首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Axons follow highly stereotyped and reproducible trajectories to their targets. In this review we address the properties of the first pioneer neurons to grow in the developing nervous system and what has been learned over the past several decades about the extracellular and cell surface substrata on which axons grow. We then discuss the types of guidance cues and their receptors that influence axon extension, what determines where cues are expressed, and how axons respond to the cues they encounter in their environment.This article provides an overview of how growth cones respond to the cellular substrata and molecular cues they encounter as they extend through the developing nervous system. It elaborates on the primer by Kolodkin and Tessier-Lavigne (2010) and touches on many of the topics covered in greater detail in the articles that follow. The first sections describe how axons extend in a directed manner, the substrata on which they grow, interactions between pioneer and follower axons, and growth cone behaviors in emerging tracts and at decision points. The subsequent sections discuss examples of specific cues, their distributions, how their distributions are determined, and how growth cones integrate multiple cues during pathfinding.  相似文献   

2.
EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin   总被引:1,自引:0,他引:1  
Neuronal network formation in the developing nervous system is dependent on the accurate navigation of nerve cell axons and dendrites, which is controlled by attractive and repulsive guidance cues. Ephrins and their cognate Eph receptors mediate many repulsive axonal guidance decisions by intercellular interactions resulting in growth cone collapse and axon retraction of the Eph-presenting neuron. We show that the Rac-specific GTPase-activating protein alpha2-chimaerin binds activated EphA4 and mediates EphA4-triggered axonal growth cone collapse. alpha-Chimaerin mutant mice display a phenotype similar to that of EphA4 mutant mice, including aberrant midline axon guidance and defective spinal cord central pattern generator activity. Our results reveal an alpha-chimaerin-dependent signaling pathway downstream of EphA4, which is essential for axon guidance decisions and neuronal circuit formation in vivo.  相似文献   

3.
The name netrin is derived from the Sanskrit Netr, meaning ''guide''. Netrins are a family of extracellular proteins that direct cell and axon migration during embryogenesis. Three secreted netrins (netrins 1, 3 and 4), and two glycosylphosphatidylinositol (GPI)-anchored membrane proteins, netrins G1 and G2, have been identified in mammals. The secreted netrins are bifunctional, acting as attractants for some cell types and repellents for others. Receptors for the secreted netrins include the Deleted in Colorectal Cancer (DCC) family, the Down''s syndrome cell adhesion molecule (DSCAM), and the UNC-5 homolog family: Unc5A, B, C and D in mammals. Netrin Gs do not appear to interact with these receptors, but regulate synaptic interactions between neurons by binding to the transmembrane netrin G ligands NGL1 and 2. The chemotropic function of secreted netrins has been best characterized with regard to axon guidance during the development of the nervous system. Extending axons are tipped by a flattened, membranous structure called the growth cone. Multiple extracellular guidance cues direct axonal growth cones to their ultimate targets where synapses form. Such cues can be locally derived (short-range), or can be secreted diffusible cues that allow target cells to signal axons from a distance (long-range). The secreted netrins function as short-range and long-range guidance cues in different circumstances. In addition to directing cell migration, functional roles for netrins have been identified in the regulation of cell adhesion, the maturation of cell morphology, cell survival and tumorigenesis.  相似文献   

4.
During development, axons must integrate directional information encoded by multiple guidance cues and their receptors. Axon guidance receptors, such as UNC-40 (DCC) and SAX-3 (Robo), can function individually or combinatorially with other guidance receptors to regulate downstream effectors. However, little is known about the molecular mechanisms that mediate combinatorial guidance receptor signaling. Here, we show that UNC-40, SAX-3 and the SYD-1 RhoGAP-like protein function interdependently to regulate the MIG-2 (Rac) GTPase in the HSN axon of C. elegans. We find that SYD-1 mediates an UNC-6 (netrin) independent UNC-40 activity to promote ventral axon guidance. Genetic analysis suggests that SYD-1 function in axon guidance requires both UNC-40 and SAX-3 activity. Moreover, the cytoplasmic domains of UNC-40 and SAX-3 bind to SYD-1 and SYD-1 binds to and negatively regulates the MIG-2 (Rac) GTPase. We also find that the function of SYD-1 in axon guidance is mediated by its phylogenetically conserved C isoform, indicating that the role of SYD-1 in guidance is distinct from its previously described roles in synaptogenesis and axonal specification. Our observations reveal a molecular mechanism that can allow two guidance receptors to function interdependently to regulate a common downstream effector, providing a potential means for the integration of guidance signals.  相似文献   

5.
Axon pathfinding relies on cellular signaling mediated by growth cone receptor proteins responding to ligands, or guidance cues, in the environment. Eph proteins are a family of receptor tyrosine kinases that govern axon pathway development, including retinal axon projections to CNS targets. Recent examination of EphB mutant mice, however, has shown that axon pathfinding within the retina to the optic disc is dependent on EphB receptors, but independent of their kinase activity. Here we show a function for EphB1, B2 and B3 receptor extracellular domains (ECDs) in inhibiting mouse retinal axons when presented either as substratum-bound proteins or as soluble proteins directly applied to growth cones via micropipettes. In substratum choice assays, retinal axons tended to avoid EphB-ECDs, while time-lapse microscopy showed that exposure to soluble EphB-ECD led to growth cone collapse or other inhibitory responses. These results demonstrate that, in addition to the conventional role of Eph proteins signaling as receptors, EphB receptor ECDs can also function in the opposite role as guidance cues to alter axon behavior. Furthermore, the data support a model in which dorsal retinal ganglion cell axons heading to the optic disc encounter a gradient of inhibitory EphB proteins which helps maintain tight axon fasciculation and prevents aberrant axon growth into ventral retina. In conclusion, development of neuronal connectivity may involve the combined activity of Eph proteins serving as guidance receptors and as axon guidance cues.  相似文献   

6.
7.
Semaphorins are developmental axon guidance cues that continue to be expressed during adulthood and are regulated by neural injury. During the formation of the nervous system, repulsive semaphorins guide axons to their targets by restricting and channelling their growth. They affect the growth cone cytoskeleton through interactions with receptor complexes that are linked to a complicated intracellular signal transduction network. Following injury, regenerating axons stop growing when they reach the border of the glial-fibrotic scar, in part because they encounter a potent molecular barrier that inhibits growth cone extension. A number of secreted semaphorins are expressed in the glial-fibrotic scar and at least one transmembrane semaphorin is upregulated in oligodendrocytes surrounding the lesion site. Semaphorin receptors, and many of the signal transduction components required for semaphorin signalling, are present in injured central nervous system neurons. Here, we review evidence that supports a critical role for semaphorin signalling in axon regeneration, and highlight a number of challenges that lie ahead with respect to advancing our understanding of semaphorin function in the normal and injured adult nervous system.  相似文献   

8.
How axons in the developing nervous system successfully navigate to their correct targets is a fundamental problem in neurobiology. Understanding the mechanisms that mediate axon guidance will give important insight into how the nervous system is correctly wired during development and may have implications for therapeutic approaches to developmental brain disorders and nerve regeneration. Achieving this understanding will require unraveling the molecular logic that ensures the proper expression and localization of axon guidance cues and receptors, and elucidating the signaling events that regulate the growth cone cytoskeleton in response to guidance receptor activation. Studies of axon guidance at the midline of many experimental systems, from the ventral midline of Drosophila to the vertebrate spinal cord, have led to important mechanistic insights into the complex problem of wiring the nervous system. Here we review recent advances in understanding the regulation of midline axon guidance, with a particular emphasis on the contributions made from molecular genetic studies of invertebrate model systems.  相似文献   

9.
In the developing nervous system, nerve cells and axons respond to various attractive and repulsive guidance cues while traveling to their final destination. Netrins are bifunctional guidance cues that attract several classes of axons but repel others. The response of an axon to netrins is dictated by the composition of netrin receptors on the cell surface and the internal state of the growth cone. Recent analyses have identified several signal transduction pathways that contribute to netrin-mediated guidance. A model emerges in which tyrosine phosphorylation, phosphatidylinositol signaling and regulation by Rho GTPases act in concert to trigger extension of axons and turning of growth cones in response to Netrin1.  相似文献   

10.
How axons in the developing nervous system successfully navigate to their correct targets is a fundamental problem in neurobiology. Understanding the mechanisms that mediate axon guidance will give important insight into how the nervous system is correctly wired during development and may have implications for therapeutic approaches to developmental brain disorders and nerve regeneration. Achieving this understanding will require unraveling the molecular logic that ensures the proper expression and localization of axon guidance cues and receptors, and elucidating the signaling events that regulate the growth cone cytoskeleton in response to guidance receptor activation. Studies of axon guidance at the midline of many experimental systems, from the ventral midline of Drosophila to the vertebrate spinal cord, have led to important mechanistic insights into the complex problem of wiring the nervous system. Here we review recent advances in understanding the regulation of midline axon guidance, with a particular emphasis on the contributions made from molecular genetic studies of invertebrate model systems.  相似文献   

11.
Guiding neuronal growth cones using Ca2+ signals   总被引:4,自引:0,他引:4  
Pathfinding by growing axons in the developing or regenerating nervous system is guided by gradients of molecular guidance cues. The neuronal growth cone, located at the ends of axons, uses surface receptors to sense these cues and to transduce guidance information to cellular machinery that mediates growth and turning responses. Cytoplasmic Ca2+ signals have key roles in regulating this motility. Global growth cone Ca2+ signals can regulate cytoskeletal elements and membrane dynamics to control elongation, whereas Ca2+ signals localized to one side of the growth cone can cause asymmetric activation of effector enzymes to steer the growth cone. Modulating Ca2+ levels in the growth cone might overcome inhibitory signals that normally prevent regeneration in the central nervous system.  相似文献   

12.
Guidance molecules present in both axonal and dendritic growth cones mediate neuronal responses to extracellular cues thereby ensuring correct neurite pathfinding and development of the nervous system. Little is known though about the mechanisms employed by neurons to deliver these receptors, specifically and efficiently, to the extending growth cone. A deeper understanding of this process is crucial if guidance receptors are to be manipulated to promote nervous system repair. Studies in other polarised cells, notably epithelial, have elucidated fundamental routes to the intracellular segregation of molecules mediated by endosomal pathways. Due to their extreme complexity and specialisation, neurons appear to have built upon these generic systems to evolve sophisticated trafficking networks. A striking feature is the axon initial segment which acts like a valve to tightly regulate the flux of molecules both entering and leaving the axon. Once in the growth cone, further controls operate to enhance the retention or rejection, as appropriate, of membrane receptors. We discuss the current state of knowledge regarding the intracellular trafficking of axon guidance receptors and how this relates to their developmental roles. We highlight the various facets still to be properly elucidated and by building on existing data regarding neuronal polarity and intracellular sorting mechanisms suggest ways to fill these gaps.  相似文献   

13.
In the developing embryo,nascent axons navigate towards their specific targets to establish the intricate network of axonal connections linking neurons within the mature nervous system.Molecular navigational systems comprising repulsive and attractive guidance cues form chemotactic gradients along the pathway of the exploring growth cone.Axon-bound receptors detect these gradients and determine the trajectory of the migrating growth cone.In contrast to their benevolent role in the developing nervous system,repulsive guidance receptors are detrimental to the axon’s ability to regenerate after injury in the adult.In this review we explore the essential and beneficial role played by the chemorepulsive Wnt receptor,Ryk/Derailed in axon navigation in the embryonic nervous system(the Yin function).Specifically,we focus on the role of Wnt5a/Rykmediated guidance in the establishment of two major axon tracts in the mammalian central nervous system,the corticospinal tract and the corpus callosum.Recent studies have also identified Ryk as a major suppressor of axonal regeneration after spinal cord injury.Thus,we also discuss this opposing aspect of Ryk function in axonal regeneration where its activity is a major impediment to axon regrowth(the Yang function).  相似文献   

14.
Regulation of growth cone actin dynamics by ADF/cofilin.   总被引:9,自引:0,他引:9  
Nervous system development is reliant on neuronal pathfinding, the process in which axons are guided to their target cells by specific extracellular cues. The ability of neurons to extend over long distances in response to environmental guidance signals is made possible by the growth cone, a highly motile structure found at the end of neuronal processes. Growth cones detect directional cues and respond with either attractive or repulsive movements. The motility of growth cones is dependent on rapid reorganization of the actin cytoskeleton, presumably mediated by actin-associated proteins under the control of incoming guidance signals. This article reviews how one such family of proteins, the ADF/cofilins, are emerging as key regulators of growth cone actin dynamics. These proteins are essential for rapid actin turnover in a variety of different cell types. ADF/cofilins are heavily co-localized with actin in growth cones and are necessary for neurite outgrowth. ADF/cofilin activities are regulated through reversible phosphorylation by LIM kinases and slingshot phosphatases. LIM kinases are downstream effectors of the Rho GTPases Rho, Rac, and Cdc42. Growing evidence suggests that extracellular guidance cues may locally alter actin dynamics by regulating the activity of LIM kinase and ADF/cofilin phosphatases via the Rho GTPases. In this way, ADF/cofilins and their upstream effectors may be pivotal to our understanding of how guidance information is translated into physical alterations of the growth cone actin cytoskeleton.  相似文献   

15.
The wiring of neuronal circuits requires complex mechanisms to guide axon subsets to their specific target with high precision. To overcome the limited number of guidance cues, modulation of axon responsiveness is crucial for specifying accurate trajectories. We report here a novel mechanism by which ligand/receptor co-expression in neurons modulates the integration of other guidance cues by the growth cone. Class 3 semaphorins (Sema3 semaphorins) are chemotropic guidance cues for various neuronal projections, among which are spinal motor axons navigating towards their peripheral target muscles. Intriguingly, Sema3 proteins are dynamically expressed, forming a code in motoneuron subpopulations, whereas their receptors, the neuropilins, are expressed in most of them. Targeted gain- and loss-of-function approaches in the chick neural tube were performed to enable selective manipulation of Sema3C expression in motoneurons. We show that motoneuronal Sema3C regulates the shared Sema3 neuropilin receptors Nrp1 and Nrp2 levels in opposite ways at the growth cone surface. This sets the respective responsiveness to exogenous Nrp1- and Nrp2-dependent Sema3A, Sema3F and Sema3C repellents. Moreover, in vivo analysis revealed a context where this modulation is essential. Motor axons innervating the forelimb muscles are exposed to combined expressions of semaphorins. We show first that the positioning of spinal nerves is highly stereotyped and second that it is compromised by alteration of motoneuronal Sema3C. Thus, the role of the motoneuronal Sema3 code could be to set population-specific axon sensitivity to limb-derived chemotropic Sema3 proteins, therefore specifying stereotyped motor nerve trajectories in their target field.  相似文献   

16.
Developing neurons use a combination of guidance cues to assemble a functional neural network. A variety of proteins immobilized within the extracellular matrix (ECM) provide specific binding sites for integrin receptors on neurons. Integrin receptors on growth cones associate with a number of cytosolic adaptor and signaling proteins that regulate cytoskeletal dynamics and cell adhesion. Recent evidence suggests that soluble growth factors and classic axon guidance cues may direct axon pathfinding by controlling integrin-based adhesion. Moreover, because classic axon guidance cues themselves are immobilized within the ECM and integrins modulate cellular responses to many axon guidance cues, interactions between activated receptors modulate cell signals and adhesion. Ultimately, growth cones control axon outgrowth and pathfinding behaviors by integrating distinct biochemical signals to promote the proper assembly of the nervous system. In this review, we discuss our current understanding how ECM proteins and their associated integrin receptors control neural network formation.  相似文献   

17.
One of the challenges to understanding nervous system development has been to establish how a fairly limited number of axon guidance cues can set up the patterning of very complex nervous systems. Studies on organisms with relatively simple nervous systems such as Drosophila melanogaster and C. elegans have provided many insights into axon guidance mechanisms. The axons of many neurons migrate along both the dorsal-ventral (DV) and the anterior-posterior (AP) axes at different phases of development, and in addition they may also cross the midline. Axon migration in the dorsal-ventral (DV) direction is mainly controlled by Netrins with their receptors; UNC-40/DCC and UNC-5, and the Slits with their receptors; Robo/SAX-3. Axon guidance in the anterior-posterior (AP) axis is mainly controlled by Wnts with their receptors; the Frizzleds/Fz. An individual axon may be subjected to opposing attractive and repulsive forces coming from opposite sides in the same axis but there may also be opposing cues in the other axis of migration. All the information from the cues has to be integrated within the growth cone at the leading edge of the migrating axon to elicit a response. Recent studies have provided insight into how this is achieved.Evidence suggests that the axis of axon migration is determined by the manner in which Netrin, Slit and Wnt receptors are polarized (localized) within the neuron prior to axon outgrowth. The same molecules are involved in both axon outgrowth and axon guidance, for at least some neurons in C. elegans, whether the cue is the attractive cue UNC-6/Netrin working though UNC-40/DCC or the repulsive cue SLT-1/Slit working though the receptor SAX-3/Robo (Adler et al., 2006, Chang et al., 2006, Quinn et al., 2006, 2008). The molecules involved in cell signaling in this case are polarized within the cell body of the neuron before process outgrowth and direct the axon outgrowth. Expression of the Netrin receptor UNC-40/DCC or the Slit receptor SAX-3/Robo in axons that normally migrate in the AP direction causes neuronal polarity reversal in a Netrin and Slit independent manner (Levy-Strumpf and Culotti 2007, Watari-Goshima et al., 2007). Localization of the receptors in this case is caused by the kinesin-related VAB-8L which appears to govern the site of axon outgrowth in these neurons by causing receptor localization. Therefore, asymmetric localization of axon guidance receptors is followed by axon outgrowth in vivo using the receptor's normal cue, either attractive, repulsive or unknown cues.  相似文献   

18.
A central step in organizing the central nervous system development is the growth cone of an axon navigating through guidance cues to reach its specific target. While a great deal of this process has been understood especially in identifying the extracellular guidance cues and their membrane receptors, much less is known about how guidance signals are further relayed to the actin filaments that are central to the mobility of the growth cone. The previous results from our laboratory have shown that Drosophila gene dunc-115 regulates axon projection in the eye and the central nervous system. Furthermore, Dunc-115 has a villin-headpiece (VHD) domain, implying the possibility of binding to actin. To further characterize Dunc-115’s functions, we have identified the isoform Dunc-115L as a possible downstream target in relaying guidance cues further down to the cytoskeleton. Specifically, we have shown that Dunc-115 regulates neural connections in both the eye and the central nervous system in Drosophila and that Dunc-115 contains an actin-binding domain potentially capable of binding to actin filaments. In this report, we show that Dunc-115 binds to actin via its VHD domain directly, suggesting a possible mechanism for how Dunc-115 relays guidance signals.  相似文献   

19.
20.
During nervous system development, axons generate branches to connect with multiple synaptic targets. As with axon growth and guidance, axon branching is tightly controlled in order to establish functional neural circuits, yet the mechanisms that regulate this important process are less well understood. Here, we review recent advances in the study of several common branching processes in the vertebrate nervous system. By focusing on each step in these processes we illustrate how different types of branching are regulated by extracellular cues and neural activity, and highlight some common principles that underlie the establishment of complex neural circuits in vertebrate development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号