共查询到20条相似文献,搜索用时 0 毫秒
1.
Yu-Chen Yang Xiao-Dong WangKai Huang Lu WangZong-Lai Jiang Ying-Xin Qi 《Journal of biomechanics》2014
Vascular smooth muscle cells (VSMCs) are exposed to mechanical cyclic stretch in vivo, which play important roles in maintenance of vascular homeostasis and regulation of pathological vascular remodeling. Reversible protein phosphorylation is crucial for intracellular signaling transduction. However, the dynamic phosphorylated profile induced by cyclic stretch in VSMCs is still unclear. Using the stable isotope labeling by amino acid in cell culture, VSMCs were labeled and exposed to 10% physiological cyclic stretch in vitro at 1.25 Hz for 0 min, 15 min, 30 min, 1 h and 6 h, respectively. Using TiO2 beads and liquid chromatography tandem mass spectrometry, the temporal phosphoproteomic profiles in response to cyclic stretch were then detected. Bioinformatics analysis including fuzzy c-means clustering, functional classifications, and Ingenuity Pathway Analysis were applied to further reveal the potential mechanotranduction networks. The results indicated that protein kinase C (PKCs) family, Rho-associated coiled-coil containing protein kinase 1 (ROCK1) and Akt may participate in cyclic-stretch induced VSMC functions. Cyclic stretch repressed the expression of ROCK1, while it had no significant effect on the phosphorylation of PKCα/βII, PKCζ/λ and PKCδ/θ. PKCθ was activated first at short time-phase (15 min and 30 min), and again at long time-phase (6 h, 12 h and 24 h). The activation of p-PKCμ was immediate and short-term, similar to p-Akt. Our present in vitro work hence revealed that cyclic stretch activates complex mechanotransduction networks, suggesting that novel mechanoresponsive molecules, i.e., PKCθ, PKCμ, and ROCK1, may participate in the mechanotransduction and modulation VSMC functions. 相似文献
2.
Liu G Hitomi H Hosomi N Lei B Nakano D Deguchi K Mori H Masaki T Ma H Griendling KK Nishiyama A 《Experimental cell research》2011,(17):2420-2428
Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. 相似文献
3.
Background
The expression of myocardin, a cardiac-restricted gene, increases during environmental stress. How mechanical stretch affects the regulation of myocardin in vascular smooth muscle cells (VSMCs) is not fully understood. We identify the mechanisms and pathways through which mechanical stretch induces myocardin expression in VSMCs.Results
Rat VSMCs grown on a flexible membrane base were stretched to 20% of maximum elongation, at 60 cycles per min. An in vivo model of aorta-caval shunt in adult rats was also used to investigate myocardin expression. Cyclic stretch significantly increased myocardin and angiotensin II (AngII) expression after 18 and 6 h of stretch. Addition of extracellular signal-regulated kinases (ERK) pathway inhibitor (PD98059), ERK small interfering RNA (siRNA), and AngII receptor blocker (ARB; losartan) before stretch inhibited the expression of myocardin protein. Gel shift assay showed that myocardin-DNA binding activity increased after stretch. PD98059, ERK siRNA and ARB abolished the binding activity induced by stretch. Stretch increased while myocardin-mutant plasmid, PD98059, and ARB abolished the promoter activity. Protein synthesis by measuring [3H]proline incorporation into the cells increased after cyclic stretch, which represented hypertrophic change of VSMCs. An in vivo model of aorta-caval shunt also demonstrated increased myocardin protein expression in the aorta. Confocal microscopy showed increased VSMC size 24 h after cyclic stretch and VSMC hypertrophy after creation of aorta-caval shunt for 3 days.Conclusions
Cyclic stretch enhanced myocardin expression mediated by AngII through the ERK pathway in cultured rat VSMCs. These findings suggest that myocardin plays a role in stretch-induced VSMC hypertrophy. 相似文献4.
目的:探讨钙离子拮抗剂拉西地平对高温高湿应激大鼠血管平滑肌细胞内内质网应激相关因子葡萄糖调节蛋白78(glucose-regulated protein of 78kD,GRP78)和C/EBP环磷酸腺苷反应元件结合转录因子同源蛋白(CAAT/enhancer binding protein homologous protein,CHOP)表达的影响。方法:将60只雄性SD大鼠随机分为对照组、高温高湿组、拉西地平组,每组20只。按实验时间(2w、4w、6w、8w)的不同,各组又分为4个亚组,每个亚组5只大鼠。用颈动脉插管法测定各组大鼠的平均动脉压(MAP);用免疫组织化学法检测GRP78和CHOP的表达水平。结果:①高温高湿各组的MAP随着实验时间的延长呈逐渐递增的趋势,高温高湿4w、6w、8w亚组的MAP均显著高于相应的对照组和拉西地平组(P〈0.05)。②随着实验时间的延长,高温高湿组GRP78表达量不断增加,6w达到最大值,8w表达减弱。高温高湿4w、6w、8w亚组GRP78表达量均高于相应对照组和拉西地平组,有显著性差异(P〈0.05)。③高温高湿组2w、4w、6w、8w亚组CHOP表达量组间比较有显著性差异(P〈0.05),8w亚组表达达到最高值;高温高湿组6w、8w亚组与相应对照组和拉西地平组比较有显著性差异(P〈0.05)。结论:高温高湿应激可引起血管平滑肌细胞内质网应激反应,导致GRP78表达及CHOP表达的不对称增加,提示高温高湿应激可引起血管平滑肌细胞的损害;拉西地平可以减轻内质网应激,逆转高温高湿应激所致的血管平滑肌细胞的损伤作用,对血管平滑肌细胞有保护作用。 相似文献
5.
6.
Michael Schoppet Mary M. Kavurma Lorenz C. Hofbauer Catherine M. Shanahan 《Biochemical and biophysical research communications》2011,(1):741
Osteoprotegerin (OPG), a member of the TNF receptor superfamily, was initially found to modulate bone mass by blocking osteoclast maturation and function. Rodent models have also revealed a role for OPG as an inhibitor of vascular calcification. However, the precise mode of how OPG blocks mineralization is unclear. In this study, OPG was found in an in vitro assay to significantly inhibit calcification of vascular smooth muscle cells (VSMC) induced by high calcium/phosphate (Ca/P) treatment (p = 0.0063), although this effect was blunted at high OPG concentrations. By confocal microscopy, OPG was detected in VSMC in the Golgi, the same localization seen in osteoblasts, which express OPG in bone. Treatment of VSMC by minerals (Ca, P, or both) induced OPG mRNA expression as assessed by real-time quantitative PCR, and VSMC derived from atherosclerotic plaque material also exhibited higher OPG expression as compared to control cells (p < 0.05). Furthermore, OPG was detected by Western blotting in matrix vesicles (MV), nanoparticles that are released by VSMC with the capacity to nucleate mineral. In atherosclerotic arteries, OPG colocalized immunohistochemically with annexin VI, a calcium-dependent membrane and phospholipid binding protein found in MV. Thus, the calcification inhibitor OPG is contained in crystallizing MV and has a biphasic effect on VSMC: physiologic concentrations inhibit calcification, whereas high concentrations commonly seen in patients with vascular disease have no effect. Like other calcification inhibitors, OPG may be specifically loaded into these nanoparticles to be deposited at remote sites, where it acts to inhibit calcification. 相似文献
7.
Samane Ghazanfari Mohammad Tafazzoli-Shadpour Mohammad Ali Shokrgozar 《Biochemical and biophysical research communications》2009,388(3):601-841
Bone marrow mesenchymal stem cells (MSCs) are capable of differentiating into a variety of cell types such as vascular smooth muscle cells (SMCs). In this study, we investigated influence of cyclic stretch on proliferation of hMSCs for different loading conditions, alignment of actin filaments, and consequent differentiation to SMCs. Isolated cells from bone marrow were exposed to cyclic stretch utilizing a customized device. Cell proliferation was examined by MTT assay, alignment of actin fibers by a designed image processing code, and cell differentiation by fluorescence staining. Results indicated promoted proliferation of hMSCs by cyclic strain, enhanced by elevated strain amplitude and number of cycles. Such loading regulated smooth muscle α-actin, and reoriented actin fibers. Cyclic stretch led to differentiation of hMSCs to SMCs without addition of growth factor. It was concluded that applying appropriate loading treatment on hMSCs could enhance proliferation capability, and produce functional SMCs for engineered tissues. 相似文献
8.
9.
Jun-Kun Zhan Yan-Jiao WangYi Wang Zhi-Yong TangPan Tan Wu HuangYou-Shuo Liu 《Experimental cell research》2014
Vascular calcification is common in patients with peripheral artery diseases and coronary artery diseases. The osteoblastic differentiation of vascular smooth muscle cells (VSMCs) contributes significantly to vascular calcification. Adiponectin has been demonstrated to exert a protective effect in osteoblastic differentiation of VSMCs through regulating mTOR activity. However, the upstream and downstream signaling molecules of adiponectin-regulated mTOR signaling have not been identified in VSMCs with osteoblastic differentiation. In this study, the VSMC differentiation model was established by beta-glycerophosphate (β-GP) induction. The mineralization was identified by Alizarin Red S staining. Protein expression and phosphorylation were detected by Western blot or immunofluorescence. Adiponectin attenuated osteoblastic differentiation and mineralization of β-GP-treated VSMCs. Adiponectin inhibited osteoblastic differentiation of VSMCs through increasing the level of p-AMPKα. Pretreatment of VSMCs with AMPK inhibitor blocked while AMPK activator enhanced the effect of adiponectin on osteoblastic differentiation of VSMCs. Adiponectin upregulated TSC2 expression and downregulated mTOR and S6K1 phosphorylation in β-GP-treated VSMCs. Adiponectin treatment significantly attenuates the osteoblastic differentiation and calcification of VSMCs through modulation of AMPK–TSC2–mTOR–S6K1 signal pathway. 相似文献
10.
Apenberg S Freyberg MA Friedl P 《Biochemical and biophysical research communications》2003,312(2):355-359
Differentiated melanocytic cells produce melanin, through several redox reactions including tyrosinase-catalyzed DOPA oxidation to DOPA quinone. We now developed a method based on DOPA oxidase in-gel detection and Sypro Ruby fluorometric normalization to investigate induction of specific DOPA oxidase isoforms in response to hydrogen peroxide-mediated stress, and to ask whether this is associated with p53-dependent adaptive responses. This report shows that hydrogen peroxide leads to comparable induction of 60 and 55 kDa DOPA oxidases in poorly pigmented B16 melanoma, in contrast to sole induction of a major 55 kDa DOPA oxidase in their highly pigmented counterparts. In the latter cells, this response also increases p53 concomitant with joint induction of p53-activated proteins like the cell-cycle inhibitor p21WAF1 and pro-apoptotic bax, with no comparable effect on expression of anti-apoptotic bcl-2. Together, these data suggest that response to hydrogen peroxide involves p53-mediated growth-restrictive signaling and unequal induction of specific DOPA oxidases in melanocytic cells with unequal basal pigmentation. 相似文献
11.
Vascular smooth muscle cells (VSMCs) may switch their phenotype between a quiescent contractile phenotype and a synthetic phenotype in response to cyclic strain, and this switch may contribute to hypertension, atherosclerosis, and restenosis. SIRT 6 is a member of the sirtuin family, and plays an important role in different cell processes, including differentiation. We hypothesized that cyclic strain modulates the differentiation of VSMCs via a transforming growth factor-β1 (TGF-β1)-Smad-SIRT6 pathway. VSMCs were subjected to cyclic strain using a Flexercell strain unit. It was demonstrated that the strain stimulated the secretion of TGF-β1 into the supernatant of VSMCs. After exposed to the strain, the expressions of contractile phenotype markers, including smooth muscle protein 22 alpha, alpha-actin, and calponin, and phosphorylated Smad2, phosphorylated Smad5, SIRT6 and c-fos were up-regulated in VSMCs by western blot and immunofluorescence. And the expression of intercellular-adhesion molecule-1 (ICAM-1) was also increased detected by flow cytometry. The strained-induced up-regulation of SIRT6 was blocked by a TGF-β1 neutralizing antibody. Furthermore, the effects of strain on VSMCs were abrogated by SIRT6-specific siRNA transfection via the suppression c-fos and ICAM-1. These results suggest that SIRT6 may play a critical role in the regulation of VSMC differentiation in response to the cyclic strain. 相似文献
12.
13.
Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells 总被引:12,自引:0,他引:12
Adipose tissue-derived stromal cells (ADSC) have previously been shown to possess stem cell properties such as transdifferentiation and self-renewal. Because future clinical applications are likely to use these adult stem cells in an autologous fashion, we wished to establish and characterize rat ADSC for pre-clinical tests. In the present study, we showed that rat ADSC expressed stem cell markers CD34 and STRO-1 at passage 1 but only STRO-1 at passage 3. These cells could also be induced to differentiate into adipocytes, smooth muscle cells, and neuron-like cells, the latter of which expressed neuronal markers S100, nestin, and NF70. Isobutylmethylxanthine (IBMX), indomethacin (INDO), and insulin were the active ingredients in a previously established neural induction medium (NIM); however, here we showed that IBMX alone was as effective as NIM in the induction of morphological changes as well as neuronal marker expression. Finally, we showed that vascular smooth muscle cells could also be induced by either NIM or IBMX to differentiate into neuron-like cells that expressed NF70. 相似文献
14.
Androgenic hormones are associated with atherosclerotic cardiovascular disease, although the underlying cellular and molecular mechanisms remain unclear. This study examines the impact of androgens on the physiology of human vascular endothelial cells (EC) and smooth muscle cells (SMC) in culture. Cells were incubated with testosterone, dihydrotestosterone (DHT) or dehydroepiandrosterone (DHEA) at various physiological concentrations (5-50 nM) in the present or absence of an androgen receptor (AR) blocker flutamide (100 nM). Cell growth and death, DNA and collagen synthesis, and gene protein expression were assessed. It was shown that: (1) DHEA protected EC from superoxide injury via AR-independent mechanisms; (2) testosterone induced DNA synthesis and growth in EC via an AR-independent manner with activation of ERK1/2 activity; (3) DHT inhibited DNA synthesis and growth in EC in an AR-dependent manner; (4) testosterone and DHT enhanced ERK1/2 activation and proliferation in SMC via AR-independent and -dependent pathways, respectively; and (5) these androgens did not significantly affect collagen synthesis in SMC. We conclude that androgens possess multiple effects on vascular cells via either AR-dependent or -independent mechanisms. Testosterone and DHEA may be “beneficial” in preventing atherosclerosis by improving EC growth and survival; in contrast, stimulation of VSMC proliferation by testosterone and DHT is potentially “harmful”. The relationship of these in vitro effects by androgens to in vivo vascular function and atherogenesis needs to be further clarified. 相似文献
15.
16.
ERK5 is involved in proliferation of vascular smooth muscle cells (VSMC). The proliferative actions of insulin and angiotensin-II (A-II) in VSMC are mediated in part by ERK1/2. We hypothesized that insulin and A-II also regulate ERK5 activity in VSMC. Acute treatment (<60min) with insulin or A-II increased phosphorylation of ERK1/2 at 15min and ERK5 at 5min. Chronic treatment (< or = 8h) with insulin increased ERK1/2 phosphorylation by 4h and ERK5 by 8h. A-II-stimulated phosphorylation of ERK1/2 by 8h and ERK5 by 4h. The EC(50) for insulin treatment effecting ERK1/2 and ERK5 phosphorylation was 1.5 and 0.1nM, whereas the EC(50) for A-II was 2nM, each. Insulin plus A-II induced an additive effect only on ERK5 phosphorylation. Inhibition of insulin- and A-II-stimulated phosphorylation of ERK5 and ERK1/2 by PD98059 and Wortmannin exhibited differential and time-dependent effects. Taken together, these data indicate that insulin and A-II regulate the activity of ERK5, but different from that seen for ERK1/2. 相似文献
17.
Wada H Abe M Ono K Morimoto T Kawamura T Takaya T Satoh N Fujita M Kita T Shimatsu A Hasegawa K 《Biochemical and biophysical research communications》2008,374(4):731-736
The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 μM of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-α-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 μM), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs. 相似文献
18.
Muneera R. Kapadia Jason W. Eng Qun Jiang Detcho A. Stoyanovsky Melina R. Kibbe 《Nitric oxide》2009,20(4):279-288
It is well established that nitric oxide (NO) inhibits vascular smooth muscle cell (VSMC) proliferation by modulating cell cycle proteins. The 26S proteasome is integral to protein degradation and tightly regulates cell cycle proteins. Therefore, we hypothesized that NO directly inhibits the activity of the 26S proteasome. The three enzymatic activities (chymotrypsin-like, trypsin-like and caspase-like) of the 26S proteasome were examined in VSMC. At baseline, caspase-like activity was approximately 3.5-fold greater than chymotrypsin- and trypsin-like activities. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) significantly inhibited all three catalytically active sites in a time- and concentration-dependent manner (P < 0.05). Caspase-like activity was inhibited to a greater degree (77.2% P < 0.05). cGMP and cAMP analogs and inhibitors had no statistically significant effect on basal or NO-mediated inhibition of proteasome activity. Dithiothreitol, a reducing agent, prevented and reversed the NO-mediated inhibition of the 26S proteasome. Nitroso-cysteine analysis following S-nitrosoglutathione exposure revealed that the 20S catalytic core of the 26S proteasome contains 10 cysteines which were S-nitrosylated by NO. Evaluation of 26S proteasome subunit protein expression revealed differential regulation of the α and β subunits in VSMC following exposure to NO. Finally, immunohistochemical analysis of subunit expression revealed distinct intracellular localization of the 26S proteasomal subunits at baseline and confirmed upregulation of distinct subunits following NO exposure. In conclusion, NO reversibly inhibits the catalytic activity of the 26S proteasome through S-nitrosylation and differentially regulates proteasomal subunit expression. This may be one mechanism by which NO exerts its effects on the cell cycle and inhibits cellular proliferation in the vasculature. 相似文献
19.
Yaling Han Jifu Cui Liang Guo Mingyu Sun Xiaolin Zhang Shaohua Li 《Experimental cell research》2009,315(19):3301-530
We previously determined that the cellular repressor of E1A-stimulated genes, (CREG) plays a role in the maintenance of the mature phenotype of vascular smooth muscle cells (SMCs). This study aimed to identify the role of CREG in modulating the migration of SMCs. Recombinant virus-mediated CREG expression inhibited the cellular migration of cultured SMCs associated with down-regulated activity of matrix metalloproteinase-9 (MMP-9). In contrast, CREG knockdown via the retroviral transfer of short hairpin RNAs promoted cellular migration. Enzyme-linked immunosorbent assay and endocytosis analysis revealed that CREG knockdown attenuated the internalization and increased secretion of insulin-like growth factor (IGF)-II. Western blot analysis demonstrated that both phosphoinositide 3-kinase (PI3K) and phosphatase Akt were enhanced in CREG knockdown SMCs. Furthermore, the effect of CREG knockdown on SMC migration was abrogated in a dose-dependent manner by the addition of either IGF-II neutralizing antibody or the PI3K inhibitor, LY294002. These results indicate that the CREG knockdown-mediated increase in IGF-II secretion promoted cellular migration in SMCs via the PI3K/Akt signal pathway. Additionally, blockage of IGF-II binding to the mannose-6-phosphate/IGF-II receptor (M6P/IGF2R) by IGF2R antibody or recombinant IGF2R fragment attenuated the endocytosis of IGF-II in cells overexpressing CREG. This indicates that M6P/IGF2R is involved in the regulation of CREG-mediated IGF-II endocytosis. In summary, these data demonstrate for the first time that CREG plays a critical role in the inhibition of SMC migration, as well as maintaining SMCs in a mature phenotype. These results may provide a new therapeutic target for vascular disease associated with neointimal hyperplasia. 相似文献
20.
UV-C照射诱导体外血管平滑肌细胞凋亡模型的建立 总被引:3,自引:0,他引:3
应用常规细胞培养超净台紫外消毒灯(220W,220V,50Hz)发射的UV-C波段的紫外光源(254nm),垂直照射距离其10cm处的大鼠主动脉平滑肌细胞,发现经照射后细胞出现典型的凋亡形态学改变,如细胞变圆,染色质浓缩,细胞膜出泡,出现凋亡小体等;细胞面积,核面积及核/胞面积比均显著降低;且提取细胞DNA的琼脂糖凝胶电泳呈现梯状图谱。从形态学和生化指标方面证明了UV-C照射可诱导体外血管SMCs 相似文献