首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cullin-RING ligases (CRLs) regulate diverse cellular functions such as cell cycle progression and cytokine signaling by ubiquitinating key regulatory proteins. The activity of CRLs is controlled by Nedd8 modification of the cullin subunits. Recent reports have suggested that CAND1, which specifically binds to unmodified CUL1 but not to neddylated one, is required for the in vivo function of SCFs, the CUL1-containing CRLs. We show here that CAND1 and COP9 signalosome (CSN), the major deneddylase of cullins, bind to unneddylated CUL1 in a mutually exclusive way. The suppression of CAND1 expression by small inhibitory RNA enhanced the interaction between CUL1 and CSN, suggesting that CAND1 inhibited the binding of CSN to CUL1. We found that the binding of CSN to CUL1 required the four helix bundle in CUL1 C-terminal domain, which was wrapped around by CAND1 in the CAND1-CUL1-Rbx1 complex. CAND1 greatly facilitated CSN-mediated deneddylation of CUL1 in vitro, which was dependent on its binding to CUL1. Our data suggest that enhancement of CSN-mediated deneddylation by CAND1 may contribute to its function as a positive regulator of SCFs in vivo.  相似文献   

2.
Cullin–RING E3 ubiquitin ligases (CRLs) control a plethora of biological pathways through targeted ubiquitylation of signalling proteins. These modular assemblies use substrate receptor modules to recruit specific targets. Recent efforts have focused on understanding the mechanisms that control the activity state of CRLs through dynamic alterations in CRL architecture. Central to these processes are cycles of cullin neddylation and deneddylation, as well as exchange of substrate receptor modules to re‐sculpt the CRL landscape, thereby responding to the cellular requirements to turn over distinct proteins in different contexts. This review is focused on how CRLs are dynamically controlled with an emphasis on how cullin neddylation cycles are integrated with receptor exchange.  相似文献   

3.
4.
NEDD8 conjugation of Cullin has an important role in ubiquitin‐mediated protein degradation. The COP9 signalosome, of which CSN5 is the major catalytic subunit, is a major Cullin deneddylase. Another deneddylase, Deneddylase 1, has also been shown to process the Nedd8 precursor. In Drosophila, the DEN1 mutants do not have increased levels of Cullin neddylation, but instead show a significant decrease in neddylated Cullin. This characteristic decrease in neddylated Cullins in the DEN1null background can be rescued by UAS‐dDEN1WT overexpression but not by overexpression of mature NEDD8, indicating that this phenotype is distinct from the NEDD8‐processing function of DEN1. We examined the role of DEN1–CSN interaction in regulating Cullin neddylation. Overexpression of DEN1 in a CSN5hypo background slightly reduced unneddylated Cullin levels. The CSN5, DEN1 double mutation partially rescues the premature lethality associated with the CSN5 single mutation. These results suggest that DEN1 regulates Cullin neddylation by suppressing CSN deneddylase activity.  相似文献   

5.
Cul1 and Cul7 are cullin E3 ubiquitin ligase scaffold proteins. Cul1 is known to form a complex with the RING domain protein Rbx1 and one of approximately 70 different F-box proteins. F-box proteins function as substrate receptor subunits and recruit numerous substrates for poly-ubiquitination. Similarly to Cul1, Cul7 interacts with Rbx1, however, only one F-box protein, Fbxw8, has been shown to bind to Cul7. To date only few Cul7 E3 ubiquitin ligase substrates, including cyclin D1, IRS-1 and GRASP65, have been reported, and using Fbxw8 affinity purification, we were unable to identify additional substrate proteins. Here we provide evidence for a model in which Cul7-Rbx1 can promote the ubiquitination of Cul1 substrates by forming high order complexes with Cul1-Rbx1. Binding of Cul1-Rbx1 to Cul7-Rbx1 is mediated via heterodimerization of Fbxw8 with other F-box proteins which function to recruit substrates into the E3 ligase complex. The formation of this high order complex is likely to increase polyubiquitination efficiency.  相似文献   

6.
7.
Upregulated expression of stanniocalcin-1 during adipogenesis   总被引:2,自引:0,他引:2  
Stanniocalcin-1 (STC-1) is a 56-kDa homodimeric protein originally discovered in bony fish, where it protects against toxic levels of environmental calcium by lowering the uptake of calcium via the gills and by increasing the reabsorption of phosphate in the kidney. Here we report expression of STC-1 in mammalian white and brown fat tissue. Coexpression of STC-1 and perilipin confirmed the presence of STC-1 in mature fat cells. Neoplastic adipocytes in well-differentiated liposarcomas also stained for STC-1, while the frequency of STC-1-positive cells was lower in high-grade liposarcomas. The kinetics of STC-1 expression during adipogenesis was investigated in 3T3-LI cells, which can be induced to adipocyte differentiation. Untreated 3T3-L1 cells displayed negligible amounts of STC-1, whereas 3T3-L1 cells, treated with an adipogenic cocktail, upregulated the expression of STC-1 concomitantly with acquisition of the adipocytic phenotype. We have previously reported a high expression of STC-1 in postmitotically differentiated neurons and megakaryocytes. We have also shown that expression of STC-1 confers increased resistance to hypoxic and oxidative stress in neurons. Given this, our findings suggest that STC-1, also in terminally differentiated adipocytes, may function as a "survival factor", which contributes to the maintenance of the integrity of mature adipose tissue.  相似文献   

8.
9.
Cullin RING ligases (CRLs), the most prolific class of ubiquitin ligase enzymes, are multimeric complexes that regulate a wide range of cellular processes. CRL activity is regulated by CAND1 (Cullin-associated Nedd8-dissociated protein 1), an inhibitor that promotes the dissociation of substrate receptor components from the CRL. We demonstrate here that COMMD1 (copper metabolism MURR1 domain-containing 1), a factor previously found to promote ubiquitination of various substrates, regulates CRL activation by antagonizing CAND1 binding. We show that COMMD1 interacts with multiple Cullins, that the COMMD1-Cul2 complex cannot bind CAND1, and that, conversely, COMMD1 can actively displace CAND1 from CRLs. These findings highlight a novel mechanism of CRL activation and suggest that CRL regulation may underlie the pleiotropic activities of COMMD1.  相似文献   

10.
The Cullin3-based E3 ubiquitin ligase complex is thought to play an important role in the cellular response to oxidative stress and xenobiotic assault. While limited biochemical studies of the ligase’s role in these complex signaling pathways are beginning to emerge, structural studies are lagging far behind due to the inability to acquire sufficient quantities of full-length, highly pure and active Cullin3. Here we describe the design and construction of an optimized expression and purification system for the full-length, human Cullin3-RINGBox 1 (Rbx1) protein complex from Escherichia coli. The dual-expression system is comprised of codon-optimized Cullin3 and Rbx1 genes co-expressed from a single pET-Duet-1 plasmid. Rapid purification of the Cullin3-Rbx1 complex is achieved in two steps via an affinity column followed by size-exclusion chromatography. Approximately 15 mg of highly pure and active Cullin3-Rbx1 protein from 1 L of E. coli culture can be achieved. Analysis of the quaternary structure of the Cullin3-Rbx1 and Cullin3-Rbx1-Keap1 complexes by size-exclusion chromatography and analytical ultracentrifugation indicates a 1:1 stoichiometry for the Cullin3-Rbx1 complex (MW = 111 kDa), and a 1:1:2 stoichiometry for the Cullin3-Rbx1-Keap1 complex (MW = 280 kDa). This latter complex has a novel quaternary structural organization for cullin E3 ligases, and it is fully active based on an in vitro Cullin3-Rbx1-Keap1-Nrf2 ubiquitination activity assay that was developed and optimized in this study.  相似文献   

11.
Stress hormone is known to play a vital role in lipolysis and adipogenesis in fat cells. The present study was carried out to evaluate the effect of epinephrine on adipogenesis in the 3T3-L1 cells. The investigation on adipogenesis was done in both mono and co-cultured 3T3-L1 cells. 3T3-L1 preadipocytes and C2C12 cells were grown independently on transwell plates and transferred to differentiation medium. Following differentiation, C2C12 cells transferred to 3T3-L1 plate and treated with medium containing 10 μg/ml of epinephrine. Adipogenic markers such as fatty acid binding protein 4, peroxisome proliferator activating receptor, CCAAT/enhancer-binding protein, adiponectin, lipoprotein lipase and fatty acid synthase mRNA expressions were evaluated in the 3T3-L1 cells. Epinephrine treatment reduced adipogenesis, evidenced by reducing adipogenic marker mRNA expression in the 3T3-L1 cells. In addition, glycerol accumulation and oil red-O staining supported the reduced rate of adipogenesis. Taking all together, it is concluded that the stress hormone, epinephrine reduces the rate of adipogenesis in the mono and co-cultured 3T3-L1 cells. In addition, the rate of adipogenesis is much reduced in the co-cultured 3T3-L1 cells compared monocultured 3T3-L1 cells.  相似文献   

12.
13.
Shang W  Yang Y  Jiang B  Jin H  Zhou L  Liu S  Chen M 《Life sciences》2007,80(7):618-625
Evidence has accumulated that ginseng and its main active constituents, ginsenosides, possess anti-diabetic and insulin-sensitizing properties which may be partly realized by regulating adipocyte development and functions. In the present study, we explored the effect of ginsenoside Rb(1), the most abundant ginsenoside in ginseng root, on adipogenesis of 3T3-L1 cells. We found that with standard differentiation inducers, ginsenoside Rb(1) facilitated adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner; 10 microM Rb(1) increased lipid accumulation by about 56%. Treatment of differentiating adipocytes with 10 microM Rb(1) increased the expression of mRNA and protein of PPARgamma(2) and C/EBPalpha, as well as mRNA of ap2, one of their target genes. After the treatment of differentiating adipocytes with Rb(1), basal and insulin-mediated glucose uptake was significantly augmented, accompanied by the up-regulation of mRNA and protein level of GLUT4, but not of GLUT1. In addition, ginsenoside Rb(1) also inhibited the proliferation of preconfluent 3T3-L1 preadipocytes. Our data indicate that anti-diabetic and insulin-sensitizing activities of ginsenosides, at least in part, are involved in the enhancing effect on PPARgamma2 and C/EBPalpha expression, hence promoting adipogenesis.  相似文献   

14.
The cullin-RING E3 ubiquitin ligases (CRLs) play crucial roles in modulating the stability of proteins in the cell and are, in turn, regulated by post-translational modification by the ubiquitin-like (Ubl) protein NEDD8. This process, termed neddylation, is reversible through the action of the COP9 signalosome (CSN); a multi-subunit metalloprotease conserved among eukaryotes that plays direct or indirect roles in DNA repair, cell signaling and cell cycle regulation in part through modulating the activity of the CRLs. Previously, inhibition of CRL neddylation by MLN4924, a small molecule inhibitor of the NEDD8-activating enzyme 1 (NAE1), was shown to induce interphase cell cycle arrest and cell death. Using fixed and living cell microscopy, we re-evaluated the cell cycle effects of inhibition of neddylation by MLN4924 in both asynchronous and mitotic cell populations. Consistent with previous studies, treatment of asynchronous cells with MLN4924 increased CDT1 expression levels, induced G2 arrest and increased nuclear size. However, in synchronized cells treated in mitosis, mitotic defects were observed including lagging chromosomes and binucleated daughter cells. Consistent with neddylation and deneddylation playing a role in cytokinesis, NEDD8, as well as subunits of the CSN, could be localized at the midbody and cleavage furrow. Finally, treatment of mitotic cells with MLN4924 induced the premature accumulation of MKLP1 at the cleavage furrow, a key regulator of cytokinesis, which was concomitant with increased abscission delay and failure. Thus, these studies uncover an uncharacterized mitotic effect of MLN4924 on MKLP1 accumulation at the midbody and support a role for neddylation during cytokinesis.

Abbreviations: CSN, COP9 Signalosome; MKLP1, mitotic kinesin-like protein 1; NEDD8, Neural precursor cell Expressed, Developmentally Down-regulated 8.  相似文献   


15.
We have identified a family of RING finger proteins that are orthologous to Drosophila Goliath (G1, Gol). One of the members, GREUL1 (Goliath Related E3 Ubiquitin Ligase 1), can convert Xenopus ectoderm into XAG-1- and Otx2-expressing cells in the absence of both neural tissue and muscle. This activity, combined with the finding that XGREUL1 is expressed within the cement gland, suggests a role for GREUL1 in the generation of anterior ectoderm. Although GREUL1 is not a direct inducer of neural tissue, it can activate the formation of ectopic neural cells within the epidermis of intact embryos. This suggests that GREUL1 can sensitize ectoderm to neuralizing signals. In this paper, we provide evidence that GREUL1 is an E3 ubiquitin ligase. Using a biochemical assay, we show that GREUL1 catalyzes the addition of polyubiquitin chains. These events are mediated by the RING domain since a mutation in two of the cysteines abolishes ligase activity. Mutation of these cysteines also compromises GREUL1's ability to induce cement gland. Thus, GREUL1's RING domain is necessary for both the ubiquitination of substrates and for the conversion of ectoderm to an anterior fate.  相似文献   

16.
We report here that octanoate, a medium chain fatty acid, induces adipocyte differentiation in 3T3-L1 cells by co-treatment with dexamethasone, although octanoate has been known not to stimulate 3T3-L1 adipogenesis. A low concentration of exogenous glucose prevented 3T3-L1 adipogenesis induced by 1-methyl 3-isobutylxanthine, dexamethasone, and insulin (MDI) treatment (a common protocol for adipocyte differentiation). In contrast, co-treatment with dexamethasone and octanoate (D-OCT) induced adipogenesis under the same conditions. These findings imply that octanoate, rather than glucose, is the source of accumulated lipids in D-OCT-induced adipogenesis. D-OCT increased expression of the differentiation markers peroxisome proliferator-activated receptor (PPAR)gamma2 and caveolin-1. A specific inhibitor of p38 mitogen-activated protein (MAP) kinase inhibited D-OCT-induced adipogenesis. These results suggest that the p38 MAP kinase pathway followed by up-regulation of PPARgamma2 may be involved in 3T3-L1 adipocyte differentiation induced by D-OCT, as well as by MDI.  相似文献   

17.
18.
Arabidopsis COP1 is a negative regulator of photomorphogenesis, which targets HY5, a positive regulator of photomorphogenesis, for degradation via the proteasome pathway in the absence of light. COP1 and its interactive partner CIP8 both possess RING finger motifs, characteristic of some E3 ubiquitin ligases. Here we show that CIP8 promotes ubiquitin attachment to HY5 in E2-dependent fashion in vitro. CIP8 exhibits a strong interaction with the E2 enzyme AtUBC8 through its N-terminal domain. Phosphorylation of HY5 by casein kinase II requires the beta subunit 2, but does not affect HY5's susceptibility to ubiquitination. The RING domain of CIP8 is required but is not sufficient for ubiquitin ligase activity. Although the RING domain of CIP8 interacts with the RING domain of COP1, addition of recombinant COP1 fails to affect CIP8's ubiquitin ligase activity towards HY5 in vitro. However, recombinant COP1 can pull-down native CIP8 from the extract of dark-grown seedlings, but not from the extract of light-grown seedlings in a column-binding assay, implying a requirement for light-regulated modification in vivo. Our data suggest that CIP8 can form a minimal ubiquitin ligase in co-operation with the E2 enzyme AtUBC8. It is possible that the AtUBC8-CIP8 module might interact with COP1 in vivo, thereby participating in proteasome-mediated degradation of HY5.  相似文献   

19.
20.
The NEDD8 pathway plays an essential role in various physiological processes, such as cell cycle progression and signal transduction. The conjugation of NEDD8 to target proteins is initiated by the NEDD8-activating enzyme composed of APP-BP1 and Uba3. In the present study, we show that APP-BP1 is degraded by ubiquitin-dependent proteolysis. To study biological functions of TRIP12, a HECT domain-containing E3 ubiquitin ligase, we used the yeast two-hybrid system and identified APP-BP1 as its binding partner. Immunoprecipitation analysis showed that TRIP12 specifically interacts with the APP-BP1 monomer but not with the APP-BP1/Uba3 heterodimer. Overexpression of TRIP12 enhanced the degradation of APP-BP1, whereas knockdown of TRIP12 stabilized it. In vitro ubiquitination assays revealed that TRIP12 functions as an E3 enzyme of APP-BP1 and additionally requires an E4 activity for polyubiquitination of APP-BP1. Moreover, neddylation of endogenous CUL1 was increased in TRIP12 knockdown cells, while complementation of the knockdown cells with TRIP12 lowered neddylated CUL1. Our data suggest that that TRIP12 promotes degradation of APP-BP1 by catalyzing its ubiquitination, which in turn modulates the neddylation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号