首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate cancer (PCa) is a common high-incidence malignancy in men, some of whom develop biochemical recurrence (BCR) in the advanced stage. However, there are currently no accurate prognostic indicators of BCR in PCa. The aim of our study was to identify an autophagy-related circular RNA prognostic factor of BCR for patients with PCa. In this study, immunochemistry revealed that the classic autophagy marker MAP1LC3B was positively correlated with Gleason score. Least absolute shrinkage and selector operator regression were conducted to develop a novel prognostic model with tenfold cross-validation and an L1 penalty. Five autophagy-related circRNA signatures were included in the prognostic model. Patients with PCa were ultimately divided into high- and low-risk groups, based on the median risk score. Patients with PCa, who had a high risk score, were more likely to develop BCR in a shorter period of time. Univariate and multivariate Cox regression analyses demonstrated that the risk score was an independent variable for predicting BCR in PCa. In addition, a prognostic nomogram integrated with the risk score and numerous clinicopathological parameters was developed to accurately predict 3- and 5-year BCR of patients with PCa. Finally, the hsa_circ_0001747 signature was selected for further experimental verification in vitro and in vivo, which showed that downregulated hsa_circ_0001747 might facilitate PCa via augmenting autophagy. Our findings indicate that the autophagy-related circRNA signature hsa_circ_0001747 may serve as a promising indicator for BCR prediction in patients with PCa.Subject terms: Tumour biomarkers, Macroautophagy  相似文献   

2.
While hundreds of consistently altered metabolic genes had been identified in hepatocellular carcinoma (HCC), the prognostic role of them remains to be further elucidated. Messenger RNA expression profiles and clinicopathological data were downloaded from The Cancer Genome Atlas—Liver Hepatocellular Carcinoma and GSE14520 data set from the Gene Expression Omnibus database. Univariate Cox regression analysis and lasso Cox regression model established a novel four-gene metabolic signature (including acetyl-CoA acetyltransferase 1, glutamic-oxaloacetic transaminase 2, phosphatidylserine synthase 2, and uridine-cytidine kinase 2) for HCC prognosis prediction. Patients in the high-risk group shown significantly poorer survival than patients in the low-risk group. The signature was significantly correlated with other negative prognostic factors such as higher α-fetoprotein. The signature was found to be an independent prognostic factor for HCC survival. Nomogram including the signature shown some clinical net benefit for overall survival prediction. Furthermore, gene set enrichment analyses revealed several significantly enriched pathways, which might help explain the underlying mechanisms. Our study identified a novel robust four-gene metabolic signature for HCC prognosis prediction. The signature might reflect the dysregulated metabolic microenvironment and provided potential biomarkers for metabolic therapy and treatment response prediction in HCC.  相似文献   

3.
Deregulated long noncoding RNAs (lncRNA) have been critically implicated in tumorigenesis and serve as novel diagnostic and prognostic biomarkers. Here we sought to develop a prognostic lncRNA signature in patients with head and neck squamous cell carcinoma (HNSCC). Original RNA-seq data of 499 HNSCC samples were retrieved from The Cancer Genome Atlas database, which was randomly divided into training and testing set. Univariate Cox regression survival analysis, robust likelihood-based survival model and random sampling iterations were applied to identify prognostic lncRNA candidates in the training cohort. A prognostic risk score was developed based on the Cox coefficient of four individual lncRNA imputed as follows: (0.14546 × expression level of RP11-366H4.1) + (0.27106 × expression level of LINC01123) + (0.54316 × expression level of RP11-110I1.14) + (−0.48794 × expression level of CTD-2506J14.1). Kaplan-Meier analysis revealed that patients with high-risk score had significantly reduced overall survival as compared with those with low-risk score when patients in training, testing, and validation cohorts were stratified into high- or low-risk subgroups. Multivariate survival analysis further revealed that this 4-lncRNA signature was a novel and important prognostic factor independent of multiple clinicopathological parameters. Importantly, ROC analyses indicated that predictive accuracy and sensitivity of this 4-lncRNA signature outperformed those previously well-established prognostic factors. Noticeably, prognostic score based on quantification of these 4-lncRNA via qRT-PCR in another independent HNSCC cohort robustly stratified patients into subgroups with high or low survival. Taken together, we developed a robust 4-lncRNA prognostic signature for HNSCC that might provide a novel powerful prognostic biomarker for precision oncology.  相似文献   

4.
5.
Lung cancer is one of the most malignant cancers worldwide, and lung adenocarcinoma (LUAD) is the most common histologic subtype. Thousands of biomarkers related to the survival and prognosis of patients with this cancer type have been investigated through database mining; however, the prediction effect of a single gene biomarker is not satisfactorily specific or sensitive. Thus, the present study aimed to develop a novel gene signature of prognostic values for patients with LUAD. Using a data-mining method, we performed expression profiling of 1145 mRNAs in large cohorts with LUAD (n = 511) from The Cancer Genome Atlas database. Using the Gene Set Enrichment Analysis, we selected 198 genes related to GLYCOLYSIS, which is the most important enrichment gene set. Moreover, these genes were identified using Cox proportional regression modeling. We established a risk score staging system to predict the outcome of patients with LUAD and subsequently identified four genes (AGRN, AKR1A1, DDIT4, and HMMR) that were closely related to the prognosis of patients with LUAD. The identified genes allowed us to classify patients into the high-risk group (with poor outcome) and low-risk group (with better outcome). Compared with other clinical factors, the risk score has a better performance in predicting the outcome of patients with LUAD, particularly in the early stage of LUAD. In conclusion, we developed a four-gene signature related to glycolysis by utilizing the Cox regression model and a risk staging model for LUAD, which might prove valuable for the clinical management of patients with LUAD.  相似文献   

6.
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy closely related to metabolic reprogramming. We investigated how CTNNB1 mutation regulates the HCC metabolic phenotype and thus affects the prognosis of HCC. We obtained the mRNA expression profiles and clinicopathological data from The Cancer Genome Atlas (TCGA), the International Cancer Genomics Consortium (ICGC) and the Gene Expression Omnibus database ( GSE14520 and GSE116174 ). We conducted gene set enrichment analysis on HCC patients with and without mutant CTNNB1 through TCGA dataset. The Kaplan-Meier analysis and univariate Cox regression analysis assisted in screening metabolic genes related to prognosis, and the prognosis model was constructed using the Lasso and multivariate Cox regression analysis. The prognostic model showed good prediction performance in both the training cohort (TCGA) and the validation cohorts (ICGC, GSE14520 , GSE116174 ), and the high-risk group presented obviously poorer overall survival compared with low-risk group. Cox regression analysis indicated that the risk score can be used as an independent predictor for the overall survival of HCC. The immune infiltration in different risk groups was also evaluated in this study to explore underlying mechanisms. This study is also the first to describe an metabolic prognostic model associated with CTNNB1 mutations and could be implemented for determining the prognoses of individual patients in clinical practice.  相似文献   

7.
Metabolic reprogramming has become a hot topic recently in the regulation of tumour biology. Although hundreds of altered metabolic genes have been reported to be associated with tumour development and progression, the important prognostic role of these metabolic genes remains unknown. We downloaded messenger RNA expression profiles and clinicopathological data from The Cancer Genome Atlas and the Gene Expression Omnibus database to uncover the prognostic role of these metabolic genes. Univariate Cox regression analysis and lasso Cox regression model were utilized in this study to screen prognostic associated metabolic genes. Patients with high-risk demonstrated significantly poorer survival outcomes than patients with low-risk in the TCGA database. Also, patients with high-risk still showed significantly poorer survival outcomes than patients with low-risk in the GEO database. What is more, gene set enrichment analyses were performed in this study to uncover significantly enriched GO terms and pathways in order to help identify potential underlying mechanisms. Our study identified some survival-related metabolic genes for rectal cancer prognosis prediction. These genes might play essential roles in the regulation of metabolic microenvironment and in providing significant potential biomarkers in metabolic treatment.  相似文献   

8.
Lung adenocarcinoma (LUAD) is the main subtype of non-small cell lung cancer with a poor survival prognosis. In our study, gene expression, DNA methylation, and clinicopathological data of primary LUAD were utilized to identify potential prognostic markers for LUAD, which were recruited from The Cancer Genome Atlas (TCGA) database. Univariate regression analysis showed that there were 21 methylation-associated DEGs related to overall survival (OS), including 9 down- and 12 up-regulated genes. The 12 up-regulated genes with hypomethylation may be risky genes, whereas the other 9 down-regulated genes with hypermethylation might be protective genes. By using the Step-wise multivariate Cox analysis, a methylation-associated 6-gene (consisting of CCL20, F2, GNPNAT1, NT5E, B3GALT2, and VSIG2) prognostic signature was constructed and the risk score based on this gene signature classified patients into high- or low-risk groups. Patients of the high-risk group had shorter OS than those of the low-risk group in both the training and validation cohort. Multivariate Cox analysis and the stratified analysis revealed that the risk score was an independent prognostic factor for LUAD patients. The methylation-associated gene signature may serve as a prognostic factor for LUAD patients and the represent hypermethylated or hypomethylated genes might be potential targets for LUAD therapy.  相似文献   

9.
目的:运用CRUSADE评分系统联合血栓弹力图对急性冠脉综合征(acute coronary syndrome,ACS)患者抗栓治疗中的出血风险进行评估。方法:回顾性分析2013年1月至2013年12月在上海交通大学医学院附属新华医院住院的ACS患者病历249例,用CRUSADE评分联合血栓弹力图评估ACS患者30天出血事件的发生。结果:随访的249例ACS患者,共有46例(18.5%)患者发生了出血事件;按照CRUSADE评分进行危险分层,极低危组、低危组、中危组、高危组、极高危组的出血率分别为:15%、7.5%、21.2%、32.5%26.7%;各组间出血率的比较:中危组、高危组及极高危组各组的出血率均高于低危组,差异有统计学意义;而高危组出血率高于极低危组,差异有统计学意义,而极低危组与其他各组比较,差异无统计学意义;低危组以上患者出血率高于低危组以下,差异有统计学意义。低危组以上中危组、高危组及极高危组各组间出血率比较,差异无统计学意义;按照血小板抑制率中位数分组,大于中位数组的出血率高于小于中位数组,差异有统计学意义。经多因素Logistic分析:PAg T抑制率(ADP)是ACS患者抗栓治疗中出血事件的独立影响因素。利用ROC曲线分析CRUSADE评分、血栓弹力图以及两者联合对患者出血事件发生的评估,两者联合的曲线下面积大于单独利用CRUSADE评分。结论:随着CRUSADE评分危险分层的增加出血的发生率亦呈增加趋势;危险分层低危以上的患者,不论中危、高危、极高危发生出血事件风险较低危险以下有明显增加;血栓弹力图监测血小板抑制率可作为CRUSADE评分的补充,提高对ACS患者出血风险的预测。  相似文献   

10.
《Translational oncology》2021,14(12):101225
ObjectiveBy combining the expression profiles of metabolism-related genes (MRGS) with clinical information, the expression quantities of MRGS and the influence on development and prognosis were systematically analyzed, so as to provide a theoretical basis for the clinical study on the prognosis of Ewing's sarcoma.MethodsMRGs expression profiles of 64 patients with Ewing's sarcoma were obtained from GEO dataset. Univariate Cox regression analysis was used to identify metabolization-related differentially expressed genes (DEGs) related with prognosis in Ewing's sarcoma patients. Then, multivariate Cox analysis was used to calculate novel prognostic markers based on metabolism-related DEGs. Besides, We validate the model using ICGC datasets. Finally, the new prognostic index was verified on the basis of the prognostic models.ResultsMultivariate Cox regression analysis identified 74 metabolization-related DEGs, 25 of which were associated with Ewing's sarcoma patients' overall survival. Subsequently, we used 25 DEGs to construct metabolism-related prognostic signature for patients with Ewing's sarcoma. Based on the 18 DEGs regression coefficient, we propose the formula of each patient's risk score, and then divided the patients into high-risk group and low-risk group. The results indicated that the survival rate and survival time were higher in the low-risk group and lower in the high-risk group. Multivariate Cox analysis showed that risk score index was an independent prognostic factor for Ewing's sarcoma.ConclusionThe experimental results suggest that the 18 metabolism-related DEGs marker may be effective in predicting the prognosis of Ewing's sarcoma to some extent, helping to individualize treatment of patients at different risks.  相似文献   

11.
《Genomics》2021,113(6):4088-4097
BackgroundNew biomarkers are needed to identify different clinical outcomes for HER2+ breast cancer (BC).MethodsDifferential genes of HER2+ BC were screened based on TCGA database. We used WGCNA to identify the genes related to the survival. Genetic Algorithm was used to structure risk prediction model. The prognostic model was validated in GSE data.ResultsWe constructed a risk prediction model of 6 genes to identify prognosis of HER2+ BC, including CLEC9A, PLD4, PIM1, PTK2B, AKNAD1 and C15orf27. Kaplan-Meier curve showed that the model effectively distinguished the survival of HER2+ BC patients. The multivariate Cox regression suggested that the risk model was an independent predictor for HER2+ BC. Analysis related to immune showed that significant differences in immune infiltration between high- and low-risk groups classified by the prognostic model.ConclusionsOur study identified a risk prediction model of 6 genes that could distinguish the prognosis of HER2+ BC.  相似文献   

12.
Current research indicate that long noncoding RNAs (lncRNAs) are associated with the progression of various cancers and can be used as prognostic biomarkers. This study aims to construct a prognostic lncRNA signature for the risk assessment of Uterine corpus endometrial carcinoma (UCEC). The RNA-Seq expression profile and corresponding clinical data of UCEC patients obtained from The Cancer Genome Atlas database. First, some prognosis-related lncRNAs were obtained by univariate Cox analysis. The minimum absolute contraction and selection operator (LASSO) regression and the Cox proportional hazard regression method were used to further identify the lncRNA prognostic model. Finally, seven lncRNAs (AC110491.1, AL451137.1, AC005381.1, AC103563.2, AC007422.2, AC108025.2, and MIR7-3HG) were identified as potential prognostic factors. According to the model constructed by the above analysis, the risk score of each UCEC patient was calculated, and the patients were classified into high and low-risk groups. The low-risk group had significant survival benefits. Moreover, we constructed a nomogram that incorporated independent prognostic factors (age, tumor stage, tumor grade, and risk score). The c-index value for evaluating the predictive nomogram model was 0.801. The area under the curve was 0.797 (3-year survival). The calibration curve also showed that there was a satisfactory agreement between the predicted and observed values in the probability of 1-, 3-, and 5-year overall survival. On the basis of the coexpression relationship, we established a coexpression network of lncRNA-messenger RNA (mRNA) of the 7-lncRNA. The Kyoto Encyclopedia of Genes and Genomes analysis of the coexpressing mRNAs showed that the main pathways related to the 7-lncRNA signature were neuroactive ligand-receptor interaction, serotonergic synapse, and gastric cancer pathway. Therefore, our study revealed that the 7-lncRNA could be used to predict the prognosis of UCEC and for postoperative treatment and follow-up.  相似文献   

13.
《Translational oncology》2022,15(12):101225
ObjectiveBy combining the expression profiles of metabolism-related genes (MRGS) with clinical information, the expression quantities of MRGS and the influence on development and prognosis were systematically analyzed, so as to provide a theoretical basis for the clinical study on the prognosis of Ewing's sarcoma.MethodsMRGs expression profiles of 64 patients with Ewing's sarcoma were obtained from GEO dataset. Univariate Cox regression analysis was used to identify metabolization-related differentially expressed genes (DEGs) related with prognosis in Ewing's sarcoma patients. Then, multivariate Cox analysis was used to calculate novel prognostic markers based on metabolism-related DEGs. Besides, We validate the model using ICGC datasets. Finally, the new prognostic index was verified on the basis of the prognostic models.ResultsMultivariate Cox regression analysis identified 74 metabolization-related DEGs, 25 of which were associated with Ewing's sarcoma patients' overall survival. Subsequently, we used 25 DEGs to construct metabolism-related prognostic signature for patients with Ewing's sarcoma. Based on the 18 DEGs regression coefficient, we propose the formula of each patient's risk score, and then divided the patients into high-risk group and low-risk group. The results indicated that the survival rate and survival time were higher in the low-risk group and lower in the high-risk group. Multivariate Cox analysis showed that risk score index was an independent prognostic factor for Ewing's sarcoma.ConclusionThe experimental results suggest that the 18 metabolism-related DEGs marker may be effective in predicting the prognosis of Ewing's sarcoma to some extent, helping to individualize treatment of patients at different risks.  相似文献   

14.
ABSTRACT: BACKGROUND: In the postgenome era, a prediction of response to treatment could lead to better dose selection for patients in radiotherapy. To identify a radiosensitive gene signature and elucidate related signaling pathways, four different microarray experiments were reanalyzed before radiotherapy. RESULTS: Radiosensitivity profiling data using clonogenic assay and gene expression profiling data from four published microarray platforms applied to NCI-60 cancer cell panel were used. The survival fraction at 2 Gy (SF2, range from 0 to 1) was calculated as a measure of radiosensitivity and a linear regression model was applied to identify genes or a gene set with a correlation between expression and radiosensitivity (SF2). Radiosensitivity signature genes were identified using significant analysis of microarrays (SAM) and gene set analysis was performed using a global test using linear regression model. Using the radiation-related signaling pathway and identified genes, a genetic network was generated. According to SAM, 31 genes were identified as common to all the microarray platforms and therefore a common radiosensitivity signature. In gene set analysis, functions in the cell cycle, DNA replication, and cell junction, including adherence and gap junctions were related to radiosensitivity. The integrin, VEGF, MAPK, p53, JAK-STAT and Wnt signaling pathways were overrepresented in radiosensitivity. Significant genes including ACTN1, CCND1, HCLS1, ITGB5, PFN2, PTPRC, RAB13, and WAS, which are adhesion-related molecules that were identified by both SAM and gene set analysis, and showed interaction in the genetic network with the integrin signaling pathway. CONCLUSIONS: Integration of four different microarray experiments and gene selection using gene set analysis discovered possible target genes and pathways relevant to radiosensitivity. Our results suggested that the identified genes are candidates for radiosensitivity biomarkers and that integrin signaling via adhesion molecules could be a target for radiosensitization.  相似文献   

15.
ObjectiveCompared to Fanconi anemia (FA) patients with homozygous defective two-alleles inheritance, there is a scarce or no evidence on one defective allele FANCA carriers, with respect to their cancer incidence, clinical and in vitro radiosensitivity and chemosensitivity. On that account, we report a case of a 30-year old FANCA mutation carrier woman with uterine cervix adenocarcinoma who was treated with chemoradiotherapy, in which unexpected acute toxicity and fatal late morbidity occured.MethodsWe also report the results of an in vitro test for radiosensitivity, immunohistochemical examination with FANCA staining and human papillomavirus genotypization, and a review of the literature for FA carrier patients with respect to cancer incidence, clinical and in vitro response to chemo/radiotherapy, options of early heterozygosity detection, and methods of in vitro prediction of hypersensitivity to oncologic treatment.ConclusionAlthough there are no standard guidelines for management of FA carriers with malignancies and reports about chemo- or radiosensitivity in this population are scarce; patients with FA-A heterozygosity may have a high rate of complications from chemo/radiotherapy. Up to now, an optimum method for the prediction of radiosensitivity and the best parameter has not been found. Clinical radioresponsiveness is unpredictable in FA carriers and there is a pressing need of new rapid and predictive in vitro assays of radiation responses. Until then, the treatment of FA carriers with malignancies should be individualized, with respect to potential hypersensitivity to ionizing radiation or cross-linking agents.  相似文献   

16.
17.
18.
Gastric cancer (GC) is one of the most fatal cancers in the world. Thousands of biomarkers have been explored that might be related to survival and prognosis via database mining. However, the prediction effect of single gene biomarkers is not specific enough. Increasing evidence suggests that gene signatures are emerging as a possible better alternative. We aimed to develop a novel gene signature to improve the prognosis prediction of GC. Using the messenger RNA (mRNA)-mining approach, we performed mRNA expression profiling in a large GC cohort (n = 375) from The Cancer Genome Atlas (TCGA) database. Gene Set Enrichment Analysis (GSEA) was performed, and we recovered genes related to the G2/M checkpoint, which we identified with a Cox proportional regression model. We identified a set of five genes (MARCKS, CCNF, MAPK14, INCENP, and CHAF1A), which were significantly associated with overall survival (OS) in the test series. Based on this five-gene signature, the test series patients could be classified into high-risk or low-risk subgroups. Multivariate Cox regression analysis indicated that the prognostic power of this five-gene signature was independent of clinical features. In conclusion, we developed a five-gene signature related to the cell cycle that can predict survival for GC. Our findings provide novel insight that is useful for understanding cell cycle mechanisms and for identifying patients with GC with poor prognoses.  相似文献   

19.
《Translational oncology》2022,15(12):101233
We aimed at establishing a risk – score model using pyroptosis-related genes to predict the prognosis of patients with head and neck squamous cell carcinoma (HNSCC). A total of 33 pyroptosis-related genes were selected. We then evaluated the data of 502 HNSCC patients and 44 normal patients from TCGA database. Gene expression was then profiled to detect differentially expressed genes (DEGs). Using the univariate, the least absolute shrinkage and selection operator (LASSO) Cox regression analyses, we generated a risk – score model. Tissue samples from neoplastic and normal sites of 44 HNSCC patients were collected. qRT-PCR were employed to analyze the mRNA level of the samples. Kaplan-Meier method was used to evaluate the overall survival rate (OS). Enrichment analysis was performed to elucidate the underlying mechanism of HNSCC patient's differentially survival status from the perspective of tumor immunology. 17 genes were categorized as DEGs. GSDME, IL-6, CASP8, CASP6, NLRP1 and NLRP6 were used to establish the risk – score model. Each patient's risk score in the TCGA cohort was calculated using the risk – score formula. The risk score was able to independently predict the OS of the HNSCC patients (P = 0.02). The OS analysis showed that the risk score model (P < 0.0001) was more reliable than single gene, a phenomenon verified by practical patient cohort. Additionally, enrichment analysis indicated more active immune activities in low-risk group than high-risk group. In conclusion, our risk – score model has provided novel strategy for the prediction of HNSCC patients’ prognosis.  相似文献   

20.
肝细胞癌(hepatocellular carcinoma,HCC)是世界上高发病率和高死亡率的恶性肿瘤之一.研究目的是寻找HCC相关的mi RNA预后生物学标志物,预测HCC患者的风险程度和生存时间,为他们提供有效的预后信息.使用4种方法从TCGA中识别差异表达的mi RNAs(DEMs).并用Kaplan-Meier生存曲线、单因素和多因素Cox回归分析从DEMs中筛选肝癌预后相关的mi RNA.最终4个HCC的预后mi RNA生物学标志物(hsa-mi R-132-3p、hsa-mi R-139-5p、hsa-mi R-3677-3p、hsa-mi R-500a-3p)被筛选出来组合成一个风险评分模型.目前还没有实验证据表明组合中的hsa-mir-3677-3p与HCC相关,是本研究新发现的mi RNA.生存曲线、ROC曲线、卡方检验等多种生物信息学方法的评价结果均表明,该模型计算出的风险分值能有效预测患者的风险程度(P<0.000,风险比=2.551,95%置信区间=1.751-3.717).低风险组HCC患者1-5年生存率比高风险组高20%-30%.通过与临床数据分析发现,组合的生物学标志物较其他临床指标相比具有更好的预后效果,也可以作为独立的预后因子.最后,预测了4种mi RNA的靶基因,包括AGO2、FOXO1、ROCK2、RAP1B、CYLD等,并在细胞增殖、迁移、凋亡、免疫应答等生物学过程中富集.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号