple analytical model for successful biological control on annual crops. A criterion of successful biological control is given as the ratio of the pest and natural enemy populations just when the pest begins to decrease. This ratio is derived from the intrinsic rates of natural increase of both populations and the daily total predation by natural enemies. Using this model, criteria on appropriate number and time of release of natural enemies are obtained. The practical applications of this model are discussed with respect to evaluating the success or failure of natural enemy releases in future biological control programs.  相似文献   

18.
Insect natural enemies (predators and parasitoids) provide important ecosystem services by suppressing populations of insect pests in many agricultural crops. However, the role of natural enemies against cereal aphids in Michigan winter wheat (Triticum aestivum L.) is largely unknown. The objectives of this research were to characterize the natural enemy community in wheat fields and evaluate the role of different natural enemy foraging guilds (foliar-foraging versus ground-dwelling predators) in regulating cereal aphid population growth. We investigated these objectives during the spring and summer of 2012 and 2013 in four winter wheat fields on the Michigan State University campus farm in East Lansing, Michigan. We monitored and measured the impact of natural enemies by experimentally excluding or allowing their access to wheat plants infested with Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Hemiptera: Aphidae). Our results indicate that the natural enemy community in the wheat fields consisted mostly of foliar-foraging and ground-dwelling predators with relatively few parasitoids. In combination, these natural enemy groups were very effective at reducing cereal aphid populations. We also investigated the role of each natural enemy foraging guild (foliar-foraging versus ground-dwelling predators) independently. Overall, our results suggest that, in combination, natural enemies can almost completely halt early-season aphid population increase. Independently, ground-dwelling predators were more effective at suppressing cereal aphid populations than foliar-foraging predators under the conditions we studied. Our results differ from studies in Europe and the US Great Plains where foliar foraging predators and parasitoids are frequently more important cereal aphid natural enemies.  相似文献   

19.
Within-crop habitat manipulations have the potential to increase the biological control of pests in horticultural field crops. Wildflower strips have been shown to increase the abundance of natural enemies, but there is little evidence to date of an impact on pest populations. The aim of this study was to determine whether within-crop wildflower strips can increase the natural regulation of pests in horticultural field crops. Aphid numbers in plots of lettuce grown adjacent to wildflower strips were compared with those in plots grown in the absence of wildflowers. The presence of wildflower strips led to a decrease in aphid numbers on adjacent lettuce plants during June and July, but had less impact in August and September. The decrease in aphid numbers was greatest close to the wildflower strips and, the decrease in aphid numbers declined with increasing distance from the wildflower strips, with little effect at a distance of ten metres. The main natural enemies found in the crop were those that dispersed aerially, which is consistent with data from previous studies on cereal crops. Analysis and interpretation of natural enemy numbers was difficult due to low recovery of natural enemies, and the numbers appeared to follow changes in aphid abundance rather than being directly linked to the presence of wildflower strips. Cutting the wildflower strips, to remove floral resources, had no impact on the reduction in aphid numbers achieved during June and July, but decreased the effect of the wildflower strips during August and September. The results suggest that wildflower strips can lead to increased natural regulation of pest aphids in outdoor lettuce crops, but more research is required to determine how this is mediated by natural enemies and how the impact of wildflower strips on natural pest regulation changes during the growing season.  相似文献   

20.
Zoophytophagous predators of the family Miridae (Heteroptera), which feed both on plant and prey, often maintain a close relationship with certain host plants. In this study, we aimed to select a suitable mirid predatory bug for aphid control in sweet pepper. Four species were compared: Macrolophus pygmaeus (Rambur), Dicyphus errans (Wolff), Dicyphus tamaninii Wagner and Deraeocoris pallens (Reuter). They were assessed on their establishment on sweet pepper plants with and without supplemental food (eggs of the flour moth Ephestia kuehniella Zeller and decapsulated cysts of the brine shrimp Artemia franciscana Kellogg) and on their effects on aphids with releases before and after aphid infestations. None of the predator species was able to control an established population of aphids on sweet pepper plants; however, the predators M. pygmaeus and D. tamaninii could successfully reduce aphid populations when released prior to an artificially introduced aphid infestation. The best results were achieved with M. pygmaeus in combination with a weekly application of supplemental food. Hence, our results demonstrate that the order and level of plant colonization by mirid predators and aphids determines how successful biological control is. Further studies are needed to evaluate the performance of mirid predatory bugs in sweet pepper crops in commercial greenhouses with multiple pests and natural enemies, in particular to understand how increased variation in food sources affects their feeding behaviour and preferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号