首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One strategy of plant survival during post-fire succession is to persist and regenerate by recruiting new individuals from a fire-resistant seed bank. The heat, smoke, and charcoal released during plant combustion may act (individually or in combination) as a cue for post-fire seed germination. Fabiana imbricata is a shrub that forms persistent seed banks in the northwestern Patagonian grasslands and shows a high recruitment from seeds during post-fire succession. Mathematical models showed that this species is advancing over the grasslands in response to fires. To corroborate these findings, we studied the role of fire on F. imbricata seed germination. In order to achieve this, a factorial experiment was designed in laboratory conditions to study the effect of heat, charcoal, smoke, scarification, and their interactions on F. imbricata seed germination. Seeds treated with the higher temperatures required a longer period of time to germinate, thus, significantly affecting the mean germination time. Total germination percentages in F. imbricata were significantly enhanced by smoke and scarification, but the interaction of heat, smoke, and scarification was more important than the effect of each fire factor alone. The positive response to fire cues exhibited by F. imbricata indicates that this species would have an adaptive advantage to colonize these grasslands if fire frequency increased, as predicted for this environment. Hence, fire will contribute to the grassland encroachment by this species and, therefore, to the loss of biodiversity and productivity of northwestern Patagonian grasslands.  相似文献   

2.
Landscape-level wildfires have a major role in structuring faunal assemblages, particularly in fire-prone landscapes. These effects are mediated by changes to vegetation structure and composition that directly influence the availability of shelter, feeding and breeding resources. We investigated the response of a semi-arid shrubland bird community in Western Australia to the prevailing fire regime by examining the abundance, diversity and guild structure in relation to time since fire. We also examined vegetation structural attributes in relation to time since fire. We surveyed 32 sites ranging in age from 12 to 84 years since last fire. A total of 845 birds from 40 species were recorded. Vegetation structure varied with fire history with old and very old sites characterised by less bare ground, more leaf litter cover and greater canopy cover. Bird community composition varied with time since fire, driven by increased bird species richness and abundance of insectivores, granivores/frugivores, golden whistlers, grey shrike-thrush and red-capped robins with time since fire. Frequent, intense landscape-scale fires transform the landscape into homogeneous young shrublands, which may render vegetation unsuitable for several species and guilds.  相似文献   

3.
Question: We investigated how cattle and European hares, the two most widespread exotic herbivores in Patagonia, affect species composition, life‐form composition and community structure during the first 6 years of vegetation recovery following severe burning of fire‐resistant subalpine forests and fire‐prone tall shrublands. We asked how the effects of introduced herbivores on post‐fire plant community attributes affect flammability of the vegetation. Location: Nahuel Huapi National Park, northwest Patagonia, Argentina Methods: We installed fenced plots to exclude livestock and European hares from severely burned subalpine forests of Nothofagus pumilio and adjacent tall shrublands of N. antarctica. The former is an obligate seed reproducer, whereas the latter and all other woody dominants of the shrubland vigorously resprout after burning. Results: Repeated measures ANOVA of annual measurements over the 2001‐2006 period indicate that cattle and hare exclusion had significant but complex effects on the cover of graminoids, forbs, climber species and woody species in the two burned community types. Significant interactions between the effects of cattle and hares varied by plant life forms between the two communities, which implies that their synergistic effects are community dependent. Conclusions: Following severe fires, the combined effects of cattle and hares inhibit forest recovery and favour transition to shrublands dominated by resprouting woody species. This herbivore‐induced trend in vegetation structure is consistent with the hypothesis that the effects of exotic herbivores at recently burned sites contribute to an increase in the overall flammability of the Patagonian landscape.  相似文献   

4.
In the southern California foothills and mountains, pronounced and complex topographic gradients support fire regimes that vary over short distances. We used LANDIS, a spatially explicit landscape model of disturbance and plant succession, to examine the resilience of dominant plant species, representing different disturbance response strategies, to the effect of varying fire rotation intervals (FRI). The simulated fire regimes represented natural, current and very long FRIs for the foothill shrublands less than 1,400 m (90, 30 and 150 years) and montane forest greater than 1400 m (30, 150, 500 years). The 30-year FRI allowed obligate resprouting shrubs to dominate over obligate seeders, whereas the 90-year FRI resulted in a stable spatial distribution of both of these shrub functional types. This is consistent with the literature that suggests that shifts in shrubland composition are most likely to result from human-caused increases in fire frequency at the low-elevation urban-wildland interface. An ecotone conifer, Pinus coulteri, showed dramatic shifts in distribution under different FRIs, and retreated to the portion of the landscape representing its temporal regeneration niche. Both low and high frequency fire maintained the fire tolerant dominant pine (P. jeffreyi) in the montane zone. This contradicts the literature that suggests that a high frequency ground fire regime is required for the persistence of a pine-dominated forest, but is consistent with studies showing that conifer forests in the western U.S. have experienced, and are resilient to, a broad range of natural FRIs that include low frequency, high intensity crown fires.  相似文献   

5.
Abstract. Large‐scale disturbances, notably fire and grazing, structure grass and shrubland dynamics in semi‐arid environments. We studied early post‐fire succession in two burned grasslands, one unburned grassland, and one shrubland near the burned area. We observed three processes: (1) establishment of a ‘phantom’ community comprised of fugitive species. Although transient, these species increase diversity and recharge the seed bank before the next disturbance; (2) regeneration of the original community by persistence of resprouter species and by auto‐replacement; (3) early stages of invasion by seedlings of the shrub Fabiana imbricata, which germinate next to shrubland and create new F. imbricata patches. Weed invasion was principally due to the ruderal exotic species Verbascum thapsus from the nearby road verge and by rapid increase of Rumex acetosella cover, another exotic species present before the fire. Although post‐fire climatic conditions are particularly important in semi‐arid environments, succession depends greatly on the regeneration strategies and dispersal abilities of the species present in the burned area. The phantom community occurs only at the first stage of succession when there is little competition for resources. We could call this process ‘the race for occupation of the area’. The second stage, when competition for resources becomes progressively more important, could be called ‘the effort to maintain space’.  相似文献   

6.
Restored grasslands and shrublands are integral parts of the semi-natural landscape and are of major importance for biodiversity in the northern Loess Plateau. Determining the underlying factors that control the richness and composition of herbaceous species in restored grasslands and shrublands is urgently needed. Thus, the specific objective of this study was to evaluate the relative importance of soil, plant, and topographic explanatory variables affecting the richness and composition of herbaceous species in restored shrubland and grassland ecosystems in a typical watershed within the northern Loess Plateau. In this study, 27 restored grassland sites and 16 restored shrubland sites were sampled during September 2009. Using variation partitioning (partial canonical correspondence analysis), we determined the individual and shared effects of these three sets of explanatory variables on herbaceous biodiversity in the two restored habitats. Most of the explained variation in plant diversity was related to the pure effect of soil, plant, and topographic variables. Restored shrublands had significantly more species than grasslands, and abandoned dam farmlands had significantly more species than other grassland sites. Moreover, botanical diversity responded differently to the explanatory variables in different plant communities. The pure effects of soil properties, soil moisture in particular, accounted for the largest fractions of explained variation in species diversity in restored grasslands. Both plant and topographic variables had balancing pure effects on species diversity in restored shrublands, in particular the shrub density and slope angle. We conclude that the maintenance of a moderate density of shrubs (less than 3600 shrubs per ha), construction of check-dams, and grazing at a low stocking rate, taking conditions of soil and topographic site into account, may help to conserve biodiversity in the northern Loess Plateau.  相似文献   

7.
The effects of fire recurrence on vegetation patterns in Quercus suber L. and Erica-Cistus communities in Mediterranean fire-prone ecosystems of south-eastern France were examined on stands belonging to 5 fire classes, corresponding to different numbers of fires (from 0 to 4) and time intervals between fires since 1959. A common pool of species was identified among the plots, which was typical of both open and closed maquis. Fire recurrence reduced the abundance of trees and herbs, whereas it increased the abundance of small shrubs. Richness differed significantly between the most contrasting classes of fire recurrence, with maximal values found in control plots and minimal values in plots that had burned recurrently and recently. Equitability indices did not vary significantly, in contrast to Shannon's diversity index which mostly correlated with richness. Forest ecosystems that have burnt once or twice in the last 50 years were resilient; that is to say they recovered a biomass and composition similar to that of the pre-fire state. However, after more than 3-4 fires, shrubland communities displayed lower species richness and diversity indices than unburned plots. The time since the last fire and the number of fires were the most explanatory fire variables, governing the structure of post-fire plant communities. However, environmental factors, such as slope or exposure, also made a significant contribution. Higher rates of fire recurrence can affect the persistence or expansion of shrublands in the future, as observed in other Mediterranean areas.  相似文献   

8.
Athrotaxis cupressoides is a slow‐growing and long‐lived conifer that occurs in the subalpine temperate forests of Tasmania, a continental island to the south of Australia. In 1960–1961, human‐ignited wildfires occurred during an extremely dry summer that killed many A. cupressoides stands on the high plateau in the center of Tasmania. That fire year, coupled with subsequent regeneration failure, caused a loss of ca. 10% of the geographic extent of this endemic Tasmanian forest type. To provide historical context for these large‐scale fire events, we (i) collected dendroecological, floristic, and structural data, (ii) documented the postfire survival and regeneration of A. cupressoides and co‐occurring understory species, and (iii) assessed postfire understory plant community composition and flammability. We found that fire frequency did not vary following the arrival of European settlers, and that A. cupressoides populations were able to persist under a regime of low‐to‐mid severity fires prior to the 1960 fires. Our data indicate that the 1960 fires were (i) of greater severity than previous fires, (ii) herbivory by native marsupials may limit seedling survival in both burned and unburned A. cupressoides stands, and (iii) the loss of A. cupressoides populations is largely irreversible given the relatively high fuel loads of postfire vegetation communities that are dominated by resprouting shrubs. We suggest that the feedback between regeneration failure and increased flammability will be further exacerbated by a warmer and drier climate causing A. cupressoides to contract to the most fire‐proof landscape settings.  相似文献   

9.
Directional selection occurs when the agent of selection changes direction or strength such that fitness of a dominant trait is relaxed or even annulled, and simultaneously the fitness of a rare opposing trait is intensified or even becomes essential. The value of this concept in evolutionary ecology was demonstrated by mapping fire- and growth-related traits and regional affinity onto a molecular-based chronogram for 91 species of Protea that is widespread in the shrubland and grassland biomes of southern Africa. The crown clade arose 22–34 million years ago (Oligocene) in the Cape shrublands that was increasingly winter wet, nutrient and water-limited, and moderately fireprone. This environment favoured nonsprouting and resprouting shrubs, on-plant seed storage (serotiny) and strong sclerophylly. Adjoining grasslands developed 7–19 million years ago (mid-late Miocene) that were summer wet, carbon-limited and highly fireprone. This favoured resprouting only, seed release at maturity, and taller plants with large leaves and weak sclerophylly. Thus, for successful migration from the shrublands to grasslands, the dominant ancestral condition of serotiny was replaced by almost universal nonserotiny in response to a change in fire type, and the dominant ancestral condition of nonsprouting by universal (lignotuberous) resprouting in response to more frequent fire. Taller plants with epicormic resprouting and larger, softer leaves were also promoted, due to the change in fire type, growing season and declining pCO2, but appeared 4–6 million years later. Thus, adaptive radiation via directional selection in the novel grassland environment required a suite of adaptive responses to various selection pressures that led to species radiation in the vast habitat available now constrained by stabilizing selection. The biology of grasses in savanna grasslands may well have changed during the Miocene/Pliocene but so did the woody plants that invaded them.  相似文献   

10.
Keeley JE  Brennan TJ 《Oecologia》2012,169(4):1043-1052
Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels, and changes in carbon storage.  相似文献   

11.
Question: What are the effects of fire in native shrubland communities and in pine plantations established in these shrublands? Location: Northern Patagonia, Argentina. Methods: We surveyed four sites in Chall‐Huaco valley, located in northwest Patagonia. Each site was a vegetation mosaic composed of an unburned Pinus ponderosa plantation, a plantation burned in 1996, and an unburned matorral and a matorral burned by the same fire. We recorded the cover of all vascular plant species. We also analysed species richness, total cover, proportion of exotic species, abundance of woody species and herb species, cover of exotic species, abundance of woody and herb species and differences in composition of species. For both shrubs and tree species we recorded the main strategy of regeneration (by resprouting or by seed). Results: We found that fire had different effects on native matorral and pine plantations. Five years after fire, plantations came to be dominated by herbs and exotic species, showing differences in floristic composition. In contrast, matorral communities remained very similar to unburned matorral in terms of species richness, proportion of woody species, and herb species and proportion of exotics. Also, pine plantations were primarily colonized by seedlings, while matorrals were primarily colonized by resprouting. Conclusions: Matorrals are highly fire resilient communities, and the practice of establishing plantations on matorrals produces a strong reduction in the capacity of matorral to return to its original state. The elimination of shrubs owing to the effect of plantations can hinder regeneration of native ecosystems. Burned plantations may slowly develop into ecosystems similar to the native ones, or they may produce a new ecosystem dominated by exotic herbs. This study shows that plantations of exotic conifers affect native vegetation even after they have been removed, as in this case by fire.  相似文献   

12.
Abstract Spatial heterogeneity in the intensity of past disturbances has directly influenced the structure and composition of present‐day forests around the world. In south‐eastern Australia infrequent, high‐intensity wildfires are a major part of the historical disturbance regime. While these fires are often assumed to produce even‐aged stands, spatial heterogeneity in fire intensity due to highly variable topography may lead to more complex forest age structures. Our study describes the influence of disturbance on the age structure and dynamics of a mosaic of tall, open eucalypt forest, cool temperate rainforest and mixed species forest surrounding Bellel Creek in the Central Highlands of Victoria using dendrochronological techniques. We were particularly interested in the impacts of the 1939 Black Friday fire and its effects on forest age structure and subsequent stand development patterns. Within our study site tall open forest displayed two distinct age cohorts: (i) trees that established immediately after the 1939 fire and accounted for the majority of individuals in the forest, and (ii) scattered groups of older trees estimated to be approximately 200–250 years old. Cool temperate rainforest and mixed forest were also dominated by the post‐1939 fire age cohort. However, a greater proportion of trees in these forest types survived the 1939 fire relative to the tall open forest. The impact of the 1939 fire on the growth of surviving trees was highly variable but generally short‐lived. In most cases growth decreased after the 1939 fire, but generally returned to prefire levels within 1–3 years. Non‐fire disturbances were limited to small‐scale branch‐ and tree‐fall events, although the extreme snowstorm of 1977 appears to have caused extensive damage to rainforest communities. Our study demonstrates the opportunities for dendroecological studies to reconstruct historical dynamics and disturbance patterns in Australian forests and provides important insights into variation in landscape‐scale fire impacts and their effect on subsequent forest development patterns.  相似文献   

13.
In Mediterranean landscapes, wildfires and land abandonment lead to major landscape modifications primarily by favouring the presence of open, shrub-like habitats. At present, we know very little of how these changes affect patterns of species occurrence at the landscape scale. In this work, we analyse the impact of these landscape changes on the occurrence patterns of eight open-habitat species by using presence/absence data collected in the Catalan Breeding Bird Atlas (NE Spain). We compared the species occurrence patterns along habitat gradients for three different landscape settings: a semi-permanent farmland–forest landscape (i.e. with variable proportions of farmland and forests) and two landscape settings which mimic those favoured by land abandonment and fire: farmland–shrubland landscapes and mosaic landscapes (i.e. variable proportions of farmland and forest coexisting with a shrubby matrix). In the forest–farmland landscape, we found a dominant negative effect of adjacent forest on species occurrence rates. This overall effect mostly disappeared in farmland–shrubland landscapes composed by two habitats with more similar vegetation structure. In mosaic landscapes, the general negative effect of forest habitats also appeared to be partially compensated by the presence of a shrubby matrix. Our results suggest that landscape gradients induced by fire and to some degree also land abandonment, mainly favouring availability of shrublands may potentially enhance the resilience of threatened open-habitat species at the landscape scale by increasing the range of potential habitats used. The analysis of species-occurrence patterns along predefined habitat gradients appears as a useful tool to predict potential species responses to land use change.  相似文献   

14.
Questions

How do fire frequency and fire size affect the long-term population dynamics of Mulinum spinosum? Which demographic parameters contribute most to the overall effect of fire on population growth? What is the relative importance of resprouting in sustaining population increase?

Location

Grass-shrub northwestern Patagonian steppe, Argentina.

Methods

We monitored five permanent plots excluded from grazing for 6 years. We measured shrub abundance, dimensions, reproductive status, seedling emergence, and the size structure of M. spinosum, a resprouting native shrub inhabiting the northwest Patagonian steppe. Data were used to parametrize a stochastic matrix model developed to explore the influence of fire frequency and fire size on long-term population dynamics. We analyzed hypothetical scenarios that included fire frequencies ranging from one per year up to exclusion.

Results

Except for annual fires, projections show growing populations regardless of fire frequency. For fire return intervals greater than 50 years, the population becomes independent of fires, with an annual population growth rate of 5.6%. The results suggest two relevant aspects of the population dynamics of this species: M. spinosum is well adapted to the current fire frequency and its resprouting capability will allow M. spinosum to survive and persist in the community, even under frequent fires.

Conclusions

Climate change models forecast an increase in summer temperature in NW Patagonia and, consequently, an enhanced fire frequency. Fire is a driver of M. spinosum encroachment that gets worse in overgrazed grasslands. Mulinum spinosum encroachment derivate in a relative replacement of palatable grasses by shrubs changes the ecosystem functionality and reduces productivity. Controlling this process is highly difficult and we suggest a change in the land use for the areas already deteriorated.

  相似文献   

15.
Vegetation, active-layer soils, and snow cover regulate energy exchange between the atmosphere and permafrost. Therefore, interactions between changes to tundra vegetation and soil thermal regime will fundamentally affect permafrost in a warmer world. We recorded soil temperatures for approximately 1 year in a Siberian Low Arctic landscape with a known history of alder (Alnus) shrub expansion on disturbed microsites in patterned ground. We recorded near-surface soil temperatures and measured physical properties of soils and vegetation on sorted-circle microsites in four stages of shrubland development: (1) tundra lacking tall shrubs; (2) shrub colonization zones; (3) mature shrublands; and (4) paludified, long-established shrublands with thick soil organic layers. Summer soil temperatures declined with increasing shrub cover and soil organic thickness; shrub colonization suppressed cryoturbation, facilitating the development of continuous vegetation and a surface organic mat on circles. Compared to open tundra, mature shrubs cooled soils by up to 9 °C during summer, but warmed soils by greater than 10 °C in winter presumably because they developed highly insulative snowpacks. Paludified shrublands had the coldest summer active layers, but winter soil temperatures were much colder than mature shrublands and were similar to earlier stages. Our results indicate that although tall shrub establishment dramatically warms winter soils within decades, much of this warming is transient at paludification-prone sites because the buildup of wet peat favors cooling in winter and the stature and snow-trapping capacity of shrubs diminish over time. In the ecosystem we studied, shrub expansion has contrasting effects on active-layer temperatures both seasonally and over longer timescales due to successional processes.  相似文献   

16.
In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape‐level spatial distribution and stability of forests. We analyze high‐resolution remote‐sensing data from protected Brazilian Cerrado areas and find that forest shapes obey a robust perimeter–area scaling relation across climatic zones. We explain this scaling by introducing a heterogeneous fire propagation model of tropical forest‐grassland ecotones. Deviations from this perimeter–area relation determine the stability of individual forest patches. At a larger scale, our model predicts that the relative rates of tree growth due to propagative expansion and long‐distance seed dispersal determine whether collapse of regional‐scale tree cover is continuous or discontinuous as fire frequency changes.  相似文献   

17.
Abstract. To assess the effects of site type, forest initiation periods and fire regimes on the dynamics of Pinus banksiana (Jack pine), the age structure of 69 populations of the species was analyzed. Two landscapes with different fire regimes were selected in the southern part of the Canadian boreal forest in Québec: the ‘mainland landscape’ is characterized by a fire regime of large lethal fires, the ‘island landscape’ is affected by a complex fire regime including lethal and non-lethal fires. Age structure was compared between forest initiation periods and site types (mesic mainland, xeric mainland and xeric island) using the Shannon regularity index. An even-aged population structure was found within the first 100 yr following a lethal fire, while after that period the population structure becomes more uneven-aged. Under mesic conditions, populations tend to have an even-aged structure, under xeric conditions an uneven-aged structure. Natural openings present in xeric sites allow for recruitment in the absence of fire. This permits the self-maintenance of Pinus banksiana. Xeric island populations show more uneven-aged structures than xeric mainland populations. The occurrence of non-lethal fires on the islands creates uneven-aged structures. Further, the results suggest that the selection pressure of the island fire regime, favouring non-serotinous and mixed P. banksiana individuals, is one of the factors responsible for a higher recruitment in the absence of fire on islands than on the mainland.  相似文献   

18.
Predicting changes in vegetation structure in fire-prone arid/semi-arid systems is fraught with uncertainty because the limiting factors to coexistence between grasses and woody plants are unknown. We investigated abiotic and biotic factors influencing boundaries and habitat membership in grassland (Triodia or ‘spinifex’ grassland)-shrubland (Acacia aneura or ‘mulga’ shrubland) mosaics in semi-arid central Australia. We used a field experiment to test for the effects of: (1) topographic relief (dune/swale habitat), (2) adult neighbour removal, and (3) soil type (sand/clay) on seedling survival in three shrub and two grass species in reciprocal field plantings. Our results showed that invasion of the shrubland (swale) by neighbouring grassland species is negated by abiotic limitations but competition limits shrubland invasion of the grassland (dune). All species from both habitats had significantly reduced survival in the grassland (dune) in the presence of the dominant grass (Triodia) regardless of soil type or shade. Further, the removal of the dominant grass allowed the shrubland dominant (A. aneura) to establish outside its usual range. Seedling growth and sexual maturation of the shrubland dominant (A. aneura) was slow, implying that repeated fire creates an immaturity risk for this non-sprouter in flammable grassland. By contrast, rapid growth and seed set in the grassland shrubs (facultative sprouters) provides a solution to fire exposure prior to reproductive onset. In terms of landscape dynamics, we argue that grass competition and fire effects are important constraints on shrubland patch expansion, but that their relative importance will vary spatially throughout the landscape because of spatial and temporal rainfall variability.  相似文献   

19.
Aim The historical variability of fire regimes must be understood in the context of drivers of the occurrence of fire operating at a range of spatial scales from local site conditions to broad‐scale climatic variation. In the present study we examine fire history and variations in the fire regime at multiple spatial and temporal scales for subalpine forests of Engelmann spruce–subalpine fir (Picea engelmannii, Abies lasiocarpa) and lodgepole pine (Pinus contorta) of the southern Rocky Mountains. Location The study area is the subalpine zone of spruce–fir and lodgepole pine forests in the southern sector of Rocky Mountain National Park (ROMO), Colorado, USA, which straddles the continental divide of the northern Colorado Front Range (40°20′ N and 105°40′ W). Methods We used a combination of dendroecological and Geographic Information System methods to reconstruct fire history, including fire year, severity and extent at the forest patch level, for c. 30,000 ha of subalpine forest. We aggregated fire history information at appropriate spatial scales to test for drivers of the fire regime at local, meso, and regional scales. Results The fire histories covered c. 30,000 ha of forest and were based on a total of 676 partial cross‐sections of fire‐scarred trees and 6152 tree‐core age samples. The subalpine forest fire regime of ROMO is dominated by infrequent, extensive, stand‐replacing fire events, whereas surface fires affected only 1–3% of the forested area. Main conclusions Local‐scale influences on fire regimes are reflected by differences in the relative proportions of stands of different ages between the lodgepole pine and spruce–fir forest types. Lodgepole pine stands all originated following fires in the last 400 years; in contrast, large areas of spruce–fir forests consisted of stands not affected by fire in the past 400 years. Meso‐scale influences on fire regimes are reflected by fewer but larger fires on the west vs. east side of the continental divide. These differences appear to be explained by less frequent and severe drought on the west side, and by the spread of fires from lower‐elevation mixed‐conifer montane forests on the east side. Regional‐scale climatic variation is the primary driver of infrequent, large fire events, but its effects are modulated by local‐ and meso‐scale abiotic and biotic factors. The low incidence of fire during the period of fire‐suppression policy in the twentieth century is not unique in comparison with the previous 300 years of fire history. There is no evidence that fire suppression has resulted in either the fire regime or current forest conditions being outside their historic ranges of variability during the past 400 years. Furthermore, in the context of fuel treatments to reduce fire hazard, regardless of restoration goals, the association of extremely large and severe fires with infrequent and exceptional drought calls into question the future effectiveness of tree thinning to mitigate fire hazard in the subalpine zone.  相似文献   

20.
In arid Australia, changes to historic fire regimes may now produce more large‐scale wildfire events. The impacts of these fires on fauna communities are poorly known. We sought to test the impacts of fire on the occurrence of two arid‐zone snake species, the desert death adder (Acanthophis pyrrhus) and monk snake (Parasuta monachus), specialist inhabitants of hummock grassland and mulga shrubland, respectively. We also examined the influence of fire on the occurrence of a habitat generalist, the sympatric Stimson's python (Antaresia stimsoni). Under an Information‐Theoretic framework we modelled the occurrence of each species with a range of habitat variables, including fire history, using logistic regression. As predicted, the two habitat specialists were more likely to be encountered at locations that had a lower percentage of surrounding area burnt in the most recent wildfires (2002), while fire variables failed to predict the occurrence of the habitat generalist. Acanthophis pyrrhus, already predisposed to endangerment through a suite of life‐history characteristics, may be at increased risk through accidental and deliberate burning and fragmentation of old‐growth hummock grasslands. We stress the importance of prescribed burning and natural fire breaks in maintaining areas of old‐growth hummock grassland across the landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号